SELECTED DATA ON WATER QUALITY AND BOTTOM MATERIAL OF NEW YORK STREAMS, 1987-88

By Jay F. Weigel

U.S. GEOLOGICAL SURVEY

Open File Report 92-476

Prepared in cooperation with

NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Albany, New York

DEPARTMENT OF THE INTERIOR

BRUCE BABBITT, Secretary

U.S. GEOLOGICAL SURVEY

DALLAS L. PECK, DIRECTOR

For additional information write to:

U.S. Geological Survey P.O. Box 1669 Albany, N.Y. 12201 Copies of this report may be purchased from:

U.S. Geological Survey Books and Open-File Reports-ESIC P.O. Box 25425 Denver, CO 80225

CONTENTS

			Page
			1
		1	1
		and scope	1
		e basins	2
		tion and runoff during 1987-88	2
		ow during 1987-88	2
		on and analysis	4
		ection network	4
		e data	4
		nd bottom-material sampling	7
Lal	borato	ry analysis	10
		t of selected data on water quality and bottom material	16
		ıta	17
		logical Survey	17
		k State Department of Environmental Conservation	18
Refere	nces ci	ted	18
Glossa	ry		19
		ILLUSTRATIONS	Page
Figure	a 1 9	Mong of Now York showing	rage
rigure	S 1-3.	Maps of New York showing: 1. Major drainage basins	3
		Locations of permanent water-quality-sampling sites	8
			9
		3. Locations of Rotating Intensive Basin Study sites sampled in 1987-88	9
		TABLES	
Table	1.	A. Permanent sampling sites	5
		B. Rotating Intensive Basin Study sampling sites, 1987-88	6
	2.	Analytical methods, detection limits, and reporting limits for analytes	•
		measured by U.S. Geological Survey laboratories	10
	3.	Analytical methods, detection limits, and reporting limits for analytes	-0
	٠.	measured by New York State Laboratories	12
	4.	Selected water-quality and bottom-material data from New York	
	4.	streams, 1987-88	23
	5.	Results of analyses of quality-assurance samples	245
		y - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	

CONVERSION FACTORS AND VERTICAL DATUM

Multiply	Ву	To obtain
	Length	
inch (in.) foot (ft) mile (mi)	25.4 0.3048 1.609	millimeter meter kilometer
	Area	
square mile (mi²) square mile (mi²)	259.0 2.590	hectare square kilometer
	Volume	
quart (qt) gallon (gal)	0.9464 3.785	liter liter
	Flow	
cubic foot per second (ft³/s)	0.02832	cubic meter per second
gallon per minute (gal/min)	0.06308	liter per second
	Mass	
ton, short	0.9072	megagram
7	Temperature	
degree Celsius (°C) °F =	(1.8 x °C) + 32	degree Fahrenheit (°F)

Sea level: In this report "sea level" refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929)—a geodetic datum derived from a general adjustment of the firstorder level nets of both the United States and Canada, formerly called Sea level datum of 1929.

SELECTED DATA ON WATER QUALITY AND BOTTOM MATERIAL OF NEW YORK STREAMS, 1987-88

by

Jay F. Welgel

ABSTRACT

Growing concern about the availability of clean water has given rise to a need for a water-quality data base that will enable Federal, State, and local agencies to evaluate the current water-quality conditions of New York streams. In 1987, the U.S. Geological Survey began a continuing study in cooperation with the New York State Department of Environmental Conservation to provide a data base on the present water quality of New York streams.

This report presents the data collected during 1987-88 and describes the data-collection network, the field procedures, and the laboratory methods used to collect and analyze the data. During 1987, eight water samples and one bottom-material sample were collected at each of 25 sites that together represent four drainage basins. During 1988, 10 water samples and 1 bottom-material sample were collected at each of those 25 sites, and a set of five water samples was collected at each of 23 other sites in 10 other basins. Water samples were analyzed for physical characteristics and concentrations of total recoverable and dissolved heavy metals, major ions, nutrients, volatile organic compounds, sediment, and solids. Bottom-material samples were analyzed for grain size and concentrations of total recoverable heavy metals and organic compounds.

INTRODUCTION

New York State's abundant surface-water resources have been an attraction for recreation, transportation, and industry since the 17th century. The increased use of streams for disposal of municipal and industrial wastes with the growth of population and industry has increased the potential for water pollution. Water-quality deterioration in many streams has caused fish kills, unpleasant odors, and excessive plant growth (New York State Department of Environmental Conservation, 1990, p. 7). As a result, fishing and recreational activities have been restricted in some streams and lakes.

The State of New York has done much to protect and improve the quality of its surface waters by regulating municipal and industrial discharges to streams and lakes; yet several sources of contamination persist, including chemical spills, landfills, septic systems, and deposits of contaminants left in streambeds from past activities.

Today's concerns about the availability of clean water have prompted awareness of a need for a water-quality data base that will enable Federal, State, and local agencies to evaluate the present water quality of streams. Long-term data are

needed to identify trends in water quality; regional water-quality assessments are developed from data collected in large drainage basins, and localized assessments are developed from data from small drainage basins. Both require monitoring and an extensive data-collection network.

In 1987, the U.S. Geological Survey (USGS) began a continous study, in cooperation with the New York State Department of Environmental Conservation (NYSDEC), to provide a data base on water quality and bottom material of New York streams. Both agencies are taking part in the data collection and laboratory analyses. The first 2 years of study entailed sampling at a total of 59 sites that together represent 13 major drainage basins in New York.

Purpose and Scope

This report describes the hydrologic characteristics of New York, explains the data-collection network, field procedures, and laboratory methods, and presents tables of water-quality, bottom-material, and quality-assurance data collected during the first 2 years of the study (calendar years 1987-88).

Drainage Basins

The study area encompasses 16 drainage basins that together cover the entire State of New York. These basins are the Erie-Niagara, Allegheny, Genesee, Oswego, Susquehanna, Lake Ontario, Black, St. Lawrence, Lake Champlain, upper Hudson, Mohawk, lower Hudson, Delaware, Housatonic, Passaic, and Atlantic drainages (fig. 1). Most basins have areas outside New York State that are not considered part of the study area.

Topography ranges from flat and rolling plains to mountains. Lake Erie, Lake Ontario and Lake Champlain, and the St. Lawrence and Mohawk River valleys are bordered by extensive areas of level and rolling plans. Long Island is relatively flat. The Adirondack Mountains rise to more than 5,000 feet above sea level, and the Catskill Mountains rise to about 4,200 feet above sea level. The area that extends west from the Catskill Mountains along the Southern Tier (fig. 1) is fairly rugged terrain.

Precipitation and Runoff During 1987-88

Mean annual precipitation ranges from about 30 inches in the northwestern and northeastern parts of the State to about 52 inches on the western slopes of the Adirondack and Catskill Mountains (U.S. Geological Survey, 1986, p. 347). Precipitation during 1987 was variable, but the annual total was near normal; precipitation during 1988 was below normal. Precipitation during the winter and spring of 1987 was variable; January, April, and June precipitation was above normal, and precipitation in February, March, and May was below normal. Precipitation in the summer was near normal and, in the fall, was above normal. Precipitation was below normal from November 1987 through June 1988, above normal during the summer, and below normal from September through the rest of the year (Firda and others, 1988, 1989, and 1990; Spinello and others, 1988, 1989, 1990; Coon and others, 1987; Campbell and others, 1988 and 1990).

Mean annual runoff ranges from about 10 to 40 inches per year, and its distribution is similar to that of precipitation. Almost half the annual

runoff occurs from mid-February through mid-May (U.S. Geological Survey, 1986, p. 347).

Streamflow During 1987-88

The following is paraphrased from annual reports presenting New York stream data for calendar years 1987-88 (Firda and others, 1988, 1989, and 1990; Spinello and others, 1988, 1989, and 1990; Coon and others, 1987; Campbell and others, 1988 and 1990).

Streamflows during 1987 were generally near normal except on Long Island, where they were below normal. Streamflows during 1988 were generally below normal except in the mid-Hudson and lower-Hudson River valley, where they were near normal.

Monthly streamflows were variable during most of 1987; monthly streamflows for January and March were near normal, and February and May were below normal. April streamflows were near normal in the western part of the State, above normal in the most of the eastern part. and below normal in the northern and western Adirondack Mountains. June streamflows were near normal in the west, above normal in the northeast, and below normal in the southeast. July streamflows were above normal except in the northeast, where they were near normal. August streamflows were near normal in the west, below normal in the northeast, and above normal in the southeast. September streamflows were above normal except in the extreme northeastern part of the State, where they were below normal.

Streamflows during October 1987 were near normal and remained so through February 1988, then dropped below normal in March and continued below normal through September with few exceptions. May streamflows approached normal in the west and were near normal to above normal in the east. July and August streamflows were above normal in the southeast, and September streamflows were near normal in the east. October and November streamflows were normal in the west, and normal to abovenormal in most of the east. Streamflows in the southeast were below normal, and those on Long Island ranged from normal to below normal. Streamflows across the State were below normal in December.

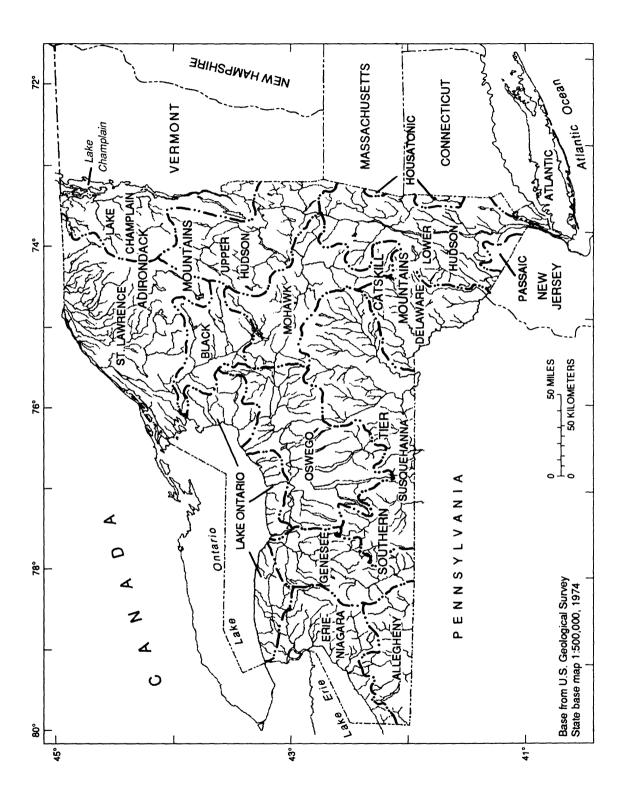


Figure 1.-Major drainage basins in New York.

DATA COLLECTION AND ANALYSIS

Data were collected at 32 permanent sites and 25 intermittently operated sites. The permanent sites represent 13 of the 16 drainage basins in the study. In 1987, data were collected at only nine permanent sites—three in the Erie-Niagara basin, three in the upper Hudson basin, one in the Lake Champlain basin, and two in the Delaware basin. Data collection at the other 23 permanent sites started in 1988. The 25 intermittently operated sites were distributed among four drainage basins—10 in the Erie-Niagara basin, 8 in the upper Hudson basin, 3 in the Lake Champlain basin, and 4 in the Delaware basin.

The USGS maintains a network of streamflow gages for continuous discharge; this network was used to provide discharge data for the water-quality samples. The USGS collected all discharge data, and the NYSDEC collected most of the water samples and all of the bottommaterial samples.

Both agencies conducted field reviews of sampling procedures to ensure consistent sampling methods. Initially, USGS personnel trained the NYSDEC staff in USGS sampling methods and conducted followup field reviews. Thereafter, USGS and NYSDEC headquarters office staff conducted annual field reviews to ensure consistent sampling procedures.

Data-Collection Network

The data-collection network in 1987-88 consisted of 57 sites—32 permanent sites listed in table 1a, and 34 intermittently operated sites listed in table 1b. Nine sites are on both lists. The network was designed to provide continuous representation of 13 large drainage basins and intermittent representation of many small drainage basins. The permanent sites were selected to provide annual data from the entire State and are on the main stem of rivers and large tributaries; the intermittently operated sites were selected to provide additional detail within the major drainage basins.

The 32 permanent sites were selected in 13 large drainage basins to provide broad representation of water quality in the State (fig. 2). Five water samples were collected each year at 23 of these sites between late March and early December; none were collected during the winter. The

other nine sites were sampled according to a schedule explained below. All samples were analyzed for physical characteristics and concentrations of total recoverable heavy metals, major ions, nutrients, volatile organic compounds, suspended-sediment, and solids.

Intermittently operated sites were used for Rotating Intensive Basin Studies (RIBS) and were sampled on a rotating schedule that has a 6-year cycle. The 16 drainage basins in the State were divided into three groups, and sampling sites were selected within each group for 2 years of sampling, followed by 4 years of inactivity before resampling. These sites were selected to provide more detailed water-quality information than the permanent sites (fig. 3). During each year of RIBS sampling, 10 water samples and 1 bottom-material sample were collected between late March and early December at each site and analyzed for the analytes mentioned above; in addition, three of these samples were analyzed each year for dissolved heavy-metals concentration, and the bottom-material sample was analyzed for concentrations of total recoverable heavy metals and organic compounds and for grain size. During RIBS sampling in a basin, the permanent sites in each basin were sampled according to the RIBS sampling schedule, whereby 8 water samples were collected at each site in 1987, and 10 were collected in 1988.

In 1988, duplicate samples and field blanks were collected for quality assurance. About 5 percent of the samples were collected in duplicate, and both samples were submitted to the same laboratory for analysis to verify analytical consistency. Deionized water was taken to the field periodically for field blanks, processed as a stream sample, and submitted for analysis to verify that field processing procedures were not introducing contamination.

Discharge Data

Sampling sites were established at streamflow gages wherever feasible so that each waterquality sample would have a corresponding discharge. Discharges at sampling sites without streamflow gages were obtained by one of several methods—multiplying data from nearby streamflow gages by a drainage-area-correction factor, making discharge measurements, or obtaining

Table 1A.—Permanent sampling sites.
[Locations are shown in fig. 2.]

Site Number	Site Name
01304000	Nissequogue River near Smithtown
01305000	Carmans River at Yaphank
01325420	Hudson River at Corinth*
01334805	Hoosic River at Eagle Bridge*
01335770	Hudson River at Waterford*
01342602	Mohawk River near Utica
01349530	Mohawk River at Fonda
01351500	Schoharie Creek at Burtonsville
01357500	Mohawk River at Cohoes
01359560	Hudson River at Glenmont
01367500	Rondout Creek at Rosendale
01372043	Hudson River at Poughkeepsie
01434000	Delaware River at Port Jervis*
01437500	Neversink River at Godeffroy*
01502701	Susquehanna River at Afton
01512850	Chenango River at Binghamton
01514937	Susquehanna River at Smithboro
01531000	Chemung River at Chemung
03011020	Allegheny River at Salamanca
04213500	Cattaraugus Creek at Gowanda*
04215790	Buffalo River at Ohio Street at Buffalo*
04219640	Niagara River (Lake Ontario) at Fort Niagara*
04227510	Genesee River at Geneseo
04232006	Genesee River at Charlotte Docks at Rochester
04237410	Seneca River at Jacks Reef, near Baldwinsville
04248250	Oswego River at Lock 5 at Minetto
04260500	Black River at Watertown
04260712	St. Lawrence River at Cape Vincent
04263000	Oswegatchie River near Heuvelton
04264331	St. Lawrence River at Cornwall, Ontarionear Massena
04266500	Raquette River at Piercefield
04295000	Richelieu River at Rouses Point*

^{* 1987-88} Rotating Intensive Basin Study site

Table 1B.—Rotating Intensive Basin Study sampling sites, 1987-88. [Locations are shown in fig. 3.]

Site	Site Name
01315500	Hudson River at North Creek
01317395	Schroon River, State Highway 418 at Warrensburg
01325420	Hudson River at Corinth*
01327755	Hudson River at Rogers Island at Fort Edward
01329500	Batten Kill at Battenville
01329650	Hudson River at Schuylerville
01329907	Clover Mill Brook on Shaw Hill Rd near Rock City Falls
01330907	Fish Creek near Grangerville
0133335001	Hoosic River below NY-VT State line, near North Pownal, VI
01334805	Hoosic River at Eagle Bridge*
01335770	Hudson River at Waterford*
01420500	Beaver Kill at Cooks Falls
01421000	East Branch Delaware River at Fishs Eddy (1988 only)
01421500	East Branch Delaware River at Hancock (1987 only)
01422642	West Branch Delaware River at De Lancey
01426500	West Branch Delaware River at Hale Eddy (1988 only)
01427000	West Branch Delaware River at Hancock (1987 only)
01434000	Delaware River at Port Jervis*
01437500	Neversink River at Godeffroy*
04213320	Chautauqua Creek at Barcelona
04213378	Canadaway Creek at Dunkirk
04213500	Cattaraugus Creek at Gowanda*
04214020	Cattaraugus Creek at Irving
04214240	Eighteenmile Creek at Highland-On-The-Lake
04214480	Buffalo Creek near Blossom (1987 only)
04214500	Buffalo Creek at Gardenville (1988 only)
04214740	Cayuga Creek near Alden (1987 only)
04215000	Cayuga Creek near Lancaster (1988 only)
04215790	Buffalo River at Ohio Street at Buffalo*
04216060	Niagara River at Anderson Park, Buffalo
04217122	Tonawanda Creek near East Pembroke
04218054	Tonawanda Creek at Pendleton
04218090	Ransom Creek near Clarance Center
04219640	Niagara River (Lake Ontario) at Fort Niagara*
04273500	Saranac River at Plattsburgh
04276500	Bouquet River at Willsboro
04279015	La Chute at State Highway 22 at Ticonderoga
04295000	Richelieu River at Rouses Point*

^{*} Permanent site

data from dam operators. Several sampling sites had no discharge data because discharge measurements were not feasible.

Streamflow gages in the USGS network record the water-surface stage (gage height) of the stream continuously. Discharge measurements are made through the range of gage heights, and discharge ratings are established that relate gage height to discharge at each site. This rating is used with gage-height data to compute instantaneous discharge for each water sample.

For sampling sites that are near streamflow gages but not close enough for direct use of the gage data, a correction factor can be applied to discharge at the gage to compute the discharge for each water sample. This correction factor, obtained by dividing the drainage area at the sampling site by the drainage area at the gage, is multiplied by the concurrent gaged discharge to obtain the discharge value for each water sample.

Discharge ratings for sampling sites that are not close to a gage were developed as part of the project. At these sites, stream-stage and discharge measurements were made together to establish a stage-discharge relation. When water samples were collected, stream-stage measurements were made, and the discharge rating was used to compute the instantaneous discharge for each water sample.

Several sampling sites are on streams that are highly regulated, in backwater from a lake, or affected by tidal conditions, all of which make discharge measurements difficult to obtain. Records for streams that are highly regulated are generally maintained by the regulating authority. Where necessary, these records were used to obtain discharges for water samples. No discharge data were obtainable from sites in backwater areas of lakes or in tidal areas.

Water and Bottom-Material Sampling

Streams are dynamic systems in which the flow and water quality can vary vertically and horizontally within a given cross section (Horowitz and others, 1989, p. 57-66). To obtain water samples that reflect these variations, samples are collected with depth-integrating samplers and by the Equal-Width-Increment (EWI) sampling method. Depth-integrating samplers are designed to collect water samples that reflect vertical differences in water quality

in a water column, and the EWI method collects water samples that reflect horizontal differences across a stream.

When depth-integrating samplers are moved vertically at constant rate through the water column, more water enters the sampler where the velocity is high than where it is low, and thus gives a discharge-weighted sample of suspended sediment and water (Edwards and Glysson, 1988, p. 6-20). With the EWI sampling method, a series of water columns are sampled at equal intervals in the stream cross section by moving the sampler at a uniform rate through each water column. These samples are composited to provide a water sample that is discharge weighted vertically and horizontally in the cross section and that is representative of the stream (Edwards and Glysson, 1988, p. 61-64).

Water collected at each water column is poured into a churn-splitter and, when sample collection is completed, the water in the churn-splitter is mixed to obtain a homogeneous sample. During mixing, aliquots are drawn off for laboratory analysis; this allows identical water samples to be sent to different laboratories.

Water temperature, specific conductance, pH, dissolved oxygen concentration, barometric pressure, and gage height are measured at the time of sampling. When possible, water temperature, specific conductance, pH, and dissolved oxygen concentration are measured in the stream; otherwise the measurements are made from the sample immediately after collection. Specific conductance and pH are also measured in the laboratory.

Bottom-material samples are collected at one or more places in the stream cross section. Because streambed conditions differ widely from place to place, bottom material was collected wherever it could be obtained with Teflon¹ scoops and buckets. Care is taken to avoid disturbing the material during sample collection to minimize the washing away of fine material. After collection, the bottom material is mixed to produce a homogeneous sample, which is then split for the various analyses.

¹ Use of trade names is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey.

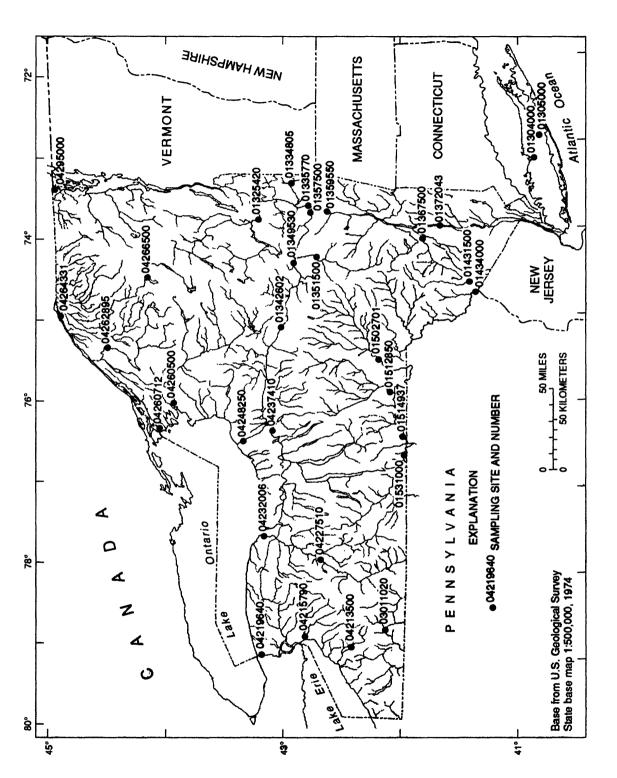


Figure 2.-Locations of permanent water-quality-sampling sites.

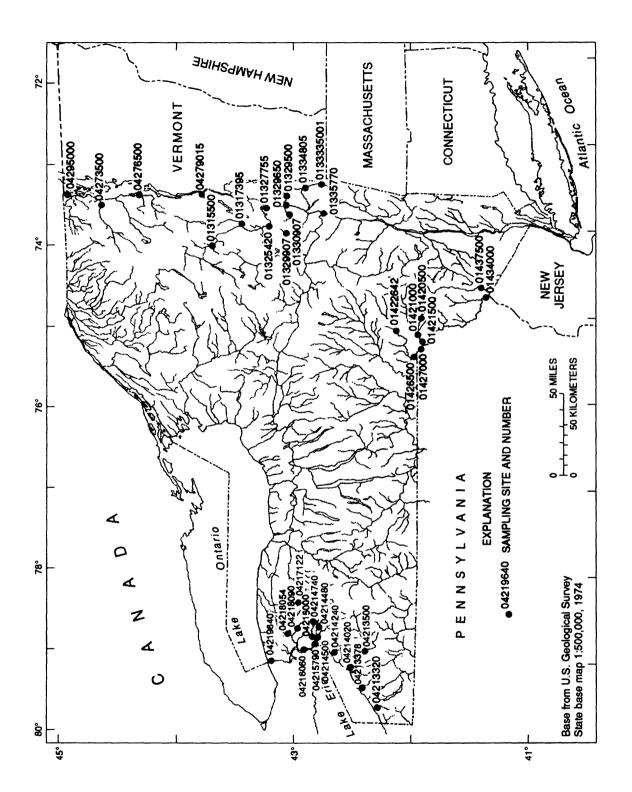


Figure 3.-Locations of rotating intensive basin study sites sampled in 1987-88.

Laboratory Analysis

Heavy-metal and major-ion analyses were run in the USGS Central Laboratory in Arvada, Colo.; analytical procedures are documented in Fishman and Friedman (1985). Sediment samples were analyzed in the USGS sediment laboratory in Harrisburg, Pa.; analytical procedures are documented in Guy (1969). Analytes, analytical methods, detection limits, and reporting limits are listed in table 2.

Analyses for nutrients, bacteria, solids, and organic compounds were run in the New York State Department Health laboratories in Al-

bany, Syracuse, or Buffalo. Analyses for volatile halogenated organic compounds were run in the NYSDEC laboratory in Albany. Analytical procedures used by these laboratories are documented in American Public Health Association, American Water Works Association and Water Pollution Control Federation (1980), U.S. Environmental Protection Agency (1983), U.S. Environmental Protection Agency (1982), and Wadsworth Center for Labs and Research, New York State Department of Health (1988). Analytes, analytical methods, detection limits, and reporting limits are listed in table 3.

Table 2.—Analytical methods, detection limits, and reporting limits for analytes measured by U.S. Geological Survey laboratories.

[Method codes are referenced from Fishman and Friedman (1989). If more than one method was used, the starting date (month and year) of the new method is given in parentheses. Method codes for sediment analyses are by page numbers references in Guy (1969).greater than. ≥ equal to or greater than.]

		Detection limit		ing limit
		(lowest reported	Number of	Concentration
Analyte	Method codes	value)	significant digits	range
		Heavy Metals		
	Total Reco	verable (in micrograms	s per liter)	
Aluminum	I-3054-85	10	1	< 100
			2	≥ 100
Cadmium	I-3135-85	10	1	< 100
			2	≥ 100
	I-3136-85 (09-87)	1	1	< 10
			2	≥ 10
Copper	I-3270-85	10	1	< 100
			2	≥ 100
	I-3271-85 (09-87)	1	1	< 10
			2	≥ 10
Iron	I-3381-85	10	1	< 100
			2	≥ 100
Lead	I-3399-85	10	1	< 100
			2	≥ 100
	I-3400-85 (05-87)	5	1	< 10
			2	≥ 10
Manganese	I-3454-85	10	1	< 100
			2	≥ 100
Mercury	I-3462-85	0.1	1	< 10
			2	≥ 10
Nickel	I-3499-85	100	1	< 1,000
			2	≥ 1,000
	I-3500-85 (05-87)	1	1	< 10
			2	≥ 10
Zinc	I-3900-85	10	1	< 100
			2	≥ 100

 $Table\ 2. — Analytical\ methods,\ detection\ limits,\ and\ reporting\ limits\ for\ analytes$ $measured\ by\ U.S.\ Geological\ Survey\ laboratories\ (continued).$

		Detection limit		ing limit
		(lowest reported	Number of	Concentration
Analyte	Method codes	value)	significant digits	range
		Heavy Metals		
	Dissection	olved (in micrograms pe	r liter)	
Aluminum	I-1054-85	10	1	< 100
			2	≥ 100
Cadmium	I-1135-85	1	1	< 10
			2	≥ 10
Copper	I-1271-85	1	1	< 10
т	T 1001 05	10	2	≥ 10
Iron	I-1381-85	10	1	< 100
Lead	I-1400-85	5	2 1	≥ 100 < 10
Lead	1-1400-65	υ	2	≥ 10 ≥ 10
Manganese	I-1454-85	10	1	< 100
Manganese	1-1404-00	10	$\overset{1}{2}$	≥ 100
Nickel	I-1500-85	1	1	< 10
	1 1000 00	_	$\stackrel{ ext{-}}{2}$	≥ 10
Zinc	I-1900-85	10	1	< 100
			2	≥ 100
	Total recoverable fro	om bottom material (in n	nicrograms per gram)	
Aluminum	I-5054-85	10	1	< 100
. Maiiii aiii	10004-00	10	$\overset{1}{2}$	≥ 100
Cadmium	I-5135-85	1	1	< 10
			$\overline{2}$	≥ 10
Copper	I-5270-85	1	1	< 10
			2	≥ 10
Iron	I-5381-85	1	1	< 10
			2	≥ 10
Lead	I-5399-85	10	1	< 100
		_	2	≥ 100
Manganese	I-5454-85	1	1	< 10
Nf: .1 1	I 5 400 05	• •	2	≥ 10
Nickel	I-5499-85	10	$\frac{1}{2}$	< 100
Zinc	I-5900-85	1		≥ 100 < 10
Zinc	1-5900-65	1	$rac{1}{2}$	≥ 10 ≥ 10
	Major ions	s, dissolved (in milligra		2 10
Allcolinite	•	-	•	. 10
Alkalinity	I-2030-85	1	1 2	< 10 ≥ 10
Calcium	I-1152-85	0.1	1	< 1.0
Calcium	1-1102-00	0.1	$\frac{1}{2}$	< 1.0 ≥ 1.0
Chloride	I-2187-85	0.1	1	< 1.0
		V.2	2	≥ 1.0
Fluoride	I-2327-85	0.1	1	< 1.0
			2	≥ 1.0
Magnesium	I-1447-85	0.1	1	< 1.0
			2	≥ 1.0
Potassium	I-1630-85	0.1	1	< 1.0
			2	≥ 1.0

Table 2.—Analytical methods, detection limits, and reporting limits for analytes measured by U.S. Geological Survey laboratories (continued).

		Detection limit	Repo	orting limit
Analyte	Method codes	(lowest reported value)	Number of significant digits	Concentration range
	Major ions, o	lissolved (in milligrams	per liter) (continued)	
Sodium	I-1735-85	0.1	1	< 1.0
			2	≥ 1.0
Sulfate	I-2823-85	0.2	1	< 1.0
			2	≥ 1.0
		Solids		
Volatile on	I-5753-85	1 mg/kg	1	< 10 mg/kg
ignition, total in bottom material			2	< 100 & ≥ 10 mg/kg
Residue on	I-3750-85	1 mg/L	1	< 10 mg/L
evaporation at			2	$< 100 \& \ge 10 \text{ mg/L}$
105° C, total, gravimetic			3	≥ 100 mg/L
		Sediment		
Concentration	(12-13)	1 mg/L	1	< 10 mg/L
		-	2	< 100 & ≥ 10 mg/L
Grain size, bottom	(23-38)	1 percent	1	< 10 percent
material		,	2	≥ 10 percent

Table 3.—Analytical methods, detection limits, and reporting limits for analytes measured by New York State laboratories (continued).

[Method codes for nutrients and phenols are referenced from U.S. Environmental Protection Agency (1983). Method codes for bacteria, solids, and turbidity are referenced from American Public Health Association, American Water Works Association, and Water Pollution Control Federation (1981). Method codes for volatile halogenated organic compounds are referenced from U.S. Environmental Protection Agency (1982). Method codes for organochlorine pesticides, PCBs, and pesticides containing nitrogen or phosphorus are referenced from Wadsworth Center for Labs and Research, New York State Department of Health (1988). < less than. > greater than. ≥ equal to or greater than. NTU Nephelometric turbidity unit.]

	Method codes	Detection limit	Reportin	ng limit
Analyte		(lowest reported value)	Number of significant digits	Concentration Range
	Nutrien	ts (in milligrams per	r liter)	
		Nitrogen		
Total organic	351.2	0.1	1	< 1.0
			2	≥ 1.0
Total ammonia	350.1	0.01	1	< 0.1
			2	≥ 0.1
Total nitrite	353.2	0.05	1	< 0.1
			2	≥ 0.1
Total nitrate + nitrite	353.2	0.05	1	< 0.1
			2	≥ 0.1
		Phosphorus		
Total	365.2	0.01	1	< 0.1
			2	≥ 0.1
Ortho, dissolved	365.2	0.01	1	< 0.1
			2	≥ 0.1

 $Table~3. \hbox{$--$Analytical methods, detection limits, and reporting limits for analytes} \\ measured~by~New~York~State~laboratories~(continued).$

			Reporting limit	
		Detection limit (lowest reported	Number of significant digits	Concentratior Range
Analyte	Method codes	value)		range
	Solids (in milligrams per lite	r)	
Total residue at 105°C	209 A	1	1	< 10
			2	> 10 &< 100
Volatile in ignition	209 E	1	1	< 10
	222		2	> 10 & < 100
Total residue fixed	209 E	1	1	< 10
D: 1- 1 1000G	000 T	1	2	> 10 & < 100
Dissolved residue at 108°C	209 E	1	1 2	< 10 > 10 & < 100
	Ractoria (co	lonies per 100 millilit		> 10 & < 100
Fecal Coliform	909 A	nomes per 100 mmm. 1	1	< 10
recai comorm	303 A	1	$\overset{1}{2}$	≥ 10
Total Coliform	909 C	1	1	< 10
Total Collidin	500 0	•	2	≥ 10
Total Volatile	e Halogenated Or	ganic Compounds	(in micrograms per lit	
1.1.1 M - 1.1	CO 1	0.02	1	.10
1,1,1-Trichloroethane	601	0.03	$rac{1}{2}$	< 1.0 ≥ 1.0
1,1,2,2-Tetrachloroethane	601	0.03	1	≥ 1.0 < 1.0
1,1,2,2-Tetracmoroethane	001	0.03	2	≥ 1.0 ≥ 1.0
1,1,2-Trichloroethane	601	0.02	1	≥ 1.0 < 1.0
1,1,2-111cmoroethane	100	0.02	2	≥ 1.0
1,1-Dichloroethane	601	0.1	1	< 1.0
1,1-Dictior detriane	001	0.1	2	≥ 1.0
1,1-Dichloroethylene	601	0.1	1	> 1.0
1,1-Dictior detrifferie	001	0.1	$\overset{1}{2}$	≥ 1.0 ≥ 1.0
1,2-Dichlorobenzene	601	0.1	1	> 1.0
1,2-Dichlorobelizene	001	0.1	$\overset{1}{2}$	≥ 1.0
1,2-Dichloroethane	601	0.03	1	> 1.0
1,2-Diefffortoefferie	001	0.00	$\overset{\cdot}{2}$	≥ 1.0
1,2-Dichloropropane	601	0.04	1	> 1.0
1,2 2 te op. ope	00-		$\overset{ ext{-}}{2}$	≥ 1.0
1,2-Transdichloroethene	601	0.1	1	> 1.0
.,			$\overline{2}$	≥ 1.0
1,3-Dichlorobenzene	601	0.3	1	> 1.0
- ,			2	≥ 1.0
1,4-Dichlorobenzene	601	0.2	1	> 1.0
,			2	≥ 1.0
2-Chloroethylvinyl ether	601	0.1	1	> 1.0
			2	≥ 1.0
Bromoform	601	0.2	1	> 1.0
			2	≥ 1.0
Carbon tetrachloride	601	0.1	1	> 1.0
			2	≥ 1.0
Chlorobenzene	601	0.2	1	> 1.0
			2	≥ 1.0
Chlorodibromomethane	601	0.1	1	> 1.0
			2	≥ 1.0
Chloroethane	601	0.5	1	> 1.0
			2	≥ 1.0

Table 3.—Analytical methods, detection limits, and reporting limits for analytes measured by New York State laboratories (continued).

		(lowest reported	Number of	Concentration
Analyte	Method codes	value)	significant digits	Range
Total Volatil	le Halogenated	d Organic Compou	nds (in micrograms pe	er liter)
Chloroform	601	0.1	1	> 1.0
			2	≥ 1.0
Cis-1,3-Dichloropropene	601	0.2	1	> 1.0
			2	≥ 1.0
Dichlorobromomethane	601	0.1	1	> 1.0
N.C. 43:	CO1	0.1	2	≥ 1.0
Methylbromide	601	0.1	1	> 1.0
Mathylahlarida	601	0.1	2 1	≥ 1.0 > 1.0
Methylchloride	001	0.1	$\frac{1}{2}$	> 1.0 ≥ 1.0
Methylene chloride	601	0.2	1	≥ 1.0 > 1.0
Methylene chloride	001	0.2	$\overset{1}{2}$	≥ 1.0 ≥ 1.0
Tetrachloroethylene	601	0.03	1	> 1.0
Tetracinor betrigrene	001	0.00	$\overset{1}{2}$	≥ 1.0 ≥ 1.0
Trans-1,3-Dichloropropene	601	0.3	1	> 1.0
17 and 1,0-Diemoropropene	001	0.0	$\overset{1}{2}$	≥ 1.0 ≥ 1.0
Trichloroethylene	601	0.1	1	> 1.0
111emorocony ione	001	0.12	$\hat{\overline{2}}$	≥ 1.0
Vinyl chloride	601	0.2	1	> 1.0
			$\overset{-}{2}$	≥ 1.0
		Other Analytes		
Phenols (in micrograms per liter)	214 A	1	1	< 10
Thenois (in interograms per nær)	21411	1	$\overset{1}{2}$	≥ 10
Turbidity [in Nephelometric Turbi	dity 205	0.1	a	
Units (NTU)]				
Organochlori	ne Pesticides t	total in bottom ma	t erial (in micrograms	
Aldrin	312.2	20	2	< 1,000
			3	≥ 1,000
Alpha BHC	312.2	10	2	< 100
			3	≥ 100
Beta-Benzene hexachloride	312.2	10	2	< 100
	212.0	24	3	≥ 100
Chlordane	312.2	30	2	< 1,000
DDD	010.0	10	3	≥ 1,000
DDD-para, para	312.2	10	2	< 10,000
DDF name name	210.0	10	$rac{4}{2}$	≥ 10,000 < 10,000
DDE-para, para	312.2	10	2 4	< 10,000 ≥ 10,000
DDT-para, para	312.2	10	2	< 10,000 < 10,000
DD1-para, para	014.4	10	4	≥ 10,000 ≥ 10,000
Delta Benzene hexachloride	312.2	10	$\overset{4}{2}$	< 100
Delta Delizene nexacmoride	0,2.2	10	3	≥ 100

^a Report 0.0 to 0.1 NTU to the nearest 0.05; 1 to 10 NTU to the nearest 0.1; 11 to 40 NTU to the nearest 1;

⁴¹ to 100 NTU to the nearest 5; 101 to 400 NTU to the nearest 10; 401 to $1{,}000$ NTU to the nearest 50;

over 1,000 NTU to the nearest 100.

 $Table~3. \hbox{$--$Analytical methods, detection limits, and reporting limits for analytes} \\ measured~by~New~York~State~laboratories~(continued).$

			Reporting limit		
Analyte	Method codes	(lowest reported value)	Number of significant digits	Concentration Range	
Organochlo	ine Pesticides tota	l in bottom materi	al (in micrograms per	kilogram) (cont'd)	
Dieldrin	312.2	10	2	< 1,000	
			3	≥ 1,000	
Endosulfan alpha	312.2	20	2	< 100	
			3	≥ 100	
Endosulfan beta	312.2	20	2	< 100	
			3	≥ 100	
Endosulfan sulfate	312.2	10	2	< 100	
D 1:	010.0	10	3	≥ 100	
Endrin	312.2	10	2	< 1,000	
73 1 1 1 1 1	010.0	00	3	≥ 1,000	
Endrin aldehyde	312.2	20	2	< 100	
II. A. alalaa	010.0	00	3	≥ 100	
Heptachlor	312.2	20	2	< 1,000	
Hankadalan anada	010.0	00	3	≥ 1,000	
Heptachlor epoxide	312.2	20	2	< 1,000	
Titu dan a	010.0	10	3	≥ 1,000	
Lindane	312.2	10	2	< 1,000	
Mathamalan	210.0	20	3	≥ 1,000	
Methoxychlor	312.2	30	2 3	< 1,000	
Mirex	312.2	10	3 2	≥ 1,000 < 1,000	
Mirex	312.2	10	3	≥ 1,000 ≥ 1,000	
Towarhana	312.2	30	3 2	< 1,000 < 1,000	
Toxaphene	312.2	30	3	≥ 1,000 ≥ 1,000	
	Total PCR's in hot	tom motorial (in m	icrograms per kilogran		
PCB, Aroclor 1221	312.2	1	1	< 10	
1 CB, Alociol 1221	012.2	1	$\overset{1}{2}$	≥ 10 to < 10	
			3	≥ 10 to < 10	
PCB, Aroclor 1248	312.2	1	1	< 100	
1 CB, Arocioi 1240	012.2	1	$\overset{1}{2}$	$\geq 10 \text{ to } < 10$	
			3	≥ 10 to € 10 ≥ 100	
PCB, Aroclor 1254	312.2	1	1	< 10	
1 OB, AIOCIOI 1254	012.2	1	$\overset{\mathtt{l}}{2}$	$\geq 10 \text{ to} < 100$	
			3	≥ 1000 < 100	
PCB, Aroclor 1260	312.2	1	1	< 10	
1 01, 11 00101 1200	012.2	1	$\overset{1}{2}$	$\geq 10 \text{ to} < 100$	
			3	≥ 1000 < 100	
Pesticides contain	ing Nitrogen/Phosr	horus total in bott	tom material (in micr		
Atrazine	312.2	30	2	< 1,000	
a ava demissio	914.4	30	3	≥ 1,000	
Diazinon	312.2	30	2	< 1,000	
ar a constitute	512.2	30	3	≥ 1,000	
Parathion	312.2	30	$\overset{\circ}{2}$	< 1,000	
~~~~	914.2	~~	3	≥ 1,000	
Chlorpyrifos	312.2	30	$\overset{\circ}{2}$	≥ 30	
Malathion	312.2	30	$\overset{2}{2}$	< 1,000	
aramam VAAL VAA	314.2	•	3	≥ 1,000	
Ethion	312.2	30	$\overset{\circ}{2}$	< 1,000	
	J.2.2	• •	3	≥ 1,000	

## ARRANGEMENT OF SELECTED DATA ON WATER QUALITY AND BOTTOM MATERIAL

The data for each of the 59 sites in table 4 (at end of report) begins with a site description that gives site location, drainage area, period of record, types of data available from the USGS, and other remarks pertinent to the data. The water-quality and bottom-material data include discharge, field measurements, and results of laboratory analyses.

Results of quality-assurance samples are presented in table 5 (at end of report). These data include the analytical results of paired duplicate samples and give the site, date, and time to which they correspond in table 4. Analytical results of field blanks are identified by date and time.

Sites listed in table 4 are grouped by drainage basin and presented in downstream order. Since October 1, 1950, the listing order of hydrologic-station records in USGS reports, by convention, is in downstream order along the main stream. All stations on a tributary entering upstream from a mainstream station are listed before that station, and a station on a tributary that enters between two mainstream stations is listed between them. This downstream-order system shows which stations are on tributaries between any two stations.

In assigning station numbers, no distinction is made between types of stations (stream-flowgaging stations, water-quality-sampling sites, permanent sites, RIBS sites, etc); therefore, the station number indicates only the downstream order. Gaps are left in the series of numbers to allow for new stations; hence, the numbers are not consecutive. The complete 8-digit number for each station, such as 01335770, comprises the 2-digit basin number (01) plus the 6-digit downstream-order number (335770). The basin number designates the major river basin. The downstream-order numbers for sites in the headwaters of a basin are small and increase downstream. In the few instances where no gaps were left in the 8-digit numbering sequence, one or two digits are added to give a 9- or 10-digit station number.

The site descriptions contain the following headings. Not all headings are used for every site.

LOCATION.—Information on locations is obtained from the most accurate maps available

and includes latitude, longitude, county, and hydrologic-unit number. The location of the site is given in terms of the cultural or physical features in the vicinity and the place mentioned in the station name.

DRAINAGE AREA.—Drainage areas are measured from the most accurate maps available and are reported in square miles. Because the type of maps available differ from one drainage basin to another, the accuracy of drainage areas also varies. Drainage areas are updated as improved maps become available.

PERIOD OF RECORD.—Period of record indicates periods for which water-quality data are available from the USGS. First, the water years for which data are available are listed, followed by a list of categories of water-quality data with years and frequency-of-sampling codes. The years refer to water years (October through September), and the frequency-of-sampling codes indicate the amount of data available and are defined as follows:

- (a) 1 or 2 samples per year
- (b) 3 to 5 samples per year
- (c) 6 to 9 samples per year
- (d) 10 to 20 samples per year
- (e) more than 20 samples per year

The many types of water-quality analyses available are grouped into eight categories in the "Period of Record" section, as explained below:

Chemical Data: Most of the major ions and some or all of the following physical properties: specific conductance, pH, temperature, color, turbidity, and dissolved oxygen concentration.

Minor Element Data: The "heavy metals" and some of the "alkaline earth metal" groups. Determinations may include some but not all of the following: aluminum, arsenic, barium, cadmium, chromium, cobalt, copper, lithium, mercury, nickel, selenium, strontium, and zinc.

Radiochemical Data: Concentrations of individual radioactive elements, such as radium 226, cobalt 60, strontium 90, and tritium; also included are gross measurements of radioactivity (alpha, beta, gamma) without regard to the radiochemical species that produce the radioactivity.

Pesticide Data: Organic compounds (insecticides and herbicides) for control of insects and plants. Routinely, the analyses search for traces

of 12 to 22 compounds.

Organic Data: Organic compounds other than pesticides, such as organic carbon, PCB's, and PCN's.

Nutrient Data: Analytes containing nitrogen or phosphorus. Results commonly include the following: nitrate plus nitrite, phosphorus, ammonia nitrogen, organic nitrogen, ammonia nitrogen plus organic nitrogen (Kjeldahl nitrogen).

Biological Data: The identification and concentration of microscopic plant organisms (phytoplankton, periphyton) or enteric bacteria (total coliform, fecal coliform, or fecal streptococ-

cal) living in aquatic habitats.

Sediment Data: Suspended-sediment concentration, suspended-sediment discharge, and particle-size data for discrete samples.

REMARKS.—Additional information pertinent to the collection or analysis of data. Such information could include the method of computing discharge, type of site (RIBS or permanent), or any information that explains departures from procedures described previously.

COOPERATION.—Acknowledgment of any government agencies other than NYSDEC or private companies that provided data for a site.

#### **SOURCES OF DATA**

Access to data in this report and additional data is available through the USGS and the NYSDEC. All data that the USGS has collected are available to the public in published reports and(or) computer retrievals. NYSDEC has additional data that are available in published reports and(or) computer retrievals.

#### U.S. Geological Survey

The USGS is the principal Federal waterdata agency and, as such, collects and disseminates about 70 percent of the water-data currently being used by numerous State, local, private, and other Federal agencies to develop and manage our water resources. As a part of the USGS program of releasing water data to the public, a large-scale computerized system has been developed for the storage and retrieval of water data collected through its activities. The National Water Data Storage and Retrieval System (WATSTORE) was established in 1972 to provide an effective and efficient means for the processing and maintenance of water data collected through the activities of the USGS and to facilitate release of the data to the public. A variety of useful products, ranging from data tables to complex statistical analyses, can be produced using WATSTORE. The system resides on the central computer facilities of the USGS at its National Center in Reston, Va., and consists of related files and data bases.

• Station Header File.—Contains descriptive information on more than 440,000 sites throughout the United States and its territories where

the USGS collects or has collected data.

- Daily Values File.—Contains more than 220 million daily values of streamflow, stage, reservoir content, water temperature, specific conductance, sediment concentration, sediment discharge, and ground-water level.
- Peak Flow File.—Contains about 500,000 maximum (peak) streamflow and gage-height values at surface-water sites.
- Water-Quality File.—Contains about 2 million analyses of water samples that describe the chemical, physical, biological, and radiochemical characteristics of both surface and ground water.
- Ground-Water-Site Inventory Data Base.—Contains inventory data from more than 900,000 wells, springs, and other sources of ground water. The data include site location, geohydrologic characteristics, well-construction history, and one-time field measurements such as water temperature.

In 1976, the USGS opened WATSTORE to the public for direct access. A signed Memorandum of Agreement with the USGS is needed for direct access to WATSTORE. The system can be accessed either synchronously or asynchronously. The requestor will be expected to pay all computer costs incurred. Direct access may be obtained by contacting:

U.S. Geological Survey National Water Data Exchange 421 USGS National Center Reston, VA 22092 In addition to providing direct access to WATSTORE, the USGS can provide data in various machine-readable formats on magnetic tape or 51/4 -inch floppy disk, and on CD-ROM disks. Information about the availability of specific types of data or products and user charges can be obtained locally from each of the USGS District offices. (See address on page ii.)

### New York State Department of Environmental Conservation

STOrage and RETrieval (STORET) is a

computer data system maintained by the U.S. Environmental Protection Agency and used by the NYSDEC for data storage. Water-quality data in WATSTORE are also stored in STORET. Inquiries about STORET data can be directed to:

Chief, Quality Assessment Section New York State Department of Environmental Conservation Bureau of Monitoring and Assessment 50 Wolf Road, Room 328 Albany, NY 12233-3503

#### REFERENCES CITED

- American Public Health Association, American Water Works Association, and Water Pollution Control Federation, 1981, Standard methods for the examination of water and wastewater: Springfield, Va., Byrd PrePress, 1,134 p.
- Campbell, J.B., Coon, W.H., Sherwood, D.A., and Deloff, D.D., 1988, Water resources data—New York, water year 1988. Volume 3, western New York: U.S. Geological Survey Water-Data Report NY-88-3, 198 p.
- ____ 1990, Water resources data—New York, water year 1989. Volume 3, western New York: U.S. Geological Survey Water-Data Report NY-89-3, 198 p.
- Coon, W.F., Johnston, W.H., Sherwood, D.A., and Deloff, D.D., 1987, Water resources data—New York, water year 1987. Volume 3, western New York: U.S. Geological Survey Water-Data Report NY-87-3, 178 p.
- Edwards, T.K., and Glysson, G.D., 1988, Field methods for measurement of fluvial sediment: U.S. Geological Survey Open-File Report 86-531, 118 p.
- Fishman, M.J., and Friedman, L.C., 1989, Methods for determination of inorganic substances in water and fluvial sediments: Techniques of Water-Resources Investigations of the United States Geological Survey, Book 5, Chapter A1, 545 p.
- Firda, G.D., Lumia, Richard, and Burke, P.M., 1988, Water resources data—New York, water year 1987. Volume 1, eastern New York excluding Long Island: U.S. Geological Survey Water-Data Report NY-87-1, 267 p. 1989, Water resources data—New York,

- water year 1988. Volume 1, eastern New York excluding Long Island: U.S. Geological Survey Water-Data Report NY-88-1, 259 p.
- Firda, G.D., Lumia, Richard, and Murray, P.M., 1990, Water resources data—New York, water year 1989. Volume 1, eastern New York excluding Long Island: U.S. Geological Survey Water-Data Report NY-89-1, 258 p.
- Guy, H.P., 1969, Laboratory theory and methods for sediment analysis: Techniques of Water-Resources Investigations of the United States Geological Survey, Book 5, Chapter C1, 58 p.
- Horowitz, A.J., Rinella, F.A., Lamothe, Paul, Miller, T.L., Edwards, T.K., Roche, R.L., and Rickert, D.A., 1989, Cross-sectional variability in suspended sediment and associated trace element concentrations in selected rivers in the US: Sediment and the Environment, no. 181, p. 57-66.
- New York State Department of Environmental Conservation, 1990, Biennial report rotating intensive basin studies water quality assessment program 1987-1988, 160 p.
- Spinello, A.G., Nakao, J.H., Winowitch, R.B., and Simmons, D.L., 1988, Water resources data— New York, water year 1987. Volume 2, Long Island: U.S. Geological Survey Water-Data Report NY-87-2, 218 p.
- Spinello, A.G., Nakao, J.H., Busciolano, Ronald, and Winowitch, R.B., 1989, Water resources data—New York, water year 1988. Volume 2, Long Island: U.S. Geological Survey Water-Data Report NY-88-2, 230 p.
- Spinello, A.G., Nakao, J.H., Busciolano, Ronald, Winowitch, R.B.and Eagen, V.K., 1990, Water resources data—New York, water year 1989.

## REFERENCES CITED (Continued)

Volume 2, Long Island: U.S. Geological Survey Water-Data Report NY-89-2, 196 p.

U.S. Environmental Protection Agency, 1982, Methods for organic chemical analysis of municipal and industrial wastewater: Cincinnati, Ohio, U.S. Environmental Protection Agency, EPA-600/4-82-057, 87 p.

____ 1983, Methods for chemical analysis of water and wastes: Cincinnati, Ohio, U.S. Environmental Protection Agency, EPA-600/4-79-020, 356 p.

U.S. Geological Survey, 1986, National water summary 1985—hydrologic events and surface-water resources: U.S. Geological Survey Water-Supply Paper 2300, 506 p.

Wadsworth Center for Labs and Research, New York State Department of Health, 1988, Analytic handbook—laboratory of organic analytical chemistry: Albany, N.Y., New York State Department of Health, 364 p.

#### **GLOSSARY**

Terms and abbreviations related to streamflow, water quality, and other hydrologic data, as used herein, are defined below.

Bacteria are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike, often clumped into colonies. Some bacteria cause disease; others perform an essential role in nature in the recycling of materials, such as decomposing organic matter into a form available for reuse by plants.

Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. They are characterized as aerobic or facultative anaerobic, gramnegative, nonspore-forming, rod-shaped bacteria which ferment lactose and cause gas formation within 48 hours at 35 °C. In the laboratory these bacteria are defined as the organisms that produce colonies within 24 hours when incubated at 35 °C  $\pm 1.0$  °C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Fecal coliform bacteria are present in the intestines or feces of warm-blooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory they are defined as all organisms that produce blue colonies within 24 hours when incubated at 44.5 °C  $\pm 0.2$  °C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Fecal streptococcal bacteria are bacteria found in intestines of warm-blooded animals. Their presence in water is considered to verify fecal pollution. They are characterized as grampositive, cocci bacteria that are capable of growth

in brain-heart infusion broth. In the laboratory they are defined as all organisms that produce red or pink colonies within 48 hours at 35 °C ±1.0 °C on KF medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample.

Bed material. See Bottom material. Bottom material is the unconsolidated material of which a streambed, lake, pond, reservoir, or estuary bottom is composed. Also known as bottom or bed sediment.

Recoverable from bottom material is the amount of a given analyte that is in solution after a representative sample of bottom material has been digested by a method (usually an acid or mixture of acids) that results in dissolution of only readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment; thus, the determination represents less than the total amount (that is, less than 95 percent) of the analyte in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories that perform such analyses because different digestion procedures are likely to produce different analytical results. Total in bottom material is the total amount of a given analyte in a representative sample of bottom material. This term is used only when the analytical procedure assures measurement of at least 95 percent of the analyte determined. A knowledge of the expected form of the analyte in the sample, as well as the analytical methods used, is required for judgment as to when the results should be reported as "total in bottom material."

Cells/volume refers to the number of cells of

#### GLOSSARY (Continued)

any organism that are counted through a microscope and grid or counting cell. Many planktonic organisms are multicellular and are counted according to the number of contained cells per sample (usually milliliters or liters).

Cubic foot per second (FT³/S, ft³/s) is the rate at which 1 cubic foot of water passes a given point during 1 second and is equivalent to about 7.48 gallons per second or 448.8 gallons per minute.

**Detection limit**. The lowest concentration of an analyte that a laboratory procedure can detect in a sample.

Discharge is the volume of water (or volume of fluid plus suspended sediment) that passes a given point within a given period of time.

Mean discharge (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period.

Instantaneous discharge is the discharge at a particular instant, expressed in ft³/s.

Dissolved refers to the material, in a representative water sample, that passes through a 0.45-µm membrane filter. This is a convenient operational definition used by Federal agencies that collect water data. Determinations of "dissolved" analytes are made on subsamples of the filtrate.

Dissolved-solids concentration of water is determined either analytically by the "residue-on-evaporation" method, or mathematically as the total of the concentrations of individual analytes reported in a comprehensive chemical analysis. During the analytical determination of dissolved solids, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. Therefore, in the mathematical calculation of dissolved-solids concentration, the bicarbonate value, in milligrams per liter, is multiplied by 0.492 to reflect the change to carbonate on the assumption that half the bicarbonate is volatized to carbon dioxide and water.

Drainage area of a stream at a specific location is that area, measured in a horizontal plane, enclosed by a topographic divide from which direct surface runoff from precipitation normally drains by gravity into the river above the specified point. Figures of drainage area given herein include all closed basins, or noncontributing areas, within the area unless otherwise noted. All values are in square miles.

Drainage basin is a part of the surface of the earth that is occupied by a drainage system, which consists of a surface stream or a body of impounded surface water, together with all tributary surface streams and bodies of impounded surface water.

Gage height (G.H.) is the water-surface elevation referred to some arbitrary gage datum. Gage height is often used interchangeably with the more general term "stage," although gage height is more appropriate when used with a reading on a gage.

Gaging station is a particular site on a stream, canal, lake, or reservoir where systematic measurements of hydrologic data are obtained. Grain size. See particle size.

Grain-size classification used in this report agrees with recommendation made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows:

Classification	Size (mm)	Method of Analysis
Clay	0.00024 - 0.004	Sedimentation
Silt	.004 - 062	Sedimentation
Sand	.062 - 2.0	Sedimentation or sieve
Gravel	2.0 - 64.0	Sieve

The grain-size distributions given in this report are not necessarily representative of all particles in transport in the stream because the sample is subjected to mechanical and chemical dispersion in distilled water before analysis.

Hardness of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is attributable to the presence of alkaline earth metals (principally calcium and magnesium) and is expressed as equivalent calcium carbonate (CaCO₂).

Hydrologic unit is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as delineated by the USGS on the State Hydrologic Unit Maps; each hydrologic unit is identified by an 8-digit number.

Measuring point (MP) is an arbitrary permanent reference point from which the distance to the water surface in a well is measured to obtain the water level.

Micrograms per gram (µg/g) is a unit express-

#### **GLOSSARY** (Continued)

ing the concentration of a chemical element as the mass (micrograms) of the element sorbed per unit mass (gram) of sediment.

Micrograms per kilogram (µg/kg) is a unit expressing the concentration of a chemical element as the mass (micrograms) of the element sorbed per unit mass (kilogram) of sediment.

Micrograms per liter (µG/L, µg/L) is a unit expressing the concentration of chemical analytes in solution as mass (micrograms) of solute per unit volume (liter) of water. One thousand micrograms per liter is equivalent to one milligram per liter.

Milligrams per kilogram (mg/kg) is a unit expressing the concentration of a chemical element as the mass (milligrams) of the element sorbed per unit mass (kilogram) of sediment.

Milligrams per liter (MG/L, mg/L) is a unit expressing the concentration of chemical analytes in solution. Milligrams per liter represent the mass (milligrams) of solute per unit volume (liter) of water. Concentration of suspended sediment also is expressed in mg/L and is based on the mass of sediment per liter of water-sediment mixture.

Organic carbon (OC) is a measure of the organic matter present in aqueous solution and(or) suspension. May be reported in any of three categories (DOC, dissolved organic carbon; SOC, suspended organic carbon; TOC, total organic carbon).

**Organism** is any living entity, such as an insect, phytoplankton, or zooplankton.

Organism count/area refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meters (m²), acres, or hectares. Periphyton, benthic organisms, and macrophytes are expressed in these terms.

Organism count/volume refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliters (mL) or liters (L). Numbers of planktonic organisms can be expressed in these terms.

Particle size is the diameter, in millimeters (mm), of suspended sediment or bed material determined by either sieve or sedimentation methods. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube) determine fall diameter of particles in distilled water (chemically dispersed).

Pesticides are chemical compounds used to control undesirable plants and animals. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides. Insecticides and herbicides, which control insects and plants, respectively, are the two categories reported.

Polychlorinated biphenyls (PCB's) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides.

Polychlorinated naphthalenes (PCN's) are industrial chemicals that are mixtures of chlorinated naphthalene compounds. They have properties and applications similar to those of PCB's and have been identified in commercial PCB preparations.

Reporting limit is the number of significant digits reported for a given range of values for an analyte.

Runoff is that part of the precipitation that appears in streams. It is the same as streamflow unaffected by artificial diversions, storage, or other works of man in or on the stream channels. Sediment is solid material that originates mostly from disintegrated rocks and is transported by, suspended in, or deposited from, water; it includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and causes of sediment in streams are influenced by environmental factors, some of which are degree of slope, length of slope, soil characteristics, land use, and quantity and intensity of precipitation.

Suspended sediment is the sediment that at any given time is maintained in suspension in the water column by the upward components of turbulent currents or that remains in suspension as a colloid.

Suspended-sediment concentration is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point about 0.3 feet above the bed) expressed as milligrams of dry sediment per liter of water and sediment mixture (mg/L). Suspended-sediment discharge (tons per day) is the rate at which dry weight of sediment passes a section of a stream or is the quantity of sediment, as measured by dry weight or volume, that passes a section in a given time. It is computed

## **GLOSSARY** (Continued)

as a product of discharge multiplied by suspended-sediment concentrations, in mg/L, by the factor 0.0027.

Total sediment discharge (tons per day) is the sum of the suspended-sediment discharge and the bed-load discharge. It is the total quantity of sediment, as measured by dry weight or volume, that passes a section during a given time.

Mean concentration is the time-weighted concentration of suspended sediment passing a stream section during a 24-hour day.

Solute is any substance derived from the atmosphere, vegetation, soil, or rocks that is dissolved in water.

Specific conductance is a measure of the ability of a water to conduct an electrical current. It is expressed in microsiemens per centimeter (µS/cm) at 25 °C. Specific conductance is related to the type and concentration of ions in solution and can be used to approximate the dissolved-solids concentration of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is about 65 percent of the specific conductance value (uS/cm). This relation is not constant from stream to stream, and it may vary within the same stream with changes in the composition of the water. Stage-discharge relation is the relation between gage height (stage) and volume of water per unit of time, flowing in a channel.

Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" because streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

Tons per day is the quantity of substance in solution or suspension that passes a stream section during a 24-hour day.

Total load (tons) is the total quantity of any individual analyte, as measured by dry mass or

volume, that is dissolved in a specific amount of water (discharge) during a given time. It is computed as a product of discharge multiplied by the analyte concentration, in mg/L, by the factor 0.0027, by the number of days.

**Total** (as used in tables of chemical analyses): Total is the total amount of a given analyte in a representative water and suspended-sediment sample, regardless of the analyte's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the analyte present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the analyte in the sample and of the analytical method used is required for judgment as to when the results should be reported as "total." (The word "total" indicates both that the sample consists of a water and suspended-sediment mixture and that the analytical method detects all of the analyte in the sample.) Total, recoverable is the amount of a given analyte that is in solution after a representative water and suspended-sediment sample has been digested by a method (usually a dilute acid solution is used) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment; thus, the determination represents less than the "total" amount (that is, less than 95 percent) of the analyte present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results.

Water year is the 12-month period from October 1 through September 30. The water year is designated by the calendar year in which it ends. Thus, the year ending September 30, 1980, is called the "1980 water year."

[Abbreviations used in table: AL - Aluminum, BOT. - bottom, C6H5OH - Phenol, CA - Calcium, CACO3 - Calcium carbonate, CD - Cadmium, CL - Chloride, COLS. - colonies, CU - Copper, DEG. C. - Degree Celsius, DIAM. - diameter, E - estimated, F - Fluoride, FE - Iron, FM - from, HG - Mercury, IMMED. - immediate M-EDOC medium, INST. - instantaneous, K - Potassium, LAB - laboratory, MAT. - material, MATL. - material, MEM.FIL - membrane filter, MG - Magnesium, MG/KG - milligram per kilogram, MG/L - milligram per liter, ML - milliliter, MM - millimeter, MN - Manganese, N - Nitrogen, NA - Sodium, ND - not detected, NH4 - Ammonia, NI - Nickel, NO2 - Nitrite, NO3 - Nitrate, NTU - nephelometric turbidity unit, P - Phosphorus, PB - Lead, PCB - Polychlorinated biphenyls, PO4 - Orthophosphate, RECOV. - recover, SO4 - Sulfate, T/DAY - tons per day, TOT. - total, UG/G - microgram per gram, UG/KG - microgram per kilogram, UG/L - microgram per liter, US/CM - microsiemens per centimeter, ZN - Zinc.]

#### STREAMS ON LONG ISLAND

#### 01304000 NISSEOUGGUE RIVER NEAR SMITHTOWN, NY

LOCATION.-- Lat 40 50'58", long 73 13'29", Suffolk County, Hydrologic Unit 02030201, on left bank 0.5 mi downstream from New Mill Pond, 1.0 mi southwest of village of Smithtown Branch. Water-quality sampling sit at discharge station.

DRAINAGE AREA. -- 27 mi2.

PERIOD OF RECORD--Water years 1967 to 1989.

CHEMICAL DATA: 1967-68 (b), 1969-70 (a), 1971-77 (b), 1978-84 (d), 1985-86 (e), 1987 (d), 1988 (c), 1989 (a).

MINOR ELEMENT DATA: 1967 (a), 1971-77 (b), 1978 (d), 1979 (c), 1980 (d), 1981-82 (c), 1983-85 (d), 1986 (e), 1987 (d),

1988 (c), 1989 (a).

RADIOCHEMICAL DATA: 1981 (c).

ORGANIC DATA: 0C--1972 (a), 1977 (b), 1978-81 (d).

NUTRIENT DATA: 1967-68 (b), 1969-70 (a), 1971-77 (b), 1978-85 (d), 1986 (e), 1987 (d), 1988 (c), 1989 (a).

BIOLOGICAL DATA:

Bacteria--1978 (c), 1979-81 (d), 1982 (b), 1983-84 (c), 1985-88 (b), 1989 (a).

Phytoplankton--1978-80 (b).

SEDIMENT DATA: 1978 (c), 1979-81 (d), 1982-86 (c), 1987-88 (b), 1989 (a).

PERIOD OF DAILY RECORD . --

SPECIFIC CONDUCTANCE: December 1978 to September 1981. WATER TEMPERATURES: January 1978 to September 1981.

REMARKS.--Water-discharge data obtained from stream-flow gage at this site.

#### WATER-QUALITY DATA

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
MAY 1988												
31 JUN	1845	36	121	124	6.8	21.5	2.0	762	8.6	97	27	6 <b>.6</b>
30 AUG	1530	30	107	123	6.8	19.0	0.30	752	8.7	95	28	6.9
04	1445	31	121	119	5.9	24.5	0.60	764	7.5	89	26	6.4
25	1130	32	118	120	6.5	18.0	1.0	761	8.6	91	28	6.8
OCT 13	0800	29	111	120	7.1	10.0		766	10.1	89	28	6.6
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, TOTAL (MG/L)	SOLIDS, VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	RESIDUE TOTAL FIXED (MG/L)
MAY 1988	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB (MG/L AS CACO3)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVED	RESIDUE AT 105 DEG. C, TOTAL	VOLA- TILE ON IGNI- TION, TOTAL	TOTAL FIXED
MAY 1988 31	SIUM, DIS- SOLVED (MG/L	DIS- SOLVED (MG/L	SIUM, DIS- SOLVED (MG/L	LINITY LAB (MG/L AS	DIS- SOLVED (MG/L	RIDE, DIS- SOLVED (MG/L	RIDE, DIS- SOLVED (MG/L	RESIDUE AT 180 DEG. C DIS- SOLVED	SUM OF CONSTI- TUENTS, DIS- SOLVED	RESIDUE AT 105 DEG. C, TOTAL	VOLA- TILE ON IGNI- TION, TOTAL	TOTAL FIXED
MAY 1988	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB (MG/L AS CACO3)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	RESIDUE AT 105 DEG. C, TOTAL (MG/L)	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L)
MAY 1988 31 JUN 30	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB (MG/L AS CACO3)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	RESIDUE AT 105 DEG. C, TOTAL (MG/L)	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L)
MAY 1988 31 JUN 30	SIUM, DIS- SOLVED (MG/L AS MG) 2.6	DIS- SOLVED (MG/L AS NA)	SIUM, DIS- SOLVED (MG/L AS K) 1.1	LINITY LAB (MG/L AS CACO3)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F) 0.30 <0.10	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	RESIDUE AT 105 DEG. C, TOTAL (MG/L) 88	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L)

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

#### 01304000 NISSEQUOGUE RIVER NEAR SMITHTOWN, NY - continued

DATE MAY 1988	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS NH4)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS NO3)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)
31	1.51	0.010	1.52	0.050	0.06		0.76	0.81	2.3	10	0.020	
JUN 30 AUG	1.45	0.00	1.45	0.030	0.04	0.04	0.47	0.50	2.0	8.6	0.010	<0.010
04 25	1.24	0.010 ND	1.25 1.06	0.070 0.040	0.09 0.05	0.04	0.69 0.26	0.76 0.30	2.0 1.4	8.9 6.0	0.060 <0.010	0.040 <0.010
OCT 13		ND	1.57	0.010	0.01		0.18	0.19	1.8	7.8	0.020	ND
DATE MAY 1988	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)
31		40		1				5		260		<5
JUN 30		<10	<10	<1	<1.0		1	10	1	120	37	<5
AUG 04	0.12	10		1				8		180		5
25 OCT		40	<10	<1	1.0	2	1	2	2	120	40	<b>&lt;</b> 5
13		10		1				3		120		<b>&lt;</b> 5
DATE	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)	SILVER, DIS- SOLVED (UG/L AS AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)	BROMO- FORM TOTAL (UG/L)	CARBON - TETRA - CHLO - RIDE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)
MAY 1988	:				,							(,-,
31 JUN		130										
30					4			<10				
AUG	<5	80	35	<0.10	43	 <1						 ND
AUG 04		70	35 	<0.10 <0.10	43	<1 	1.0	<10 70 10	88	ND	 ND 	ND 
AUG 04 25 OCT	<5  <5	70 50	35	<0.10	43 3 2	<1	1.0	<10 70 10 60	88  12	ND	ND	ND  ND
AUG 04 25		70	35 	<0.10 <0.10	43	<1 	1.0	<10 70 10	88	ND	 ND 	ND 
AUG 04 25 OCT 13	CHLORO-DI-BROMO-METHANETTOTAL (UG/L)	70 50	35 	<0.10 <0.10	43 3 2	<1 	1.0	<10 70 10 60	88  12	ND	ND	ND  ND
AUG 04 25 OCT 13	CHLORO-DI-BROMO-METHANETTOTAL (UG/L)	70 50 50 CHLORO- ETHANE TOTAL	35 30 CHLORO- FORM TOTAL	<0.10 <0.10 <0.10  CIS 1,3-DI- CHLORO- PROPENE TOTAL	43 3 2 3 DI- CHLORO- BROMO- METHANE TOTAL	<1 1 METHYL- BROMIDE TOTAL	1.0  <1.0  METHYL- CHLO- RIDE TOTAL	<10 70 10 60 <10 METHYL- ENE CHLO- RIDE TOTAL	1,1,1- TRI- CHLORO- ETHANE TOTAL	ND ND ND 1,1-DI-CHLORO-ETHANE TOTAL	ND ND ND 1,1-DI-CHLORO-ETHYL-ENE TOTAL	ND ND ND 1,1,2- TRI- CHLORO- ETHANE TOTAL
AUG 04 25 OCT 13 DATE	CHLORO-DI-BROMO-METHANETOTAL (UG/L)	70 50 50 CHLORO- ETHANE TOTAL (UG/L)	35 30 CHLORO- FORM TOTAL (UG/L)	<0.10 <0.10 <0.10 CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	43 3 2 3 DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	<1 1 METHYL- BROMIDE TOTAL (UG/L)	1.0 <1.0  METHYL- CHLO- RIDE TOTAL (UG/L)	<10 70 10 60 <10  METHYL- ENE CHLO- RIDE TOTAL (UG/L)	88 12 1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	ND ND ND 1,1-DI-CHLORO-ETHANE TOTAL (UG/L)	ND ND ND 1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	ND ND ND 1,1,2- TRI- CHLORO- ETHANE TOTAL
AUG 04 25 OCT 13 DATE MAY 1988 31 JUN 30 AUG	CHLORO-DI-BROMO-METHANETOTAL (UG/L)	70 50 50 CHLORO- ETHANE TOTAL (UG/L)	35 30 CHLORO- FORM TOTAL (UG/L) ND	<0.10 <0.10 <0.10 CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND	43  3 2  3  DI - CHLORO- BROMO- METHANE TOTAL (UG/L) ND	<1 1 METHYL- BROMIDE TOTAL (UG/L) ND	1.0 <1.0  METHYL- CHLO- RIDE TOTAL (UG/L) ND	<10 70 10 60 <10  METHYL- ENE CHLO- RIDE TOTAL (UG/L) ND	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L) ND	ND ND ND 1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	ND  ND  1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	ND  ND  1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)
DATE  MAY 1988 31 JUN 30	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	70 50 50 CHLORO- ETHANE TOTAL (UG/L)	35 30 CHLORO- FORM TOTAL (UG/L)	<0.10 <0.10 <0.10  CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	43 3 2 3 DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	<1 1 METHYL- BROMIDE TOTAL (UG/L)	1.0 <1.0 <1.0 METHYL- CHLO- RIDE TOTAL (UG/L)	<10 70 10 60 <10 METHYL- ENE CHLO- RIDE TOTAL (UG/L)	88 12 1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	ND  ND  1,1-DI- CHLORO- ETHANE TOTAL (UG/L)  ND	ND ND ND 1,1-DI-CHLORO-ETHYL-ENE TOTAL (UG/L) ND	ND  1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)  ND

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

## 01304000 NISSEQUOGUE RIVER NEAR SMITHTOWN, NY - continued

#### WATER-QUALITY DATA (continued)

	1,1,2,2		1,2-DI- CHLORO-		1,2-			TETRA-	TRANS-	TRI-	2- CHLORO-	
	TETRA-	1,2-DI-	ETHANE	1,2-DI-	TRANSDI	1,3-DI-	1,4-DI-	CHLORO-	1,3-DI-	CHLORO-	ETHYL-	VINYL
	CHLORO-	CHLORO-	WATER	CHLORO-	CHLORO-	CHLORO-	CHLORO-	ETHYL-	CHLORO-	ETHYL-	VINYL-	CHLO~
	ETHANE	BENZENE	WHOLE	PROPANE	ETHENE	BENZENE	BENZENE	ENE	PROPENE	ENE	ETHER	RIDE
DATE	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL
	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)
MAY 1988												
31												
JUN									•			
30	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
AUG												
04	~-							~-				
25	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
OCT												
13	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

#### SUSPENDED SEDIMENT DISCHARGE

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)
JUN 1988 30	1530	30	1	0.10
AUG 25	1130	32	3	0.25

#### 01305000 CARMANS RIVER AT YAPHANK, NY

LOCATION.--Lat 40 49'49", long 72 54'24", Suffolk County, Hydrologic Unit 02030202, on left bank 50 ft upstream from Long Island Railroad bridge, 0.6 mi northeast of Yaphank Station, and 0.7 mi southeast of Yaphank.

DRAINAGE AREA. -- About 71 mi2.

PERIOD OF RECORD.--Water years 1966 to current year.

CHEMICAL DATA: 1966 (a), 1967-69 (b), 1970 (a), 1971 (d), 1972 (c), 1973-76 (d), 1977 (b), 1978 (c), 1979-82 (d), 1983-86

1987 (d), 1988 (c), 1989 (a).

1907 (d), 1988 (c), 1989 (a).

MINOR ELEMENT DATA. 1966 (a), 1967-69 (b), 1970 (a), 1971 (d), 1972 (c), 1973-76 (d), 1977 (b), 1978-79 (c), 1980 (d), 1981-86 (c), 1987 (d), 1988 (c), 1989 (a).

RADIOCHEMICAL DATA: 1981 (b), 1986 (a).

PESTICIDE DATA: 1988 (b), 1989 (a).

ORGANIC DATA: 05-1972 (a), 1977-78 (b), 1979 (c), 1980 (d), 1981 (b), 1986 (a).

NUTRIENT DATA: 1966 (a), 1967-69 (b), 1970 (a), 1971 (d), 1972 (c), 1973-76 (d), 1977 (b), 1978 (c), 1979-82 (d), 1983-88 (c), 1989 (a).

BIOLOGICAL DATA:

Bacteria--1978 (a), 1979 (b), 1980 (d), 1981-82 (c), 1983-87 (b), 1989 (a).

Phytoplankton--1979-81 (d).
Periphyton--1979 (a), 1980 (b).
SEDIMENT DATA: 1979 (b), 1980 (d), 1981-82 (c), 1983-88 (b), 1989 (a).

PERIOD OF DAILY RECORD.

SPECIFIC CONDUCTANCE. -- December 1979 to September 1981. WATER TEMPERATURES. -- December 1979 to September 1981.

REMARKS. -- Water-discharge data obtained from stream-flow gage at this site.

#### WATER-QUALITY DATA

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
MAY 1988	1415	17	122	100	6.5	24.0	2.0	7.63	0.7	115	22	7.6
31 JUN	1415	17	122	123		24.0		763	9.7	115	32	
30 AUG	1200	15	218	131	6.9	22.0	0.60	752	10.1	117	34	8.2
04 25	1130 1 <b>4</b> 30	13 15	123	132 132	7.2	26.0	0.90 0.90	764 	10.5	129 	 <b>3</b> 5	8.2
OCT 12	1300	13	118	132	6.4	13.0	0.70	761	10.3	98	33	7.9
12	1300	13	118	132	6.4	13.0	0.70	761	10.3	98	33	7.9
DATE MAY 1988	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, TOTAL (MG/L)	SOLIDS, VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	RESIDUE TOTAL FIXED (MG/L)
31	3.2	10	1.0	18	14	15	0.30	66	62	100	54	
JUN 30 AUG	3.3	11	0.80	18	15	16	<0.10	72	84	113	58	55
04	3.4	11	0.90	18 17	15 14	15 15	0.10 0.10	51 91	 79	89 83	24 51	65 32
OCT												
12	3.3	11	1.2	16	15	15	0.10	74	63	90	42	48
DATE	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS NH4)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS NO3)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)
MAY 1988	1.02	0.00	1.02	0.010	0.01		0.61	0.62	1.6	7.3	0.020	
31 JUN												
30 AUG	0.960	0.00	0.960	0.030	0.04	0.04	1.4	1.4	2.4	10	0.020	0.050
04 25	1.10	ND 0.00	0.730 1.10	0.010 0.040	0.01 0.05	0.03	0.30 0.26	0.31	1.0 1.4	4.6 6.2	0.010 0.010	0.00 <0.010
OCT 12		ND	1.32	0.020	0.03		0.15	0.17	1.5	6.6	0.010	0.00

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

#### 01305000 CARMANS RIVER AT YAPHANK, NY - continued

DATE	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)
MAY 1988 31		20		<1				3		410		<5
JUN 30 AUG	0.15	40	<10	1	2.0		1	4	2	280	170	<5
04	0.0	<10		2				12		310		<5
25 OCT		30	<10	<1	<1.0	2	1	2	1	340	140	34
12	0.0	<10		1				3		270		<b>&lt;</b> 5
DATE	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)	SILVER, DIS- SOLVED (UG/L AS AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)	BROMO- FORM TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)
MAY 1988 31		80		<0.10	4			<10				
JUN												
30 AUG	<b>&lt;</b> 5	70	59	<0.10	1	<1	<1.0	<10	86	ND	ND	ND
04 25	 5	40 70	 53	<0.10 <0.10	3 1	2	 <1.0	10 20	6	ND ND	ND ND	ND ND
OCT	3		33			2						
12		70			2			10		ND	ND	ND
DATE MAY 1988	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)	CHLORO- FORM TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)
31								~-				
JUN 30 AUG	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
04	ND	ND	ND	ND	ND	ND	ND	ND	ND	<b>N</b> D	ND	ND
25 OCT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
12	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DATE MAY 1988		1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)
31 JUN								~-				
30	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
25 OCT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
12	ND	ND	ND	ND	ND	ND	ND	<b>N</b> D	ND	ND	ND	ND

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

#### 01305000 CARMANS RIVER AT YAPHANK, NY - continued

#### SUSPENDED SEDIMENT DISCHARGE

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)
JUN 1988	1200	15	2	0.10
30 AUG	1200	15	3	0.10
25	1430	15	2	0.08

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

#### 01315500 HUDSON RIVER AT NORTH CREEK, NY

LOCATION.--Lat 43 42'03", long 73 59'02", Warren County, Hydrologic Unit 02020001, on left bank 125 ft upstream from bridge on State Highway 28N in village of North Creek, 500 ft upstream from North Creek, and 26 mi downstream from Indian Lake.

DRAINAGE AREA. -- 792 mi 2 .

PERIOD OF RECORD.--Water years 1969-75, 1987 to 1989.

CHEMICAL DATA: 1969 (c), 1970-74 (d), 1975 (c), 1987 (b), 1988 (c), 1989 (a).

MINOR ELEMENTS DATA: 1969 (c), 1970-74 (d), 1975 (c), 1987 (b), 1988 (c), 1989 (a).

PESTICIDE DATA: 1987 (b), 1988 (c), 1989 (a).

ORGANIC DATA: PCB--1988 (a).

BIOLOGICAL DATA:

Bacteria--1987 (a), 1988 (c), 1989 (a).

NUTRIENT DATA: 1969 (c), 1970-74 (d), 1975 (c), 1987 (b), 1988 (c), 1989 (a).

SEDIMENT DATA: 1988 (b), 1989 (a).

REMARKS.--Water-discharge data obtained from gage at this location. Appreciable regulation of flow by Indian Lake and other reservoirs upstream from station.

#### WATER-OUALITY DATA

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	FECAL COLI- FORM 24-HR MEM.FIL (COLS./
APR 1987												
23 MAY	1130	1670			7.3	12.5	0.90		14.2			
13	1045	652		52	7.8	14.5	0.30		10.2			
JUN 22	1100	549		51	7.2	20.0	0.30		8.1			
JUL 27	1045	814			7.5	23.0	0.40		9.2		ND	ND
SEP 23	1030	2430		46	7.5	14.0	1.1		10.6		20	10.0
oct	1050	2430					***					
29 DEC	1100	4800		46	7.0	6.0	1.9		12.4		480	40.0
10	1130	1340		57	7.2	2.0	0.80		18.0		200	ND
MAR 1988	1045	2210	40	47	0.0	2.0	1 2	7.00	14.0	101	110	110
30 APR	1045	3210	49	47	8.0	2.0	1.2	768	14.0	101	110	ND
14	1045	1970	42	44	6.3	7.5	0.60	763	11.8	98	80	ND
27	1100	1110	47	47	8.0	8.0	0.50	760	11.2	95	40	ND
MAY 12	1045	1220	47	44	6.6	12.5	0.50	760	10.6	100	ND	ND
25	1030	1800	41	44	7.6	15.5	1.1	749	9.2	94	140	ND
JUN												
15	1040	312	54	54	7.8	22.5	0.50	766	6.6	76	60	ND
AUG 18	1100	330	48	48	7.1	22.0	0.50		8.8			
ОСТ 05	1030	457	49	46	7.5	11.5	0.30	765	10.6	97	80	10.0
NOV	1030	4.5/	49	40	7.5	11.5	0.30	763	10.6	31	80	10.0
03	1000	2070	47	45	6.6	2.5	0.60		13.1		100	10.0

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

#### 01315500 HUDSON RIVER AT NORTH CREEK, NY - continued

DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, TOTAL (MG/L)
APR 1987	14	4 5	0.70							13		31
23 MAY		4.5								13		
13 JUN	20	6.7	0.90							25		39
22 JUL	19	6.2	0.90							24		58
27 SEP	17	5.3	0.80							40		57
23 OCT	16	5.1	0.80							39		49
29 DEC	16	5.1	0.70							39		60
10 MAR 1988	17	5.2	0.90							37		54
30	16	4.9	0.80	1.7	0.40	7.0	11	1.9	0.10	42	25	50
APR 14	14	4.4	0.69	1.5	0.40	7.0	11	1.8	0.10	38	24	44
27 MAY	16	5.0	0.84	1.8	0.40	8.0	10	2.3	0.10	37	25	40
12 25	15 15	4.8 4.9	0.73 0.77	1.6 1.6	0.30 0.40	9.0 9.0	9. <b>4</b> 1 <b>1</b>	1.8 2.1	0.20 0.20	58 37	24 27	63 43
JUN 15	19	6.1	0.99	2.1	0.40	13	8.7	2.5	0.10	43	29	45
AUG 18	18	5.4	1.0	2.2	0.40	11	8.4	2.4	0.10	42	26	43
ОСТ 05	17	5.1	0.97	1.9	0.50	10	8.8	2.3	0.10	43	26	45
NOV 03	16	4.8	0.87	1.8	0.40	8.0	11	2.2	0.10	31	26	36
DATE	SOLIDS, VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	RESIDUE TOTAL FIXED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS NH4)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS NO3)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)
APR 1987	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L	GEN, ORGANIC TOTAL (MG/L	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS NO3)	PHORUS TOTAL (MG/L	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)
	VOLA- TILE ON IGNI- TION, TOTAL	TOTAL FIXED	GEN, NITRITE TOTAL (MG/L	GEN, NO2+NO3 TOTAL (MG/L	GEN, AMMONIA TOTAL (MG/L	GEN, AMMONIA TOTAL (MG/L	GEN, ORGANIC TOTAL (MG/L	GEN, AM- MONIA + ORGANIC TOTAL (MG/L	GEN, TOTAL (MG/L	GEN, TOTAL (MG/L	PHORUS TOTAL (MG/L	PHORUS ORTHO, DIS- SOLVED (MG/L
APR 1987 23	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS NO3)	PHORUS TOTAL (MG/L AS P)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)
APR 1987 23 MAY 13 JUN 22	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N) ND	GEN, AMMONIA TOTAL (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS NO3)	PHORUS TOTAL (MG/L AS P)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)
APR 1987 23 MAY 13 JUN 22 JUL 27	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L) 22 23	GEN, NITRITE TOTAL (MG/L AS N) ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.420 0.210	GEN, AMMONIA TOTAL (MG/L AS N) ND 0.020	GEN, AMMONIA TOTAL (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.16	GEN, TOTAL (MG/L AS N) 0.58	GEN, TOTAL (MG/L AS NO3) 2.6 1.5	PHORUS TOTAL (MG/L AS P) 0.00	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)
APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23	VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 8 18	TOTAL FIXED (MG/L) 22 23 37	GEN, NITRITE TOTAL (MG/L AS N)  ND ND ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.420 0.210	GEN, AMMONIA TOTAL (MG/L AS N) ND 0.020	GEN, AMMONIA TOTAL (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.16 0.12	GEN, TOTAL (MG/L AS N) 0.58 0.33	GEN, TOTAL (MG/L AS NO3) 2.6 1.5	PHORUS TOTAL (MG/L AS P) 0.00 0.00	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.00 ND
APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  8 18 23	TOTAL FIXED (MG/L) 22 23 37 37	GEN, NITRITE TOTAL (MG/L AS N)  ND ND ND ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.420 0.210 0.170	GEN, AMMONIA TOTAL (MG/L AS N)  ND 0.020 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N)  0.10 0.11	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.16  0.12  0.12	GEN, TOTAL (MG/L AS N) 0.58 0.33 0.29	GEN, TOTAL (MG/L AS NO3) 2.6 1.5 1.3	PHORUS TOTAL (MG/L AS P) 0.00 0.00 0.00	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.00 ND 0.00
APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  8 18 23 20 39	TOTAL FIXED (MG/L)  22 23 37 37 6	GEN, NITRITE TOTAL (MG/L AS N)  ND ND ND ND ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.420 0.210 0.170 0.170 0.160	GEN, AMMONIA TOTAL (MG/L AS N) ND 0.020 0.010 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.03 0.01 0.01	GEN, ORGANIC TOTAL (MG/L AS N)  0.10 0.11	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.16 0.12 0.12 0.13	GEN, TOTAL (MG/L AS N) 0.58 0.33 0.29 0.30	GEN, TOTAL (MG/L AS NO3) 2.6 1.5 1.3 2.1	PHORUS TOTAL (MG/L AS P) 0.00 0.00 0.00 0.00	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.00 ND 0.00
APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  8 18 23 20 39 30	TOTAL FIXED (MG/L) 22 23 37 37 6 28	GEN, NITRITE TOTAL (MG/L AS N)  ND ND ND ND ND ND ND ND ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.420 0.210 0.170 0.170 0.160 0.260	GEN, AMMONIA TOTAL (MG/L AS N)  ND 0.020 0.010 0.010 ND 0.000	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.03 0.01 0.01  0.0	GEN, ORGANIC TOTAL (MG/L AS N)  0.10 0.11 0.12  0.18	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.16  0.12  0.12  0.13  0.32  0.18	GEN, TOTAL (MG/L AS N) 0.58 0.33 0.29 0.30 0.48	GEN, TOTAL (MG/L AS NO3) 2.6 1.5 1.3 2.1	PHORUS TOTAL (MG/L AS P)  0.00  0.00  0.00  0.00  0.00  0.00	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.00 ND 0.00 ND 0.00
APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR 14	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  8 18 23 20 39 30 26 8 17	TOTAL FIXED (MG/L)  22 23 37 37 6 28 28 42 27	GEN, NITRITE TOTAL (MG/L AS N)  ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.420 0.210 0.170 0.170 0.160 0.260 0.390 0.750 0.630	GEN, AMMONIA TOTAL (MG/L AS N)  ND 0.020 0.010 0.010 ND 0.000 0.010 0.000 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.03 0.01 0.0 0.01 0.0 0.01	GEN, ORGANIC TOTAL (MG/L AS N)  0.10 0.11 0.12  0.18 0.25 0.28	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.16 0.12 0.12 0.13 0.32 0.18 0.26 0.30 0.14	GEN, TOTAL (MG/L AS N) 0.58 0.33 0.29 0.30 0.48 0.44 0.65	GEN, TOTAL (MG/L AS NO3) 2.6 1.5 1.3 2.1 1.9 2.9 4.6	PHORUS TOTAL (MG/L AS P)  0.00  0.00  0.00  0.00  0.010  0.010  0.020	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.00 ND 0.00 ND 0.00 0.00 0.00
APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR 14 27 MAY	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  8 18 23 20 39 30 26 8 17 12	TOTAL FIXED (MG/L) 22 23 37 37 6 28 28 42 27 28	GEN, NITRITE TOTAL (MG/L AS N)  ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.420 0.210 0.170 0.170 0.160 0.260 0.390 0.750 0.630 0.480	GEN, AMMONIA TOTAL (MG/L AS N)  ND 0.020 0.010 ND 0.010 0.010 0.000 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.03 0.01  0.0 0.01 0.01	GEN, ORGANIC TOTAL (MG/L AS N)  0.10 0.11 0.12  0.18 0.25 0.28	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.16  0.12  0.12  0.13  0.32  0.18  0.26  0.30  0.14  0.35	GEN, TOTAL (MG/L AS N) 0.58 0.33 0.29 0.30 0.48 0.44 0.65 1.0	GEN, TOTAL (MG/L AS NO3) 2.6 1.5 1.3 2.1 1.9 2.9 4.6 3.4 3.7	PHORUS TOTAL (MG/L AS P)  0.00 0.00 0.00 0.00 0.00 0.010 0.000 0.010 0.020 0.000	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)  0.00  ND 0.00  ND 0.00  ND 0.00  ND 0.00  ND 0.00  ND 0.00
APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR 14 27 MAY	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  8 18 23 20 39 30 26 8 17	TOTAL FIXED (MG/L)  22 23 37 37 6 28 28 42 27	GEN, NITRITE TOTAL (MG/L AS N)  ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.420 0.210 0.170 0.170 0.160 0.260 0.390 0.750 0.630	GEN, AMMONIA TOTAL (MG/L AS N)  ND 0.020 0.010 0.010 ND 0.000 0.010 0.000 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.03 0.01 0.0 0.01 0.0 0.01	GEN, ORGANIC TOTAL (MG/L AS N)  0.10 0.11 0.12  0.18 0.25 0.28	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.16 0.12 0.12 0.13 0.32 0.18 0.26 0.30 0.14	GEN, TOTAL (MG/L AS N) 0.58 0.33 0.29 0.30 0.48 0.44 0.65	GEN, TOTAL (MG/L AS NO3) 2.6 1.5 1.3 2.1 1.9 2.9 4.6	PHORUS TOTAL (MG/L AS P)  0.00  0.00  0.00  0.00  0.010  0.010  0.020	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.00 ND 0.00 ND 0.00 0.00 0.00
APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR 14 27 MAY 12 25 JUN 15	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  8 18 23 20 39 30 26 8 17 12 31	TOTAL FIXED (MG/L)  22 23 37 37 6 28 28 42 27 28 32	GEN, NITRITE TOTAL (MG/L AS N)  ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.420 0.210 0.170 0.170 0.160 0.260 0.390 0.750 0.630 0.480 0.080	GEN, AMMONIA TOTAL (MG/L AS N)  ND 0.020 0.010 ND 0.000 0.010 0.000 0.010 0.000 0.000 ND	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.03 0.01 0.0 0.01 0.03 0.01 0.03	GEN, ORGANIC TOTAL (MG/L AS N)  0.10 0.11 0.12  0.18 0.25 0.28 0.14 	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.16  0.12  0.13  0.32  0.18  0.26  0.30  0.14  0.35  0.14	GEN, TOTAL (MG/L AS N) 0.58 0.33 0.29 0.30 0.48 0.44 0.65 1.0 0.77 0.83	GEN, TOTAL (MG/L AS NO3) 2.6 1.5 1.3 2.1 1.9 2.9 4.6 3.4 3.7	PHORUS TOTAL (MG/L AS P)  0.00 0.00 0.00 0.00 0.010 0.010 0.020 0.00 0.0	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.00 ND 0.00 ND 0.00 0.00 0.00
APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR 14 27 MAY 12 25 JUN	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  8  18  23  20  39  30  26  8  17 12  31 8	TOTAL FIXED (MG/L)  22 23 37 37 6 28 28 42 27 28 32 35	GEN, NITRITE TOTAL (MG/L AS N)  ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.420 0.210 0.170 0.170 0.160 0.260 0.390 0.750 0.630 0.480 0.080 0.260	GEN, AMMONIA TOTAL (MG/L AS N)  ND 0.020 0.010 ND 0.000 0.010 0.020 0.000 ND 0.000 0.000 ND	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.03 0.01 0.0 0.01 0.01 0.03 0.0 0.0 0.01	GEN, ORGANIC TOTAL (MG/L AS N)  0.10 0.11 0.12  0.18 0.25 0.28 0.14 	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.16  0.12  0.12  0.13  0.32  0.18  0.26  0.30  0.14  0.35	GEN, TOTAL (MG/L AS N) 0.58 0.33 0.29 0.30 0.48 0.44 0.65 1.0 0.77 0.83 0.22 0.50	GEN, TOTAL (MG/L AS NO3) 2.6 1.5 1.3 2.1 1.9 2.9 4.6 3.4 3.7	PHORUS TOTAL (MG/L AS P)  0.00 0.00 0.00 0.00 0.010 0.00 0.010 0.020 0.00 0.0	PHORUS ORTHO, ORTHO, ORTHO, ORTHO, ORTHO, MG/L AS P) 0.00 ND 0.00 ND 0.00 0.00 ND 0.00 ND
APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR 14 27 MAY 12 JUN 15 AUG	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  8  18  23  20  39  30  26  8  17 12  31 8  34	TOTAL FIXED (MG/L)  22 23 37 37 6 28 28 42 27 28 32 35 11	GEN, NITRITE TOTAL (MG/L AS N)  ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.420 0.210 0.170 0.170 0.160 0.260 0.390 0.750 0.630 0.480 0.080 0.260 0.200	GEN, AMMONIA TOTAL (MG/L AS N)  ND 0.020 0.010 0.010 0.000 0.010 0.000 0.010 0.000 0.000 0.000 0.000 0.000 0.000	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.03 0.01 0.0 0.01 0.03 0.0 0.0 0.01	GEN, ORGANIC TOTAL (MG/L AS N)  0.10 0.11 0.12  0.18 0.25 0.28 0.14  0.14 0.23	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.16 0.12 0.13 0.32 0.18 0.26 0.30 0.14 0.35 0.14 0.24	GEN, TOTAL (MG/L AS N) 0.58 0.33 0.29 0.30 0.48 0.44 0.65 1.0 0.77 0.83 0.22 0.50	GEN, TOTAL (MG/L AS NO3) 2.6 1.5 1.3 2.1 1.9 2.9 4.6 3.4 3.7 0.97 2.2	PHORUS TOTAL (MG/L AS P)  0.00 0.00 0.00 0.00 0.010 0.010 0.020 0.00 0.0	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.00 ND 0.00 ND 0.00 0.00 ND 0.00 ND ND ND ND

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

#### 01315500 HUDSON RIVER AT NORTH CREEK, NY - continued

	PHOS-	ALUM-	AT 1714	CARMIUM		CODDED		TROM				MANGA-
DATE	PHATE, ORTHO, DIS- SOLVED (MG/L	INUM, TOTAL RECOV- ERABLE (UG/L	ALUM- INUM, DIS- SOLVED (UG/L	CADMIUM TOTAL RECOV- ERABLE (UG/L	CADMIUM DIS- SOLVED (UG/L	COPPER, TOTAL RECOV- ERABLE (UG/L	COPPER, DIS- SOLVED (UG/L	IRON, TOTAL RECOV- ERABLE (UG/L	IRON, DIS- SOLVED (UG/L	LEAD, TOTAL RECOV- ERABLE (UG/L	LEAD, DIS- SOLVED (UG/L	NESE, TOTAL RECOV- ERABLE (UG/L
	AS PO4)	AS AL)	AS AL)	AS CD)	AS CD)	AS CU)	AS CU)	AS FE)	AS FE)	AS PB)	AS PB)	AS MN)
APR 1987												
23 May	0.0			<10		<10		130		<100		<10
13				<10		<10		120		<b>&lt;</b> 5		<10
JUN 22	0.0			<10		20		200		6		<10
JUL 27	0.0			<10	1.0	30	3	270		<5	<5	20
SEP 23				<1		1		<10		<b>&lt;</b> 5		<10
⊙ст 29	0.0			<1	1.0	4	6	460		<b>&lt;</b> 5	<5	40
DEC 10	0.0			<1		5		170		<5		<10
MAR 1988											_	
30 APR	0.0	180	100	1	<1.0	53	1	280	90	56	<b>&lt;</b> 5	30
14 27		290 200	70	<1 1	 <1.0	1 4	1	330 230	 59	5 800	 <5	20 20
MAY											10	
12 25	0.0	130 120	 60	2 1	 <1.0	3 14	2	150 140	65	<5 6	<5	20 20
JUN 15		80		1		21		130		<b>&lt;</b> 5		10
AUG 18		50		1		5		100		<5		20
ост 05		50		<1		5		150		<5		<10
NOV												
03		90	60	<1	1.0	5	2	180	100	<5	<b>&lt;</b> 5	30
	MANGA-	MERCURY	NICKEL,	NICKEL	ZINC,	7 INC	DUENOI		CARBON-		CHLORO-	
	NESE, DIS-	TOTAL RECOV-	TOTAL RECOV-	NICKEL,	ZINC, TOTAL RECOV-	ZINC, DIS-	PHENOL (C6H-	BROMO-	CARBON- TETRA- CHLO-	CHLORO-	CHLORO- DI- BROMO-	CHLORO-
DATE	NESE, DIS- SOLVED	TOTAL RECOV- ERABLE	TOTAL RECOV- ERABLE	DIS- SOLVED	TOTAL RECOV- ERABLE	DIS- SOLVED	(C6H- 5OH)	FORM	TETRA- CHLO- RIDE	BENZENE	DI- BROMO- METHANE	ETHANE
DATE	NESE, DIS-	TOTAL RECOV-	TOTAL RECOV-	DIS-	TOTAL RECOV-	DIS-	(C6H-		TETRA- CHLO-		DI- BROMO-	
DATE APR 1987	NESE, DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	(C6H- 5OH) TOTAL	FORM TOTAL	TETRA- CHLO- RIDE TOTAL	BENZENE TOTAL	DI- BROMO- METHANE TOTAL	ETHANE TOTAL
APR 1987 23	NESE, DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	(C6H- 5OH) TOTAL	FORM TOTAL	TETRA- CHLO- RIDE TOTAL	BENZENE TOTAL	DI- BROMO- METHANE TOTAL	ETHANE TOTAL
APR 1987 23 MAY 13	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L AS ZN)	(C6H- 5OH) TOTAL (UG/L)	FORM TOTAL (UG/L)	TETRA- CHLO- RIDE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	DI- BROMO- METHANE TOTAL (UG/L)	ETHANE TOTAL (UG/L)
APR 1987 23 MAY 13 JUN 22	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L AS ZN)	(C6H- 5OH) TOTAL (UG/L)	FORM TOTAL (UG/L)	TETRA- CHLO- RIDE TOTAL (UG/L)	BENZENE TOTAL (UG/L) ND	DI- BROMO- METHANE TOTAL (UG/L)	ETHANE TOTAL (UG/L)
APR 1987 23 MAY 13 JUN 22 JUL 27	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG) <0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  10	DIS- SOLVED (UG/L AS ZN)	(C6H- 5OH) TOTAL (UG/L)	FORM TOTAL (UG/L) ND	TETRA- CHLO- RIDE TOTAL (UG/L) ND	BENZENE TOTAL (UG/L) ND	DI- BROMO- METHANE TOTAL (UG/L) ND	ETHANE TOTAL (UG/L) ND ND
APR 1987 23 MAY 13 JUN 22 JUL	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10  <0.10  <0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L AS ZN)	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND  ND	TETRA-CHLO-RIDE TOTAL (UG/L) ND ND	BENZENE TOTAL (UG/L) ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND	ETHANE TOTAL (UG/L) ND ND
APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 1 6	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  10 20 20 10 <10	DIS- SOLVED (UG/L AS ZN)	(C6H- SOH) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND  ND  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND ND ND ND ND	BENZENE TOTAL (UG/L) ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND
APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOVERABLE (UG/L AS NI)  <100 <1 1 6 1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  10 20 20 10 <10 10	DIS- SOLVED (UG/L AS ZN)	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND  ND  ND  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND ND ND ND ND	BENZENE TOTAL (UG/L) ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOVERABLE (UG/L AS NI)  <100 <1 1 6 1 <1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  10 20 20 10 <10 10 <10	DIS- SOLVED (UG/L AS ZN)  10 10	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND ND ND ND ND ND ND ND	BENZENE TOTAL (UG/L) ND ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOVERABLE (UG/L AS NI)  <100 <1 1 6 1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  10 20 20 10 <10 10	DIS- SOLVED (UG/L AS ZN)	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND  ND  ND  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND ND ND ND ND	BENZENE TOTAL (UG/L) ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR 14	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV-ERABLE (UG/L AS NI) <100 <1 1 6 1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	DIS-SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS ZN)  10 20 20 10 <10 10 <10 <10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE TOTAL (UG/L)  ND	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	ETHANE TOTAL (UG/L)  ND
APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR 14 27 MAY	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOVERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOVERABLE (UG/L AS NI)  <100 <1 1 6 1 <1 21 6 3	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS ZN)  10 20 20 10 <10 10 870 <10 70	DIS- SOLVED (UG/L AS ZN)	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE TOTAL (UG/L)  ND N	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	ETHANE TOTAL (UG/L)  ND
APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR 14 27 MAY 12	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOVERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOVERABLE (UG/L AS NI)  <100  <1  1  6  1  <1  22  6 3 9	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS ZN)  10 20 20 10 <10 10 <70 <10 870 <10 70 <10	DIS- SOLVED (UG/L AS ZN)	(C6H- SOH) TOTAL (UG/L)    1.0 ND ND	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE TOTAL (UG/L)  ND N	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR 14 27 MAY 12 JUN	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOVERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOVERABLE (UG/L AS NI)  <100  <1  1  6  1  <1  22  6  3  9  6	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS ZN)  10 20 20 10 <10 10 <10 870 <10 70 <10 10	DIS- SOLVED (UG/L AS ZN)  10 10 <10 33 18	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE TOTAL (UG/L)  ND N	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR 14 27 MAY 12 JUN 15 AUG	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOVERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOVERABLE (UG/L AS NI)  <100  <1  1  6  1  <1  22  6  3  9  6  6	DIS- SOLVED (UG/L AS NI)	TOTAL RECOVERABLE (UG/L AS ZN)  10 20 20 10 <10 10 <70 <10 10 210 20 20 20 20 20 20 20 20 20 20 20 20 20	DIS- SOLVED (UG/L AS ZN)  10 10 <10 <18 18	(C6H- SOH) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE TOTAL (UG/L)  ND N	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 CCT 29 DEC 10 MAR 1988 30 APR 14 27 MAY 12 25 JUN 15	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOVERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOVERABLE (UG/L AS NI)  <100  <1  1  6  1  <1  22  6  3  9  6	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS ZN)  10 20 20 10 <10 10 <10 870 <10 70 <10 10	DIS- SOLVED (UG/L AS ZN)  10 10 <10 33 18	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE TOTAL (UG/L)  ND N	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR 14 27 MAY 12 JUN 15 AUG 18	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOVERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOVERABLE (UG/L AS NI)  <100  <1  1  6  1  <1  22  6  3  9  6  6	DIS- SOLVED (UG/L AS NI)	TOTAL RECOVERABLE (UG/L AS ZN)  10 20 20 10 <10 10 <70 <10 10 210 20 20 20 20 20 20 20 20 20 20 20 20 20	DIS- SOLVED (UG/L AS ZN)  10 10 <10 <18 18	(C6H- SOH) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE TOTAL (UG/L)  ND N	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

#### 01315500 HUDSON RIVER AT NORTH CREEK, NY - continued

					IDK QOMDI			•			
DATE	CHLORO- FORM TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)
APR 1987 23	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MAY 13	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ИD
JUN 22	ND	ND	ND	ND	ND	ND	ND	1.0	ND	ND	ND
JUL 27	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SEP 23 OCT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
29 DEC											
10 MAR 1988	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
30 APR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
14 27	ND 	ND 	ND	ND 	ND	ND 	ND 	ND 	ND 	ND 	ND 
MAY										N.	
12 25	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
JUN 15	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
AUG 18 OCT	0.4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
05	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
03	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DATE	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)
APR 1987	CHLORO- BENZENE TOTAL	CHLORO- ETHANE WATER WHOLE TOTAL	CHLORO- PROPANE TOTAL	TRANSDI CHLORO- ETHENE TOTAL	CHLORO- BENZENE TOTAL	CHLORO- BENZENE TOTAL	CHLORO- ETHYL- ENE TOTAL	1,3-DI- CHLORO- PROPENE TOTAL	CHLORO- ETHYL- ENE TOTAL	CHLORO- ETHYL- VINYL- ETHER TOTAL	CHLO- RIDE TOTAL
	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
APR 1987 23 MAY	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
APR 1987 23 MAY 13 JUN 22 JUL 27	CHLORO- BENZENE TOTAL (UG/L) ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND	CHLORO- PROPANE TOTAL (UG/L) ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND	CHLORO- BENZENE TOTAL (UG/L) ND	CHLORO- BENZENE TOTAL (UG/L) ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L) ND
APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND	CHLO- RIDE TOTAL (UG/L) ND ND
APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29	CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND  ND  ND	CHLORO-PROPANE TOTAL (UG/L) ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND  ND  ND  ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND  ND  9.0	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND
APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10	CHLORO- BENZENE TOTAL (UG/L)  ND ND ND ND ND ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND  ND  ND  ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND  ND  ND  ND  ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND	CHLO-RIDE TOTAL (UG/L)  ND ND 10 ND ND
APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND ND ND ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND ND ND ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND ND ND ND ND ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND ND	CHLO-RIDE TOTAL (UG/L) ND ND 10 ND ND
APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR 14	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND	CHLOROBENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND
APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR 14 27 MAY	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND ND 10 ND
APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR 14 27 MAY	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND	CHLOROBENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND
APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR 14 27 MAY 12 25 JUN 15	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND ND 10 ND
APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR 14 27 MAY 12 25 JUN 15 AUG 18	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLOROBENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND  ND  10  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR 14 27 MAY 12 JUN 15 AUG	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

### 01315500 HUDSON RIVER AT NORTH CREEK, NY - continued

# SUSPENDED SEDIMENT DISCHARGE

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)
MAY 1988				
12	1045	1220	<1	
25	1030	1800	1	4.9
JUN				
15	1040	312	1	0.84
AUG				
18	1100	330	<1	
OCT				
05	1030	457	7	8.6
NOA				
03	1000	2070	1	5.6

# BED MATERIAL ANALYSES

DATE	TIME	SOLIDS, VOLA- TILE IN BOTTOM MA- TERIAL (MG/KG)	ALUM- INUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)
AUG 1988 18	1100	73000	3800	<10	2	5200	<100	90	0.20	<100	50
DATE	AROCLOR 1221 IN BOTTOM MAT. (UG/KG)	AROCLOR 1248 PCB BOT.MAT (UG/KG)	AROCLOR 1254 PCB BOT.MAT (UG/KG)	AROCLOR 1260 PCB BOT.MAT (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALPHA BHC TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ATRA- ZINE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	BETA BENZENE HEXA- CHLOR- IDE BOT.MAT (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- PYRIFOS IN BOT. MAT. (UG/KG)	DELTA BENZENE HEXA- CHLOR- IDE BOT.MAT (UG/KG)
AUG 1988 18	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DATE	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN ALPHA BOT.MAT (UG/KG)	ENDO- SULFAN BETA BOT.MAT (UG/KG)	ENDO- SULFAN SULFATE BOT.MAT (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN ALDE- HYDE BOT.MAT (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
AUG 1988 18	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
D.	OX CH TOI BC ATE M	LOR, TO L. IN IN TTOM TOM ATL. TE	REX, D TAL TO BOT- IN MA- TOM RIAL TE	DDD, D TAL TO BOT- IN MA- TOM RIAL TE	DE, DETAL TO BOT- IN MA- TOMERIAL TE	DT, THAL TO BOT- IN MA- TON RIAL TE	HION, PHOTAL TO BOT- IN HMA- TOM CRIAL TE	ENE, M TAL F BOT- DI MA- & F RIAL T	ALL SI AM. DI INER & F	AT. MEVE SI AM. DI INER & F	ED AT. EVE AM. INER HAN 5 MM
AUG 1 18.		ID N	ID N	ID N	D N	ID N	ID N	D	0	3	100

### 01317395 SCHROON RIVER, STATE HIGHWAY 418, AT WARRENSBURG, NY

LOCATION.--Lat 43*29'28", long 73*34'16", Warren County, Hydrologic Unit 02020001, at Route 418 bridge in Warrensburg.

### DRAINAGE AREA: ----

PERIOD OF RECORD.--Water years 1987 to 1989.
CHEMICAL DATA: 1987 (b), 1988 (c), 1989 (a).
MINOR ELEMENT DATA: 1987 (b), 1988 (c), 1989 (a).
PESTICIDE DATA: 1987 (b), 1988 (c), 1989 (a).
ORGANIC DATA: PCB--1988 (a).
NUTRIENT DATA: 1987 (b), 1988 (c), 1989 (a).
BIOLOGICAL DATA:
Bacteria--1987 (a),1988 (c), 1989 (a).
SEDIMENT DATA: 1988 (b), 1989 (a).

REMARKS.--Water-discharge data obtained from a discharge rating developed for this site. Some diurnal fluctuation of flow caused by powerplant on Schroon River.

#### WATER-OUALITY DATA

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	FECAL COLI- FORM 24-HR MEM.FIL (COLS./ 100 ML)
APR 1987												
23 MAY	1405				7.4	11.0	0.80		14.5			
13 JUN	1230			86	7.6	15.5	0.40		9.8			
22 JUL	1300			90	7.4	19.5	0.80		8.3			
27 SEP	1300				7.2	27.5	0.50		8.9		500	330
23 OCT	1300			73	7.1	15.5	0.80		10.0		190	40.0
29 DEC	1330				7.0	7.0	1.2		11.6		340	50.0
10 MAR 1988	1300			71	7.2	4.0	0.60		17.6		120	10.0
30	1200	1330	63	62	6.6	3.0	1.5	768	13.4	98	60	ND
APR 1 <b>4</b>	1315	1560	67	67	6.4	6.5	0.40	763	11.7	95	100	10.0
27 May	1300	838	70	74	6.7	9.0	0.50	760	10.7	92	240	30.0
12	1200	1060	74	72	6.5	10.0	0.80	760	11.1	99	60	40.0
25 JUN	1200	1000	63	71	6.6	15.0	0.60	749	9.0	91		
15 AUG	1145	261	97	101	6.6	22.5	0.40	766	5.8	67	3900	500
18	1300		132	129	6.6	34.5	0.70		7.7			
05 NOV	1220	390	108	106	6.5	14.5	0.50	765	9.2	90	>3300	430
03	1200	1040	75	74	7.2	4.5	0.50		12.6		600	20.0

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 01317395 SCHROON RIVER, STATE HIGHWAY 418, AT WARRENSBURG, NY - continued

# WATER-QUALITY DATA (continued)

SOLIDS, SOLIDS,

DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, TOTAL (MG/L)
APR 1987 23	21	6.7	1.0							25		44
MAY 13	28	9.0	1.3			~-			~-	49		58
JUN 22	29	9.5	1.4	-~					~-	58		76
JUL 27	31	9.9	1.5							66		76
SEP 23	27	8.7	1.3							43		58
ОСТ 29	52	16	3.0							33		71
DEC 10	24	7.5	1.2							62		64
MAR 1988 30	20	6.4	1.0	2.6	0.40	13	10	4.5	0.10	57	33	65
APR 14	22	6.8	1.1	3.4	0.40	15	10	5.9	0.10	56	37	58
27 MAY	24	7.6	1.3	3.8	0.40	17	8.9	6.7	0.10	53	39	54
12	23 23	7.3 7.4	1.2	3.7 3.5	0.30	18 16	9.0 10	6. <b>4</b> 6.1	0.10 0.20	 <b>4</b> 7	39 38	44 48
JUN 15	33	10	1.9	5.6	0.40	22	8.4	10	0.10	<b>4</b> / 67	50	83
AUG 18	45	14	2.4	7.1	0.60	31	8.7	15	0.10	83	66	90
OCT 05	33	10	2.0	5.6	0.60	26	8.5	11	<0.10	82	53	85
NOV 03	24	7.6	1.3	3.9	0.40	16	9.8	6.6	<0.10	50	39	53
03111	2.3	7.0	1.3	3.5	0.40	10	7.0	0.0	20.10	30	33	33
DATE	SOLIDS, VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	RESIDUE TOTAL FIXED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS NH4)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS NO3)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)
APR 1987	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS NO3)	PHORUS TOTAL (MG/L AS P)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)
APR 1987 23 MAY	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS NO3)	PHORUS TOTAL (MG/L AS P)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)
APR 1987 23 MAY 13 JUN	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L) 34	GEN, NITRITE TOTAL (MG/L AS N) ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.170 0.160	GEN, AMMONIA TOTAL (MG/L AS N) 0.00	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.0	GEN, ORGANIC TOTAL (MG/L AS N) 0.16 0.09	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.16	GEN, TOTAL (MG/L AS N) 0.33	GEN, TOTAL (MG/L AS NO3) 1.5	PHORUS TOTAL (MG/L AS P) 0.00	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)
APR 1987 23 MAY 13 JUN 22 JUL	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L) 34 44	GEN, NITRITE TOTAL (MG/L AS N)  ND  ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.170 0.160 0.180	GEN, AMMONIA TOTAL (MG/L AS N) 0.00 0.030	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.0 0.04	GEN, ORGANIC TOTAL (MG/L AS N) 0.16 0.09	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.16 0.12	GEN, TOTAL (MG/L AS N) 0.33 0.28	GEN, TOTAL (MG/L AS NO3) 1.5 1.2	PHORUS TOTAL (MG/L AS P) 0.00 0.00	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.00 ND
APR 1987 23 MAY 13 JUN 22 JUL 27	VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 10 18 32 38	TOTAL FIXED (MG/L) 34 44 50	GEN, NITRITE TOTAL (MG/L AS N)  ND  ND  ND  ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.170 0.160 0.180 0.080	GEN, AMMONIA TOTAL (MG/L AS N) 0.00 0.030 0.020 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.0	GEN, ORGANIC TOTAL (MG/L AS N) 0.16 0.09	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.16  0.12  0.24  0.11	GEN, TOTAL (MG/L AS N) 0.33 0.28 0.42	GEN, TOTAL (MG/L AS NO3) 1.5 1.2 1.9	PHORUS TOTAL (MG/L AS P) 0.00 0.00 0.030	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.00 ND 0.00
APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  10 18 32 38 39	TOTAL FIXED (MG/L) 34 44 50 38 21	GEN, NITRITE TOTAL (MG/L AS N)  ND  ND  ND  ND  ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.170 0.160 0.180 0.080	GEN, AMMONIA TOTAL (MG/L AS N) 0.00 0.030 0.020 0.010 ND	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.0 0.04 0.03	GEN, ORGANIC TOTAL (MG/L AS N) 0.16 0.09 0.22 0.10	GEN, AM- MONIA + ORGANIC TYOTAL (MG/L AS N)  0.16  0.12  0.24  0.11  0.18	GEN, TOTAL (MG/L AS N) 0.33 0.28 0.42 0.19	GEN, TOTAL (MG/L AS NO3) 1.5 1.2 1.9 0.84	PHORUS TOTAL (MG/L AS P) 0.00 0.00 0.030 0.00	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.00 ND 0.00
APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC	VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 10 18 32 38	TOTAL FIXED (MG/L) 34 44 50	GEN, NITRITE TOTAL (MG/L AS N)  ND  ND  ND  ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.170 0.160 0.180 0.080 0.060 0.090	GEN, AMMONIA TOTAL (MG/L AS N) 0.00 0.030 0.020 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.0 0.04	GEN, ORGANIC TOTAL (MG/L AS N) 0.16 0.09 0.22	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.16  0.12  0.24  0.11	GEN, TOTAL (MG/L AS N) 0.33 0.28 0.42	GEN, TOTAL (MG/L AS NO3) 1.5 1.2 1.9	PHORUS TOTAL (MG/L AS P) 0.00 0.00 0.030	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.00 ND 0.00
APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  10 18 32 38 39 31 31	TOTAL FIXED (MG/L) 34 44 50 38 21 19	GEN, NITRITE TOTAL (MG/L AS N)  ND  ND  ND  ND  ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.170 0.160 0.180 0.080 0.060 0.090	GEN, AMMONIA TOTAL (MG/L AS N) 0.00 0.030 0.020 0.010 ND 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.0 0.04 0.03	GEN, ORGANIC TOTAL (MG/L AS N) 0.16 0.09 0.22 0.10	GEN, AM- MONIA + ORGANIC TYOTAL (MG/L AS N)  0.16  0.12  0.24  0.11  0.18	GEN, TOTAL (MG/L AS N) 0.33 0.28 0.42 0.19 0.24 0.23	GEN, TOTAL (MG/L AS NO3) 1.5 1.2 1.9 0.84 1.1	PHORUS TOTAL (MG/L AS P) 0.00 0.00 0.030 0.00 0.010 0.010	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.00 ND 0.00
APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  10 18 32 38 39 31 31 13	TOTAL FIXED (MG/L) 34 44 50 38 21 19 33 52	GEN, NITRITE TOTAL (MG/L AS N)  ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.170 0.160 0.180 0.080 0.060 0.090 0.170 0.420	GEN, AMMONIA TOTAL (MG/L AS N) 0.00 0.030 0.020 0.010 ND 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.0 0.04 0.03 0.01 0.01 0.04	GEN, ORGANIC TOTAL (MG/L AS N) 0.16 0.09 0.22 0.10  0.13	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.16 0.12 0.24 0.11 0.18 0.14 0.14	GEN, TOTAL (MG/L AS N) 0.33 0.28 0.42 0.19 0.24 0.23 0.31	GEN, TOTAL (MG/L AS NO3) 1.5 1.2 1.9 0.84 1.1 1.0 1.4	PHORUS TOTAL (MG/L AS P) 0.00 0.00 0.030 0.00 0.010 0.010 0.00	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.00 ND 0.00 0.00
APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR 14 27	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  10 18 32 38 39 31 31	TOTAL FIXED (MG/L) 34 44 50 38 21 19	GEN, NITRITE TOTAL (MG/L AS N)  ND  ND  ND  ND  ND  ND  ND  ND  ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.170 0.160 0.180 0.080 0.060 0.090	GEN, AMMONIA TOTAL (MG/L AS N) 0.00 0.030 0.020 0.010 ND 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.0 0.04 0.03 0.01 0.01	GEN, ORGANIC TOTAL (MG/L AS N) 0.16 0.09 0.22 0.10  0.13	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.16  0.12  0.24  0.11  0.18  0.14	GEN, TOTAL (MG/L AS N) 0.33 0.28 0.42 0.19 0.24 0.23	GEN, TOTAL (MG/L AS NO3) 1.5 1.2 1.9 0.84 1.1	PHORUS TOTAL (MG/L AS P) 0.00 0.00 0.030 0.00 0.010 0.010	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.00 ND 0.00 ND 0.00
APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR 14 27 MAY	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  10 18 32 38 39 31 31 13 22 16 26	TOTAL FIXED (MG/L)  34  44  50  38  21  19  33  52  36  38  18	GEN, NITRITE TOTAL (MG/L AS N)  ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.170 0.160 0.180 0.080 0.090 0.170 0.420 0.190 0.180 0.450	GEN, AMMONIA TOTAL (MG/L AS N) 0.00 0.030 0.020 0.010 ND 0.030 0.030 0.020 0.00	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.0 0.04 0.03 0.01 0.04 0.03 0.0 0.04	GEN, ORGANIC TOTAL (MG/L AS N) 0.16 0.09 0.22 0.10  0.13  0.20 0.18 0.17	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.16 0.12 0.24 0.11 0.18 0.14 0.23 0.20 0.17 0.24	GEN, TOTAL (MG/L AS N) 0.33 0.28 0.42 0.19 0.24 0.23 0.31 0.65 0.39 0.35	GEN, TOTAL (MG/L AS NO3) 1.5 1.2 1.9 0.84 1.1 1.0 1.4 2.9 1.7 1.5	PHORUS TOTAL (MG/L AS P) 0.00 0.00 0.030 0.00 0.010 0.010 0.00 0.0	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)  0.00  ND  0.00  ND  ND  ND  ND  ND  ND  ND  ND  ND
APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR 14 27 MAY 12 JUN	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  10 18 32 38 39 31 31 13 22 16 26 10	TOTAL FIXED (MG/L)  34  44  50  38  21  19  33  52  36  38  18  38	GEN, NITRITE TOTAL (MG/L AS N)  ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.170  0.160  0.180  0.060  0.090  0.170  0.420  0.190  0.180  0.450  0.140	GEN, AMMONIA TOTAL (MG/L AS N) 0.00 0.030 0.020 0.010 ND 0.010 ND 0.030 0.020 0.00	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.0 0.04 0.03 0.01 0.01 0.04 0.03 0.0 0.01 0.0	GEN, ORGANIC TOTAL (MG/L AS N) 0.16 0.09 0.22 0.10  0.13  0.20 0.18 0.17	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.16  0.12  0.24  0.11  0.18  0.14  0.23  0.20  0.17  0.24  0.21	GEN, TOTAL (MG/L AS N) 0.33 0.28 0.42 0.19 0.24 0.23 0.31 0.65 0.39 0.35	GEN, TOTAL (MG/L AS NO3) 1.5 1.2 1.9 0.84 1.1 1.0 1.4 2.9 1.7 1.5	PHORUS TOTAL (MG/L AS P) 0.00 0.00 0.030 0.00 0.010 0.00 0.040 0.00 0.00 0.00	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)  0.00  ND 0.00  ND
APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR 14 27 MAY 12 JUN 15 AUG	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  10 18 32 38 39 31 31 13 22 16 26 10 55	TOTAL FIXED (MG/L)  34  44  50  38  21  19  33  52  36  38  18  38  28	GEN, NITRITE TOTAL (MG/L AS N)  ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.170 0.160 0.180 0.080 0.060 0.090 0.170 0.420 0.190 0.180 0.450 0.140 0.130	GEN, AMMONIA TOTAL (MG/L AS N) 0.00 0.030 0.020 0.010 ND 0.030 0.020 0.00 0.010 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.0 0.04 0.03 0.01 0.04 0.03 0.0 0.01 0.0 0.01	GEN, ORGANIC TOTAL (MG/L AS N) 0.16 0.09 0.22 0.10  0.13  0.20 0.18 0.17 0.23 0.21	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.16 0.12 0.24 0.11 0.18 0.14 0.23 0.20 0.17 0.24 0.21	GEN, TOTAL (MG/L AS N) 0.33 0.28 0.42 0.19 0.24 0.23 0.31 0.65 0.39 0.35	GEN, TOTAL (MG/L AS NO3) 1.5 1.2 1.9 0.84 1.1 1.0 1.4 2.9 1.7 1.5 3.1 1.5	PHORUS TOTAL (MG/L AS P) 0.00 0.00 0.030 0.010 0.010 0.00 0.040 0.00 0.00	PHORUS ORTHO ORTHO DIS- SOLVED (MG/L AS P)  0.00  ND 0.00  ND
APR 1987 23 MAY 13 JUN 22 SEP 23 OCT 10 MAR 1988 30 APR 14 27 MAY 12 25 JUN 15 AUG 18 OCT	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  10 18 32 38 39 31 31 13 22 16 26 10 55	TOTAL FIXED (MG/L)  34  44  50  38  21  19  33  52  36  38  18  38  28  33	GEN, NITRITE TOTAL (MG/L AS N)  ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.170  0.160  0.180  0.060  0.090  0.170  0.420  0.190  0.180  0.450  0.140  0.130  ND	GEN, AMMONIA TOTAL (MG/L AS N)  0.00 0.030 0.020 0.010 ND 0.010 0.020 0.000 0.010 0.010 0.010 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.0 0.04 0.03 0.01 0.04 0.03 0.0 0.01 0.0 0.01 0.0	GEN, ORGANIC TOTAL (MG/L AS N) 0.16 0.09 0.22 0.10  0.13  0.20 0.18 0.17 0.23 0.21 0.17	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.16  0.12  0.24  0.11  0.18  0.14  0.23  0.20  0.17  0.24  0.21  0.18  0.19	GEN, TOTAL (MG/L AS N) 0.33 0.28 0.42 0.19 0.24 0.23 0.31 0.65 0.39 0.35	GEN, TOTAL (MG/L AS NO3) 1.5 1.2 1.9 0.84 1.1 1.0 1.4 2.9 1.7 1.5 3.1 1.5	PHORUS TOTAL (MG/L AS P)  0.00 0.00 0.030 0.00 0.010 0.010 0.00 0.0	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)  0.00  ND 0.00  ND
APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR 14 27 MAY 12 JUN 15 AUG 18	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  10 18 32 38 39 31 31 13 22 16 26 10 55	TOTAL FIXED (MG/L)  34  44  50  38  21  19  33  52  36  38  18  38  28	GEN, NITRITE TOTAL (MG/L AS N)  ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.170 0.160 0.180 0.080 0.060 0.090 0.170 0.420 0.190 0.180 0.450 0.140 0.130	GEN, AMMONIA TOTAL (MG/L AS N) 0.00 0.030 0.020 0.010 ND 0.030 0.020 0.00 0.010 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.0 0.04 0.03 0.01 0.04 0.03 0.0 0.01 0.0 0.01	GEN, ORGANIC TOTAL (MG/L AS N) 0.16 0.09 0.22 0.10  0.13  0.20 0.18 0.17 0.23 0.21	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.16 0.12 0.24 0.11 0.18 0.14 0.23 0.20 0.17 0.24 0.21	GEN, TOTAL (MG/L AS N) 0.33 0.28 0.42 0.19 0.24 0.23 0.31 0.65 0.39 0.35	GEN, TOTAL (MG/L AS NO3) 1.5 1.2 1.9 0.84 1.1 1.0 1.4 2.9 1.7 1.5 3.1 1.5	PHORUS TOTAL (MG/L AS P) 0.00 0.00 0.030 0.010 0.010 0.00 0.040 0.00 0.00	PHORUS ORTHO ORTHO DIS- SOLVED (MG/L AS P)  0.00  ND 0.00  ND

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 01317395 SCHROON RIVER, STATE HIGHWAY 418, AT WARRENSBURG, NY - continued

WATER-QUALITY DATA (continued)

DATE	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	TOTAL RECOV- ERABLE (UG/L	INUM, T DIS- R SOLVED E (UG/L (	ECOV-	CADMIUM DIS- SOLVED (UG/L AS CD)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	RECOV- ERABLE (UG/L	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)
APR 1987	0.0			-10		<10	<b>-</b> -	160		<100		10
23 MAY	0.0			<10								
13 JUN				<10		<10	- <del>-</del>	160		7		<10
22 JUL	0.0			<10		10		540		19		50
27 SEP	0.0			<10		20		260		<b>&lt;</b> 5		20
23 OCT				<1		5		120		5		10
29 DEC				1	<1.0	5	3	200		<5	<5	20
10 MAR 1988				<1		6		90		<b>&lt;</b> 5		<10
30		830	40	<1	<1.0	5	1	1300	50	<b>&lt;</b> 5	<b>&lt;</b> 5	40
APR 14		70		<1		4		140		<5		<10
27 May		40	20	1	<1.0	6	2	90	50	<b>&lt;</b> 5	<5	10
12 25		50 40	10	1 6	<1.0	2 13	1	110 130	67	<5 <5	 <5	10 10
JUN 15	0.0	50		1		3		210		<b>&lt;</b> 5		30
AUG 18	0.0	40		1		7		300		<b>&lt;</b> 5		30
ОСТ 05		30		<1		13		200		<b>&lt;</b> 5		<10
NOV 03		60	20	<1	1.0	2	1	120	59	<b>&lt;</b> 5	<b>&lt;</b> 5	20
DATI	MANG. NESE DIS SOLVI E (UG/) AS MI	, TOTAL - RECOV ED ERABL L (UG/L	TOTAL - RECOV- E ERABLE (UG/L		REC ED ERA (UG	AL ZIN OV- DI BLE SOI /L (UC	S- BROM VED FOR	RM RIDE	RA- D- CHLOR E BENZE AL TOTAL	NE METHAN TOTAL	CHLOI	NE AL
APR 198'	7	<0.1	0 <100			10 -	ИГ	) ND	ND	ND	ND	
MAY												
13 JUN		<0.1					- NI		ND	ND	ND	
22 JUL		<0.1					- NE		ND	ND	ND	
27 SEP		<0.1					- NE		ND	ND	ND	
23 OCT		<0.1				<10 -	- NE	D ND	ND	ND	ND	
29 DEC		<0.1	0 2		1	<10	20 -				-	-
10 MAR 198		<0.1	0 <1		,	<10 -	- NE	D ND	ND	ND	ND	
30 APR		10 <0.1	0 4		4	10	<10 NI	D ND	ND	ND	ND	
14		<0.1 8 <0.1				<10 - <10	- NE		ND ND	ND ND	ND ND	
MAY												
12 25		<0.1 7 <0.1			<1	<10 - 10	- NI 3 NI		ND ND	ND ND	ND ND	
JUN 15		<0.1	0 4			<10 -	- иг	DN D	ND	ND	ND	
AUG 18		<0.1	0 2			<10	иг	DN D	ND	ND	ND	
OCT 05		<0.1	0 5			10 -	NI	D ND	ND	ИД	ND	
оз		4 <0.1	0 1		2	<10	11 NI	D ND	ND	ND	ND	

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 01317395 SCHROON RIVER, STATE HIGHWAY 418, AT WARRENSBURG, NY - continued

DATE	CHLORO- FORM TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)
APR 1987 23	<b>N</b> D	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MAY 13	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
JUN 22	ND	ND	ND	<b>N</b> D	<b>N</b> D	ND	ND	ND	ND	ND	ND
JUL 27	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SEP 23	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ОСТ 29											
DEC 10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MAR 1988 30	ND	ND	ND	ND	<b>N</b> D	ND	ND	ND	ND	ND	ND
APR 14	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
27 May	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
12 25	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
JUN 15	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND
AUG 18	0.2										
OCT		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
05 NOV	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
03	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DATE	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)
APR 1987	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
APR 1987 23 MAY	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
APR 1987 23 MAY 13 JUN	CHLORO- BENZENE TOTAL (UG/L) ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND	CHLORO- PROPANE TOTAL (UG/L) ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND	CHLORO- BENZENE TOTAL (UG/L) ND	CHLORO- BENZENE TOTAL (UG/L) ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND	CHLO- RIDE TOTAL (UG/L) ND
APR 1987 23 MAY 13 JUN 22 JUL	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND	CHLO- RIDE TOTAL (UG/L) ND ND
APR 1987 23 MAY 13 JUN 22	CHLORO- BENZENE TOTAL (UG/L) ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND	CHLORO- PROPANE TOTAL (UG/L) ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND ND ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND	CHLO- RIDE TOTAL (UG/L) ND ND ND
APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 ○CT	CHLORO-BENZENE TOTAL (UG/L) ND ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND	CHLORO- PROPANE TOTAL (UG/L)  ND ND ND ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND	CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND  ND  ND  ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND  ND  ND  ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND ND	CHLO- RIDE TOTAL (UG/L)  ND ND ND ND ND
APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC	CHLORO-BENZEME TOTAL (UG/L)  ND ND ND ND ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND ND ND ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND ND ND
APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 ©CT 29 DEC 10 MAR 1988	CHLORO-BENZEME TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENETOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND ND ND ND ND	CHLO- RIDE TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND
APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR	CHLORO-BENZEME TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR 14 27	CHLORO-BENZEME TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENETOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND ND ND ND ND	CHLO- RIDE TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND
APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 10 MAR 1988 30 APR 14 27 MAY 12	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND	CHLORO-PROPANE TOTAL (UG/L)  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR 14 27 MAY	CHLORO-BENZEME TOTAL (UG/L)  ND	CHLORO- ETHANE WATER WATER WHOLE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLO-RIDE TOTAL (UG/L)  ND N
APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 OCT 29 DEC 10 MAR 1988 30 APR 14 27 MAY 12 25 JUN	CHLORO-BENZEME TOTAL (UG/L)  ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLOROBENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 23 MAY 13 JUN 22 JUL 27 SEP 23 CCT 29 DEC 10 MAR 1988 30 APR 14 27 MAY 12 25 JUN 15 AUG	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-PROPANE TOTAL (UG/L)  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND	CHLOROBENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND N

# 01317395 SCHROON RIVER, STATE HIGHWAY 418, AT WARRENSBURG, NY - continued

# SUSPENDED SEDIMENT DISCHARGE

		DIS-		SEDI-
		CHARGE,		MENT,
		INST.	SEDI-	DIS-
		CUBIC	MENT,	CHARGE,
		FEET	SUS-	SUS-
DATE	TIME	PER	PENDED	PENDED
		SECOND	(MG/L)	(T/DAY)
MAY 1988				
12	1200	1060	2	5.7
25	1200	1000	1	2.7
JUN				
15	1145	261	1	0.70
AUG				
18	1300		<1	
OCT				
05	1220	390	1	1.1
NOV				
03	1200	1040	1	2.8

### BED MATERIAL ANALYSES

DATE	TIME	SOLIDS, VOLA- TILE IN BOTTOM MA- TERIAL (MG/KG)	ALUM- INUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)
AUG 1988 18	1300	10500	3700	<10	5	4000	40	28	0.02	<100	40
DATE	AROCLOR 1221 IN BOTTOM MAT. (UG/KG)	AROCLOR 1248 PCB BOT.MAT (UG/KG)	AROCLOR 1254 PCB BOT.MAT (UG/KG)	AROCLOR 1260 PCB BOT.MAT (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALPHA BHC TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ATRA- ZINE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	BETA BENZENE HEXA- CHLOR- IDE BOT.MAT (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- PYRIFOS IN BOT. MAT. (UG/KG)	DELTA BENZENE HEXA- CHLOR- IDE BOT.MAT (UG/KG)
AUG 1988 18	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DATE	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN ALPHA BOT.MAT (UG/KG)	ENDO- SULFAN BETA BOT.MAT (UG/KG)	ENDO- SULFAN SULFATE BOT.MAT (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN ALDE- HYDE BOT.MAT (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
AUG 1988 18	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	M O C TO E DATE	ETH- XY- MI HLOR, TV T. IN IN OFTOM TOI MATL. TI	IREX, I DTAL TO BOT- IN M MA- TO ERIAL TE	P,P' I DDD, I DTAL TO BOT- IN MA- TON ERIAL TE	P,P' I DDE, I DTAL TO BOT- IN I MA- TOP ERIAL TI	P,P'P,DTT,TTDTALTNBOT-IN	ARA- TO HION, PH OTAL TO BOT- IN M MA- TON ERIAL TH	DXA- I HENE, M DTAL I BOT- DI 1 MA- % I ERIAL I	BED F MAT. N FALL SI MAM. DI FINER % F	BED E MAT. M LEVE SI LAM. DI FINER % F	BED LAT. EVE AM. INER THAN 15 MM
	1988 3	ND I	ND 1	1D 1	ID 1	4D 1	ND 1	<b>N</b> D	2	5	100

#### 01325420 HUDSON RIVER AT CORINTH, NY

LOCATION.--Lat 43 14'55", long 73 49'57", Saratoga County, Hydrologic Unit 0202003, at River Street bridge. DRAINAGE AREA. -- 2,755 mi 2 .

PERIOD OF RECORD.--Water years 1969-75, 1986 to current year.

CHEMICAL DATA: 1969 (c), 1970-74 (d), 1975 (c), 1986 (b), 1987 (e), 1988 (c), 1989 (a).

MINOR ELEMENTS DATA: 1969 (c), 1970-74 (d), 1975 (c), 1986 (b), 1987 (e), 1988 (c), 1989 (a).

PESTICIDE DATA: 1987 (b), 1988 (c), 1989 (a).

ORGANIC DATA: OC--1988 (b), 1989 (a), PCB--1988 (a).

NUTRIENT DATA: 1969 (c), 1970-74 (d), 1975 (c), 1987 (b), 1988 (c), 1989 (a).

BIOLOGICAL DATA:

Bacteria- 1987 (b), 1988 (c), 1989 (a)
SEDIMENT DATA: 1988 (b), 1989 (a).
REMARKS.--Water-discharge data based on records obtained from 01318500 Hudson River at Hadley and 01325000 Sacandaga River at Stewarts Bridge, near Hadley. Flow regulated appreciably by Great Sacandaga Lake and Indian Lake. Diurnal fluctuation caused by powerplants upstream from station.

#### WATER-OUALITY DATA

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	FECAL COLI- FORM 24-HR MEM.FIL (COLS./ 100 ML)
APR 1987 23	1500	5660			7.5	14.0	0.70		9,6			
MAY 13	1430	2880		68	7.5	21.0	0.40		10.9			
JUN 19	1045	2550		53	7.4	23.0	0.10		8.6		100	6.00
JUL 28	1145	2830			7.4	26.5	0.32		8.2		130	18.0
SEP 22	1115	5310		55	7.1	14.5	0.70		9.8		720	44.0
MAR 1988												
31 APR	1000	6940	55	51	6.8	2.5	2.2	772	14.5	104	170	46.0
12 MAY	1130	5750	69	53	6.4	7.5	0.70		12.7		540	50.0
04	1030	5740	53	54	6.5	10.0	0.60	756	12.2	109	250	24.0
09	1230	3550	64	60	6.6	15.0	0.50	766	10.7	106	570	32.0
26	1115	3120	5 <b>2</b>	56	6.5	15.5	0.50		9.8		840	78.0
JUN 16 AUG	1000	4440	61	61	6.7	21.5	0.30		5.0		20	6.00
17	1015	495	66	59	7.6	25.5	0.60	760	7.7	94	>30	8.00
OCT 06 NOV	1045	767	58	58	6.5	15.5	0.50		9.7		120	16.0
07	1000	12400	45	42	7.2	6.5	3.0	754	13.7	112	>670	64.0
										SOLIDS,	SOLIDS,	
DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, TOTAL (MG/L)
APR 1987 23	NESS TOTAL (MG/L AS	DIS- SOLVED (MG/L	SIUM, DIS- SOLVED (MG/L	DIS- SOLVED (MG/L	SIUM, DIS- SOLVED (MG/L	LINITY LAB (MG/L AS	DIS- SOLVED (MG/L	RIDE, DIS- SOLVED (MG/L	RIDE, DIS- SOLVED (MG/L	RESIDUE AT 180 DEG. C DIS- SOLVED	SUM OF CONSTI- TUENTS, DIS- SOLVED	RESIDUE AT 105 DEG. C, TOTAL
APR 1987 23 MAY 13	NESS TOTAL (MG/L AS CACO3)	DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB (MG/L AS CACO3)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	RESIDUE AT 105 DEG. C, TOTAL (MG/L)
APR 1987 23 MAY 13 JUN 19	NESS TOTAL (MG/L AS CACO3)	DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB (MG/L AS CACO3)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	RESIDUE AT 105 DEG. C, TOTAL (MG/L)
APR 1987 23 MAY 13 JUN	NESS TOTAL (MG/L AS CACO3) 17	DIS- SOLVED (MG/L AS CA) 5.3	SIUM, DIS- SOLVED (MG/L AS MG) 1.0	DIS- SOLVED (MG/L AS NA)	SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB (MG/L AS CACO3)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 18	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	RESIDUE AT 105 DEG. C, TOTAL (MG/L) 40
APR 1987 23 MAY 13 JUN 19 JUL	NESS TOTAL (MG/L AS CACO3) 17 22	DIS- SOLVED (MG/L AS CA) 5.3 7.0 4.9 5.3	SIUM, DIS- SOLVED (MG/L AS MG) 1.0 1.2 1.0	DIS- SOLVED (MG/L AS NA)	SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB (MG/L AS CACO3)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 18 50 34	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	RESIDUE AT 105 DEG. C, TOTAL (MG/L) 40 53 44
APR 1987 23 MAY 13 JUN 19 JUL 28 SEP 22 MAR 1988	NESS TOTAL (MG/L AS CACO3) 17 22 16 18	DIS- SOLVED (MG/L AS CA) 5.3 7.0 4.9 5.3 6.2	SIUM, DIS- SOLVED (MG/L AS MG) 1.0 1.2 1.0 1.1	DIS- SOLVED (MG/L AS NA)	SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB (MG/L AS CACO3)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 18 50 34 36 45	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	RESIDUE AT 105 DEG. C, TOTAL (MG/L) 40 53 44 50
APR 1987 23 MAY 13 JUN 19 JUL 28 SEP 22 MAR 1988 31	NESS TOTAL (MG/L AS CACO3) 17 22 16 18 20	DIS- SOLVED (MG/L AS CA) 5.3 7.0 4.9 5.3 6.2 5.1	SIUM, DIS- SOLVED (MG/L AS MG) 1.0 1.2 1.0 1.1	DIS- SOLVED (MG/L AS NA)	SIUM, DIS- SOLVED (MG/L AS K)    0.40	LINITY LAB (MG/L AS CACO3) 10	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)    0.10	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 18 50 34 36 45	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	RESIDUE AT 105 DEG. C, TOTAL (MG/L) 40 53 44 50 59
APR 1987 23 MAY 13 JUN 19 JUL 28 SEP 22 MAR 1988 31 APR 12 MAY	NESS TOTAL (MG/L AS CACO3) 17 22 16 18 20 16	DIS- SOLVED (MG/L AS CA) 5.3 7.0 4.9 5.3 6.2 5.1	SIUM, DIS- SOLVED (MG/L AS MG) 1.0 1.1 1.1 0.90 0.99	DIS- SOLVED (MG/L AS NA)	SIUM, DIS- SOLVED (MG/L AS K)    0.40	LINITY LAB (MG/L AS CACO3) 10 10	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)    2.7	RIDE, DIS- SOLVED (MG/L AS F)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 18 50 34 36 45 53	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	RESIDUE AT 105 DEG. C, TOTAL (MG/L) 40 53 44 50 59 55
APR 1987 23 MAY 13 JUN 19 SEP 22 MAR 1988 31 APR 12 MAY 04	NESS TOTAL (MG/L AS cACO3) 17 22 16 18 20 16 18	DIS- SOLVED (MG/L AS CA) 5.3 7.0 4.9 5.3 6.2 5.1 5.5	SIUM, DIS- SOLVED (MG/L AS MG) 1.0 1.1 1.1 0.90 0.99	DIS- SOLVED (MG/L AS NA)	SIUM, DIS- SOLVED (MG/L AS K)    0.40 0.40	LINITY LAB (MG/L AS CACO3) 10 10	DIS- SOLVED (MG/L AS SO4)   10 11 8.9	RIDE, DIS- SOLVED (MG/L AS CL)   2.7 3.5	RIDE, DIS- SOLVED (MG/L AS F)   0.10 0.10	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 18 50 34 36 45 53 40	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 27 30 29	RESIDUE AT 105 DEG. C, TOTAL (MG/L) 40 53 44 50 59 55 48
APR 1987 23 MAY 13 JUN 19 JUL 28 SEP 22 MAR 1988 31 APR 12 MAY 04 09	NESS TOTAL (MG/L AS CACO3) 17 22 16 18 20 16 18	DIS- SOLVED (MG/L AS CA)  5.3  7.0  4.9  5.3  6.2  5.1  5.5  5.7  6.4	SIUM, DIS- SOLVED (MG/L AS MG) 1.0 1.2 1.0 1.1 0.90 0.99	DIS- SOLVED (MG/L AS NA)	SIUM, DIS- SOLVED (MG/L AS K)   0.40 0.40 0.40 0.40	LINITY LAB (MG/L AS CACO3) 10 10 11 11	DIS- SOLVED (MG/L AS SO4)   10 11 8.9 9.3	RIDE, DIS- SOLVED (MG/L AS CL)   2.7 3.5 3.6 4.3	RIDE, DIS- SOLVED (MG/L AS F)   0.10 0.10 0.10	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)  18 50 34 36 45 53 40 45 58	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	RESIDUE AT 105 DEG. C, TOTAL (MG/L) 40 53 44 50 59 55 48
APR 1987 23 MAY 13 JUN 19 JUL 28 SEP 22 MAR 1988 31 APR 12 MAY 04 09 26	NESS TOTAL (MG/L AS cACO3) 17 22 16 18 20 16 18	DIS- SOLVED (MG/L AS CA) 5.3 7.0 4.9 5.3 6.2 5.1 5.5	SIUM, DIS- SOLVED (MG/L AS MG) 1.0 1.1 1.1 0.90 0.99	DIS- SOLVED (MG/L AS NA)	SIUM, DIS- SOLVED (MG/L AS K)    0.40 0.40	LINITY LAB (MG/L AS CACO3) 10 10	DIS- SOLVED (MG/L AS SO4)   10 11 8.9	RIDE, DIS- SOLVED (MG/L AS CL)   2.7 3.5	RIDE, DIS- SOLVED (MG/L AS F)   0.10 0.10	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 18 50 34 36 45 53 40	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 27 30 29	RESIDUE AT 105 DEG. C, TOTAL (MG/L) 40 53 44 50 59 55 48
APR 1987 23 MAY 13 JUN 19 JUL 28 SEP 22 MAR 1988 31 APR 12 MAY 04 09	NESS TOTAL (MG/L AS CACO3) 17 22 16 18 20 16 18	DIS- SOLVED (MG/L AS CA)  5.3  7.0  4.9  5.3  6.2  5.1  5.5  5.7  6.4	SIUM, DIS- SOLVED (MG/L AS MG) 1.0 1.2 1.0 1.1 0.90 0.99	DIS- SOLVED (MG/L AS NA)	SIUM, DIS- SOLVED (MG/L AS K)   0.40 0.40 0.40 0.40	LINITY LAB (MG/L AS CACO3) 10 10 11 11	DIS- SOLVED (MG/L AS SO4)   10 11 8.9 9.3	RIDE, DIS- SOLVED (MG/L AS CL)   2.7 3.5 3.6 4.3	RIDE, DIS- SOLVED (MG/L AS F)   0.10 0.10 0.10	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)  18 50 34 36 45 53 40 45 58	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	RESIDUE AT 105 DEG. C, TOTAL (MG/L) 40 53 44 50 59 55 48
APR 1987 23 MAY 13 JUN 19 SEP 22 MAR 1988 31 APR 12 MAY 04 09 26 JUN 16	NESS TOTAL (MG/L AS CACO3) 17 22 16 18 20 16 18 21 20	DIS- SOLVED (MG/L AS CA) 5.3 7.0 4.9 5.3 6.2 5.1 5.5 6.2	SIUM, DIS- SOLVED (MG/L AS MG) 1.0 1.1 1.1 0.90 0.99 0.91 1.1	DIS- SOLVED (MG/L AS NA) 1.9 2.2 2.4 2.8 2.5	SIUM, DIS- SOLVED (MG/L AS K)    0.40 0.40 0.40 0.40	LINITY LAB (MG/L AS CACO3) 10 10 11 12 13	DIS- SOLVED (MG/L AS SO4)   10 11 8.9 9.3	RIDE, DIS- SOLVED (MG/L AS CL)    2.7 3.5 3.6 4.3 3.9	RIDE, DIS- SOLVED (MG/L AS F)   0.10 0.10 0.20 0.20	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 18 50 34 36 45 53 40 45 58 37	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 27 30 29 32 32	RESIDUE AT 105 DEG. C, TOTAL (MG/L) 40 53 44 50 59 55 48 60 46
APR 1987 23 MAY 13 JUN 19 JUL 28 SEP 22 MAR 1988 31 APR 12 MAY 04 09 26 JUN 16 AUG 17	NESS TOTAL (MG/L AS CACO3) 17 22 16 18 20 16 18 21 20 20	DIS- SOLVED (MG/L AS CA) 5.3 7.0 4.9 5.3 6.2 5.1 5.5 5.7 6.4 6.1	SIUM, DIS- SOLVED (MG/L AS MG) 1.0 1.2 1.0 1.1 0.90 0.99 0.91 1.1 1.1	DIS- SOLVED (MG/L AS NA)   1.9 2.2 2.4 2.8 2.5	SIUM, DIS- SOLVED (MG/L AS K)   0.40 0.40 0.40 0.40 0.40	LINITY LAB (MG/L AS CACO3) 10 10 11 12 13	DIS- SOLVED (MG/L AS SO4)   10 11 8.9 9.3 10 8.0	RIDE, DIS- SOLVED (MG/L AS CL)   2.7 3.5 3.6 4.3 3.9 4.4	RIDE, DIS- SOLVED (MG/L AS F)   0.10 0.10 0.20 0.20 0.10	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)  18 50 34 36 45 53 40 45 58 37	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	RESIDUE AT 105 DEG. C, TOTAL (MG/L) 40 53 44 50 59 55 48 60 46

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 01325420 HUDSON RIVER AT CORINTH, NY - continued

DATE	SOLIDS, VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	RESIDUE TOTAL FIXED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS NH4)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS NO3)	PHOS- PHORUS TOTAL (MG/L AS P)
APR 1987												
23 MAY	5	33		ND	0.300	0.010	0.01	0.17	0.18	0.48	2.1	0.010
13 JUN	16	37		ND	0.260	0.020	0.03	0.07	0.09	0.35	1.5	0.010
19	18	26		ND	0.300	0.020	0.03	0.10	0.12	0.42	1.9	0.00
JUL 28	20	50		ND	0.220	0.010	0.01	0.17	0.18	0.40	1.8	0.00
SEP 22	50	9		ND	0.140	0.010	0.01	0.19	0.20	0.34	1.5	0.010
MAR 1988 31	12	43	0.550	0.010	0.560	0.010	0.01	0.30	0.31	0.87	3.9	0.010
APR 12	8	40		ND	0.470	0.00	0.0	0.22	0.22	0.69	3.1	0.010
MAY	• •	26				0.000	0.00	0.07	0.00			MO
04 09	18 27	36 33		ND ND	ND 0.290	0.020	0.03 0.01	0.07 0.23	0.09 0.24	0.53	2.3	ND 0.00
26	18	28		ND	0.210	0.010	0.01	0.24	0.25	0.46	2.0	0.010
JUN 16	26	26		ND	0.230	0.010	0.01	0.14	0.15	0.38	1.7	0.00
AUG												
17 OCT	15	18		ND	0.140	0.260	0.33	0.34	0.60	0.74	3.3	0.00
06 NOV	15	36		ND	0.090	0.010	0.01	0.19	0.20	0.29	1.3	0.00
07	37	38	0.260	0.010	0.270	0.010	0.01	0.48	0.49	0.76	3.4	0.050
DATE	PHOS-PHORUS ORTHO, DIS-SOLVED (MG/L AS P)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)
APR 1987	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHATE, ORTHO, DIS- SOLVED (MG/L	INUM, TOTAL RECOV- ERABLE (UG/L	INUM, DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L AS CD)	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L AS CU)	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L AS FE)	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L AS PB)	DIS- SOLVED (UG/L
	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHATE, ORTHO, DIS- SOLVED (MG/L	INUM, TOTAL RECOV- ERABLE (UG/L	INUM, DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L
APR 1987 23 MAY 13	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	INUM, DIS- SOLVED (UG/L AS AL)	TOTAL RECOV- ERABLE (UG/L AS CD)	DIS- SOLVED (UG/L AS CD)	TOTAL RECOV- ERABLE (UG/L AS CU)	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV- ERABLE (UG/L AS FE)	DIS- SOLVED (UG/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PB)	DIS- SOLVED (UG/L AS PB)
APR 1987 23 MAY 13 JUN 19	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	INUM, DIS- SOLVED (UG/L AS AL)	TOTAL RECOV- ERABLE (UG/L AS CD)	DIS- SOLVED (UG/L AS CD)	TOTAL RECOV- ERABLE (UG/L AS CU)	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV- ERABLE (UG/L AS FE)	DIS- SOLVED (UG/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PB)	DIS- SOLVED (UG/L AS PB)
APR 1987 23 MAY 13 JUN 19 JUL 28	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	INUM, DIS- SOLVED (UG/L AS AL)	TOTAL RECOV- ERABLE (UG/L AS CD) <10	DIS- SOLVED (UG/L AS CD)	TOTAL RECOV- ERABLE (UG/L AS CU) <10 <10	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV- ERABLE (UG/L AS FE) 150	DIS- SOLVED (UG/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PB) <100	DIS- SOLVED (UG/L AS PB)
APR 1987 23 MAY 13 JUN 19 JUL 28 SEP 22	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)  ND ND ND ND	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	INUM, DIS- SOLVED (UG/L AS AL)	TOTAL RECOV- ERABLE (UG/L AS CD) <10 <10 <10	DIS- SOLVED (UG/L AS CD)	TOTAL RECOV- ERABLE (UG/L AS CU) <10 <10 <10	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV- ERABLE (UG/L AS FE) 150 140	DIS- SOLVED (UG/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PB) <100 <5	DIS- SOLVED (UG/L AS PB)
APR 1987 23 MAY 13 JUN 19 SEP 22 MAR 1988 31	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)  ND ND ND ND	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	INUM, DIS- SOLVED (UG/L AS AL)	TOTAL RECOV- ERABLE (UG/L AS CD)  <10 <10 <10 <10	DIS- SOLVED (UG/L AS CD)	TOTAL RECOV- ERABLE (UG/L AS CU)  <10 <10 <10 <10 <30	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV- ERABLE (UG/L AS FE) 150 140 160	DIS- SOLVED (UG/L AS FE)	TOTAL RECOVERABLE (UG/L AS PB) <100 <5 <5 <5	DIS- SOLVED (UG/L AS PB)
APR 1987 23 MAY 13 JUN 19 JUL 28 SEP 22 MAR 1988 31 APR	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)  ND  ND  ND  ND	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	INUM, DIS- SOLVED (UG/L AS AL)	TOTAL RECOV- ERABLE (UG/L AS CD) <10 <10 <10 <10 <10 <11	DIS- SOLVED (UG/L AS CD)	TOTAL RECOV- ERABLE (UG/L AS CU) <10 <10 <10 30 5	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV- ERABLE (UG/L AS FE) 150 140 160 120 240	DIS- SOLVED (UG/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PB) <100 <5 <5 <5 <5	DIS- SOLVED (UG/L AS PB)
APR 1987 23 MAY 13 JUN 19 JUL 28 SEP 22 MAR 1988 31 APR 12 MAY	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)  ND	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)  160 100	INUM, DIS- SOLVED (UG/L AS AL)	TOTAL RECOV- ERABLE (UG/L AS CD) <10 <10 <10 <11 <11 <1	DIS- SOLVED (UG/L AS CD)  <1.0 1.0	TOTAL RECOV- ERABLE (UG/L AS CU) <10 <10 <10 30 5 4 2	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV- ERABLE (UG/L AS FE) 150 140 160 120 240 300 120	DIS- SOLVED (UG/L AS FE)	TOTAL RECOV-ERABLE (UG/L AS PB) <100 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	DIS- SOLVED (UG/L AS PB)
APR 1987 23 MAY 13 JUN 19 SEP 22 MAR 1988 31 APR 12 MAY 04	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)  ND	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)  160 100	INUM, DIS- SOLVED (UG/L AS AL)	TOTAL RECOV- ERABLE (UG/L AS CD)  <10 <10 <10 <11 <11 <1 <1	DIS- SOLVED (UG/L AS CD)  <1.0 1.0 <1.0	TOTAL RECOV- ERABLE (UG/L AS CU)  <10 <10 <10 30 5 4 2 7	DIS- SOLVED (UG/L AS CU)	TOTAL RECOVERABLE (UG/L AS FE)  150 140 160 120 240 300 120 100	DIS- SOLVED (UG/L AS FE)	TOTAL RECOVERAGE (UG/L AS PB) <100 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	DIS- SOLVED (UG/L AS PB)
APR 1987 23 MAY 13 JUN 19 JUL 28 SEP 22 MAR 1988 31 APR 12 MAY 04 09	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)  ND	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)  160 100 100 80	INUM, DIS- SOLVED (UG/L AS AL)	TOTAL RECOVERABLE (UG/L AS CD) <10 <10 <10 <11 <11 <11 <11 2	DIS- SOLVED (UG/L AS CD)  <1.0 1.0 <1.0	TOTAL RECOV- ERABLE (UG/L AS CU)  <10 <10 <10 30 5 4 2 7 3	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV-ERABLE (UG/L AS FE)  150 140 160 120 240 300 120	DIS- SOLVED (UG/L AS FE)	TOTAL RECOVERABLE (UG/L AS PB) <100 <55 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	DIS- SOLVED (UG/L AS PB)
APR 1987 23 MAY 13 JUN 19 SEP 22 MAR 1988 31 APR 12 MAY 04	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)  ND	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)  160 100	INUM, DIS- SOLVED (UG/L AS AL)	TOTAL RECOV- ERABLE (UG/L AS CD)  <10 <10 <10 <11 <11 <1 <1	DIS- SOLVED (UG/L AS CD)  <1.0 1.0 <1.0	TOTAL RECOV- ERABLE (UG/L AS CU)  <10 <10 <10 30 5 4 2 7	DIS- SOLVED (UG/L AS CU)	TOTAL RECOVERABLE (UG/L AS FE)  150 140 160 120 240 300 120 100	DIS- SOLVED (UG/L AS FE)	TOTAL RECOVERAGE (UG/L AS PB) <100 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	DIS- SOLVED (UG/L AS PB)
APR 1987 23 MAY 13 JUN 19 SEP 22 MAR 1988 31 APR 12 MAY 04 09 26 JUN 16	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)  ND	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)  160 100 100 80	INUM, DIS- SOLVED (UG/L AS AL)	TOTAL RECOVERABLE (UG/L AS CD) <10 <10 <10 <11 <11 <11 <11 2	DIS- SOLVED (UG/L AS CD)  <1.0 1.0 <1.0	TOTAL RECOV- ERABLE (UG/L AS CU)  <10 <10 <10 30 5 4 2 7 3	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV-ERABLE (UG/L AS FE)  150 140 160 120 240 300 120	DIS- SOLVED (UG/L AS FE)	TOTAL RECOVERABLE (UG/L AS PB) <100 <55 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	DIS- SOLVED (UG/L AS PB)
APR 1987 23 MAY 13 JUN 19 JUL 28 SEP 22 MAR 1988 31 APR 12 MAY 04 09 26 JUN 16 AUG 17	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)  ND	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)  160 100 80 70	INUM, DIS- SOLVED (UG/L AS AL)  90 50 40	TOTAL RECOV- REABLE (UG/L AS CD)  <10 <10 <10 <1 <1 <1 <1 <1 <1 <1 6	DIS- SOLVED (UG/L AS CD)  <1.0 1.0 <1.0 <1.0 <1.0	TOTAL RECOV- ERABLE (UG/L AS CU)  <10 <10 <10 30 5 4 2 7 3 8	DIS- SOLVED (UG/L AS CU)	TOTAL RECOVERABLE (UG/L AS FE)  150 140 160 120 240 300 120 100 120 110	DIS- SOLVED (UG/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PB)  <100 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	DIS- SOLVED (UG/L AS PB)
APR 1987 23 MAY 13 JUN 19 SEP 22 MAR 1988 31 APR 12 MAY 04 09 26 JUN 16 AUG	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)  ND	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)  160 100 80 70 40	INUM, DIS- SOLVED (UG/L AS AL)  90 40	TOTAL RECOVERABLE (UG/L AS CD) <10 <10 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	DIS- SOLVED (UG/L AS CD)  <1.0 1.0 1.0 <1.0 <1.0	TOTAL RECOV- ERABLE (UG/L AS CU)  <10 <10 <10 30 5 4 2 7 3 8 4	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV-ERABLE (UG/L AS FE)  150 140 160 120 240 300 120 100 120 110	DIS- SOLVED (UG/L AS FE)	TOTAL RECOV-ERABLE (UG/L AS PB) <100 <55 <5 <5 <5 <5 <5 <5 66 <6 6	DIS- SOLVED (UG/L AS PB)

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 01325420 HUDSON RIVER AT CORINTH, NY - continued

	MANGA-											
	NESE, TOTAL	MANGA- NESE,	MERCURY TOTAL	NICKEL, TOTAL	NICKEL,	ZINC, TOTAL	ZINC,	PHENOL		CARBON- TETRA-		CHLORO- DI-
	RECOV- ERABLE	DIS- SOLVED	RECOV- ERABLE	RECOV- ERABLE	DIS- SOLVED	RECOV- ERABLE	DIS- SOLVED	(С6н- 5он)	BROMO- FORM	CHLO- RIDE	CHLORO- BENZENE	BROMO- METHANE
DATE	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL
	AS MN)	AS MN)	AS HG)	AS NI)	AS NI)	AS ZN)	AS ZN)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)
APR 1987												
23 MAY	10		<0.10	<100		<10			ND	ND	ND	ND
JUN	10		<0.10	<1		30			ND	ND	ND	ND
19 JUL	10		<0.10	1		<10			ND	ND	ND	ND
28 SEP	30		<0.10	2	<1	20	10		ND	ND	ND	ND
22 MAR 1988			<0.10	<1	1	10	10		ND	ND	ND	ND
31 APR	30	20	<0.10	2	4	40	<10	2.0	ND	ND	ND	ND
12 MAY	10		<0.10	3		<10		ND	ND	ND	ND	ND
04 09	20 20		<0.10 <0.10	5 2	1	<10 <10	11	ND ND	ND ND	ND ND	ND ND	ND ND
26	20	10	<0.10	6	<1	20	13	ND	ND	ND	ND	ND
JUN 16	20		<0.10	6		<10		ND	ND	ND	ND	ND
AUG 17	40		<0.10	2		20			ND	ND	ND	ND
06	20		<0.10	2		<10		0.0	ND	ND	ND	ND
NOV 07	160	15	<0.10	4	1	20	13	1.0	ND	ND	ND	ND
	CHLORO-	CHLORO-	CIS 1,3-DI- CHLORO-	DI- CHLORO- BROMO-	METHYL-	METHYL- CHLO-	METHYL- ENE CHLO-	1,1,1- TRI- CHLORO-	1,1-DI- CHLORO-	1,1-DI- CHLORO- ETHYL-	1,1,2- TRI- CHLORO-	1,1,2,2 TETRA- CHLORO-
	ETHANE	FORM	1,3-DI- CHLORO- PROPENE	CHLORO- BROMO- METHANE	BROMIDE	CHLO- RIDE	ENE CHLO- RIDE	TRI- CHLORO- ETHANE	CHLORO- ETHANE	CHLORO- ETHYL- ENE	TRI- CHLORO- ETHANE	TETRA- CHLORO- ETHANE
DATE	ETHANE TOTAL	FORM TOTAL	1,3-DI- CHLORO- PROPENE TOTAL	CHLORO- BROMO- METHANE TOTAL	BROMIDE TOTAL	CHLO- RIDE TOTAL	ENE CHLO- RIDE TOTAL	TRI- CHLORO- ETHANE TOTAL	CHLORO- ETHANE TOTAL	CHLORO- ETHYL- ENE TOTAL	TRI- CHLORO- ETHANE TOTAL	TETRA- CHLORO- ETHANE TOTAL
DATE	ETHANE	FORM	1,3-DI- CHLORO- PROPENE	CHLORO- BROMO- METHANE	BROMIDE	CHLO- RIDE	ENE CHLO- RIDE	TRI- CHLORO- ETHANE	CHLORO- ETHANE	CHLORO- ETHYL- ENE	TRI- CHLORO- ETHANE	TETRA- CHLORO- ETHANE
APR 1987	ETHANE TOTAL (UG/L)	FORM TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- BROMO- METHANE TOTAL (UG/L)	BROMIDE TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)	ENE CHLO- RIDE TOTAL (UG/L)	TRI - CHLORO- ETHANE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	TRI- CHLORO- ETHANE TOTAL (UG/L)	TETRA- CHLORO- ETHANE TOTAL (UG/L)
APR 1987 23 MAY	ETHANE TOTAL (UG/L) ND	FORM TOTAL (UG/L) ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- BROMO- METHANE TOTAL (UG/L)	BROMIDE TOTAL (UG/L) ND	CHLO- RIDE TOTAL (UG/L)	ENE CHLO- RIDE TOTAL (UG/L)	TRI - CHLORO- ETHANE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	TRI- CHLORO- ETHANE TOTAL (UG/L)	TETRA- CHLORO- ETHANE TOTAL (UG/L)
APR 1987 23 MAY 13 JUN	ETHANE TOTAL (UG/L) ND ND	FORM TOTAL (UG/L) ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND	CHLORO- BROMO- METHANE TOTAL (UG/L) ND	BROMIDE TOTAL (UG/L) ND	CHLO- RIDE TOTAL (UG/L) ND	ENE CHLO- RIDE TOTAL (UG/L) ND	TRI - CHLORO- ETHANE TOTAL (UG/L) ND	CHLORO- ETHANE TOTAL (UG/L) ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	TRI- CHLORO- ETHANE TOTAL (UG/L) ND	TETRA- CHLORO- ETHANE TOTAL (UG/L) ND
APR 1987 23 MAY 13 JUN 19	ETHANE TOTAL (UG/L) ND ND	FORM TOTAL (UG/L) ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND	CHLORO- BROMO- METHANE TOTAL (UG/L) ND ND	BROMIDE TOTAL (UG/L) ND ND	CHLO- RIDE TOTAL (UG/L) ND ND	ENE CHLO- RIDE TOTAL (UG/L) ND ND	TRI- CHLORO- ETHANE TOTAL (UG/L) ND ND	CHLORO-ETHANE TOTAL (UG/L) ND ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	TRI- CHLORO- ETHANE TOTAL (UG/L) ND ND	TETRA- CHLORO- ETHANE TOTAL (UG/L) ND ND
APR 1987 23 MAY 13 JUN 19 JUL 28 SEP	ETHANE TOTAL (UG/L)  ND  ND  ND  ND	FORM TOTAL (UG/L)  ND  ND  ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND	CHLORO- BROMO- METHANE TOTAL (UG/L) ND ND ND	BROMIDE TOTAL (UG/L) ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND	ENE CHLO- RIDE TOTAL (UG/L)  ND  ND  ND	TRI - CHLORO- ETHANE TOTAL (UG/L)  ND  ND  ND	CHLORO-ETHANE TOTAL (UG/L)  ND ND ND ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND  ND  ND	TRI- CHLORO- ETHANE TOTAL (UG/L)  ND  ND  ND  ND	TETRA-CHLORO-ETHANE TOTAL (UG/L)  ND  ND  ND  ND
APR 1987 23 MAY 13 JUN 19 JUL 28 SEP 22 MAR 1988	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND	CHLORO- BROMO- METHANE TOTAL (UG/L) ND ND ND	BROMIDE TOTAL (UG/L) ND ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND ND	ENE CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND	TRI- CHLORO- ETHANE TOTAL (UG/L)  ND  ND  ND  ND	CHLORO-ETHANE TOTAL (UG/L)  ND ND ND ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND  ND  ND  ND	TRI- CHLORO- ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND	TETRA-CHLORO-ETHANE TOTAL (UG/L)  ND ND ND ND ND ND ND ND
APR 1987 23 MAY 13 JUN 19 JUL 28 SEP 22 MAR 1988 31 APR	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND ND	CHLORO- BROMO- METHANE TOTAL (UG/L) ND ND ND ND	BROMIDE TOTAL (UG/L) ND ND ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND ND ND	ENE CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND	TRI- CHLORO- ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND	CHLORO-ETHANE TOTAL (UG/L)  ND ND ND ND ND ND ND ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND	TRI- CHLORO- ETHANE TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND	TETRA-CHLORO-ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND
APR 1987 23 MAY 13 JUN 19 JUL 28 SEP 22 MAR 1988 31 APR 12 MAY	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND ND	CHLORO- BROMO- METHANE TOTAL (UG/L) ND ND ND ND	BROMIDE TOTAL (UG/L) ND ND ND ND ND	CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	ENE CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRI- CHLORO- ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHANE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRI- CHLORO- ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLORO-ETHANE TOTAL (UG/L)  ND
APR 1987 23 MAY 13 JUN 19 SEP 22 MAR 1988 31 APR 12 MAY 04	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BROMO-METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	BROMIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	ENE CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRI- CHLORO- ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHANE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRI- CHLORO- ETHANE TOTAL (UG/L)  ND	TETRA-CHLORO-ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 23 MAY 13 JUN 19 JUL 28 SEP 22 MAR 1988 31 APR 12 MAY 04 09	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BROMO-METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	BROMIDE TOTAL (UG/L) ND ND ND ND ND ND	CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	ENE CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRI- CHLORO- ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHANE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRI- CHLORO- ETHANE TOTAL (UG/L)  ND	TETRA-CHLORO-ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 23 MAY 13 JUN 19 SEP 22 MAR 1988 31 APR 12 MAY 04	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BROMO-METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	BROMIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	ENE CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRI- CHLORO- ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHANE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRI- CHLORO- ETHANE TOTAL (UG/L)  ND	TETRA-CHLORO-ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 23 MAY 13 JUN 19 SEP 22 MAR 1988 31 APR 12 MAY 04 09 26 JUN 16 AUG	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BROMO-METHANE TOTAL (UG/L)  ND	BROMIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLO-RIDE TOTAL (UG/L)  ND	ENE CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRI- CHLORO- ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHANE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	TRI- CHLORO- ETHANE TOTAL (UG/L)  ND	TETRA-CHLORO-ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 23 MAY 13 JUN 19 SEP 22 MAR 1988 31 APR 12 MAY 04 09 26 JUN 16 AUG 17 CCT	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BROMO-METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	BROMIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	ENE CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRI- CHLORO- ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHANE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRI- CHLORO- ETHANE TOTAL (UG/L)  ND	TETRA-CHLORO-ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 23 MAY 13 JUN 19 JUL 28 SEP 22 MAR 1988 31 APR 12 MAY 04 09 26 JUN 16 AUG 17	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BROMO-METHANE TOTAL (UG/L)  ND	BROMIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLO-RIDE TOTAL (UG/L)  ND	ENE CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRI- CHLORO- ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHANE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	TRI- CHLORO- ETHANE TOTAL (UG/L)  ND	TETRA-CHLORO-ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

### 01325420 HUDSON RIVER AT CORINTH, NY - continued

# WATER-QUALITY DATA (continued)

DATE	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)
APR 1987											
23 MAY	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
13 JUN	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
19	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
JUL 28	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SEP 22	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MAR 1988 31	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
APR 12	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MAY											2
04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
26	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
JUN 16	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
AUG	NU	MD	NU	MD	NU	ND	ND	ND	ND	NU	ND
17 ∞T	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
06	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
07	ND	ND	ИД	ND	ND	ND	ND	ИД	ND	ND	ND

### SUSPENDED SEDIMENT DISCHARGE

MAY 1988  09 1230 3550 1 9.6 26 1115 3120 1 8.4  JUN  16 1000 4440 2 24  AUG 17 1015 495 3 4.0  OCT  06 1045 767 1 2.1  NOV	DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)
26 1115 3120 1 8.4  JUN 16 1000 4440 2 24  AUG 17 1015 495 3 4.0  CCT 06 1045 767 1 2.1  NOV	MAY 1988				
JUN 16 1000 4440 2 24 AUG 17 1015 495 3 4.0 OCT 06 1045 767 1 2.1 NOV	09	1230	3550	1	9.6
16 1000 4440 2 24  AUG 17 1015 495 3 4.0  OCT 06 1045 767 1 2.1  NOV	26	1115	3120	1	8.4
AUG 17 1015 495 3 4.0 OCT 06 1045 767 1 2.1 NOV	JUN				
17 1015 495 3 4.0 OCT 06 1045 767 1 2.1 NOV	16	1000	4440	2	24
OCT 06 1045 767 1 2.1 NOV	AUG				
06 10 <b>4</b> 5 767 1 2.1 NOV	17	1015	495	3	4.0
NOV	OCT				
	06	1045	767	1	2.1
07 1000 12400 29 937	NOV				
07 1000 12400 20 331	07	1000	12400	28	937

# BED MATERIAL ANALYSES

DATE	TIME	SOLIDS, VOLA- TILE IN BOTTOM MA- TERIAL (MG/KG)	ALUM- INUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)
AUG 1988 17	1015	55000	5300	<10	7	8200	20	100	0.02	<100	60
DATE	AROCLOR 1221 IN BOTTOM MAT. (UG/KG)	AROCLOR 1248 PCB BOT.MAT (UG/KG)	AROCLOR 1254 PCB BOT.MAT (UG/KG)	AROCLOR 1260 PCB BOT.MAT (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALPHA BHC TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ATRA- ZINE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	BETA BENZENE HEXA- CHLOR- IDE BOT.MAT (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- PYRIFOS IN BOT. MAT. (UG/KG)	DELTA BENZENE HEXA- CHLOR- I DE BOT.MAT (UG/KG)
AUG 1988 17	ИД	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 01325420 HUDSON RIVER AT CORINTH, NY - continued

# BED MATERIAL ANALYSES (continued)

DATE	AZ TV IN TOI	DI- INON, OTAL BOT- M MA- ERIAL G/KG)	DI ELDR TOI IN E TOM TER (UG/	IN, PAL E BOT- SU MA- A IAL BO	NDO- LFAN LPHA T.MAT G/KG)	END SULF BET BOT.	AN SUI A SUI MAT BO	NDO- JLFAN LFATE T.MAT G/KG)	ENDF TOT IN E TOM TER (UG/	AL OT- MA- NAL	ENDR ALD HY BOT.	E- DE MAT	ETHIC TOTA IN BO TOM M TERI	AL YT~ IA- AL	HEP CHL TOT IN B TOM TER (UG/	OR, AL OT- MA- IAL	CHL EPOX TOT. BOT	IDE IN TOM TL.	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
AUG 1988 17	1	ND	NE	)	<b>n</b> D	<b>N</b> D	ì	1D	NI	)	ND		<b>и</b> D		ND		ND	•	ND
	DATE	OX CH TOI BC	ETH- XY- ILOR, Y. IN YTTOM IATL. G/KG)	MIREX TOTAL IN BOT TOM MA TERIA (UG/KG	, TO L T	P,P' DDD, OTAL BOT- M MA- ERIAL G/KG)	P,P' DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TO TO TO Ti	P,P' DDT, DTAL BOT- I MA- ERIAL G/KG)	TH TO IN TOM TE	RA- ION, TAL BOT- MA- RIAL /KG)	PH TO IN TOM TE	XA- ENE, TAL BOT- MA- RIAL /KG)	Mi Fi DII % F: Ti	ED AT. ALL AM. INER HAN	M SI DI % F	ED AT. EVE AM. INER HAN 2 MM	M SI DI % F Ti	ED AT. EVE AM. INER HAN 5 MM
	1988	N	ID	ND		ND	ND	ì	1D	N	D	N	D		1		7		100

### 01327755 HUDSON RIVER AT ROGERS ISLAND AT FORT EDWARD, NY

LOCATION.--Lat 43 15'52", long 73 35'28", Saratoga-Washington Counties, Hydrologic Unit 02020003, at bridges on State Highway 197 over Rogers Island in Fort Edward, 0.4 mi downstream from discharge station (01327750, Hudson River at Fort Edward), and 0.6 mi upstream from Champlain Canal.

DRAINAGE AREA. -- 2,817 mi 2 , at gage.

PERIOD OF RECORD. -- Water years 1975 to current year.

RIOD OF RECORD.--Water years 1975 to current year.

CHEMICAL DATA: 1975-76 (a), 1980 (b), 1981 (d), 1982-84 (e), 1985 (d), 1986-87 (e), 1988 (a).

MINOR ELEMENT DATA: 1975 (b), 1976-77 (a), 1978-79 (e), 1980 (d), 1986 (b), 1987 (e), 1988 (a).

PESTICIDE DATA: 1975, 1977 (a), 1978-79 (e), 1980 (a), 1987 (b), 1988 (a).

ORGANIC DATA: OC--1975 (a).

PCB--1975, 1977 (a), 1978-84 (e), 1985 (d), 1986 (e), 1987 (d), 1988 (e), 1989 (b).

PCN--1977 (a), 1978-79 (e), 1980 (a).

NUTRIENT DATA: 1975-77 (a), 1978 (e), 1987 (b), 1988 (a).

SEDIMENT DATA: 1975 (b), 1980-84 (e), 1985 (d), 1986-88 (e), 1989 (a).

PERTOD OF DATLY RECORD. --

SUSPENDED-SEDIMENT DISCHARGE: March 1978 to September 1979.

REMARKS.--Water-discharge data is that from 01327750 Hudson River at Fort Edward. Samples for PCB analysis are collected at this site but are not included in this report. Flow regulated appreciably by Great Sacandaga Lake and Indian Lake. Diurnal fluctuation caused by powerplants upstream from station. Water is diverted into St. Lawrence River basin through Glens Falls feeder, Bond Creek, and Champlain (Barge) Canal, and occasionally may be received from that basin through summit level of Champlain (Barge) Canal at Dunham Basin.

### WATER-QUALITY DATA

		DIS-	SPE-	PH				COLI-	FECAL			
		CHARGE,	CIFIC	WATER				FORM,	COLI-	HARD-		MAGNE-
		INST.	CON-	WHOLE				TOTAL,	FORM	NESS	CALCIUM	SIUM,
		CUBIC	DUCT-	FIELD	TEMPER-	TUR-	OXYGEN,	IMMED.	24-HR	TOTAL	DIS-	DIS-
		FEET	ANCE	(STAND-	ATURE	BID-	DIS-	(COLS.	MEM.FIL	(MG/L	SOLVED	SOLVED
DATE	TIME	PER	LAB	ARD	WATER	ITY	SOLVED	PER	(COLS./	AS	(MG/L	(MG/L
		SECOND	(US/CM)	UNITS)	(DEG C)	(NTU)	(MG/L)	100 ML)	100 ML)	CACO3)	AS CA)	AS MG)
APR 1987 30	1030	4620		7.6	11.0	1.0	10.7			35	12	1.3
MAY	1030	4020		7.6	11.0	1.0	10.7			35	12	1.3
14	1130	2970	147	7.8	17.0	0.80	10.4	22000	1800	41	14	1.5
JUN	1130	2370	24,	,,,	17.00	0.00	10.4	22000	1000	**		1.5
19	1200	3390	97	7.6	25.5	0.70	10.0	15000	210	30	10	1.1
JUL												
28	1315	4000		7.6	26.0	0.55	8.0	7400	3200	39	13	1.4
SEP												
22	1000	4220	79	7.3	15.0	1.7	10.0	35000	1420	25	8.0	1.1
DEC												
08	1100	5510		7.5		1.0		6200	1200	20	6.2	1.1
	SOLIDS, RESIDUE AT 180	SOLIDS, RESIDUE	SOLIDS, VOLA- TILE ON	pectore	NITRO- GEN,	NITRO- GEN,	NITRO- GEN,	NITRO- GEN,	NITRO- GEN,	NITRO- GEN,	NITRO- GEN, AM- MONIA +	NITRO-
	RESIDUE AT 180 DEG. C	RESIDUE AT 105	VOLA- TILE ON IGNI-	RESIDUE	GEN, NITRATE	GEN, NITRITE	GEN, NO2+NO3	GEN, AMMONIA	GEN, AMMONIA	GEN, ORGANIC	GEN, AM- MONIA + ORGANIC	GEN,
DATE	RESIDUE AT 180 DEG. C DIS-	RESIDUE AT 105 DEG. C,	VOLA- TILE ON IGNI- TION,	TOTAL	GEN, NITRATE TOTAL	GEN, NITRITE TOTAL	GEN, NO2+NO3 TOTAL	GEN, AMMONIA TOTAL	GEN, AMMONIA TOTAL	GEN, ORGANIC TOTAL	GEN, AM- MONIA + ORGANIC TOTAL	GEN, TOTAL
DATE	RESIDUE AT 180 DEG. C	RESIDUE AT 105	VOLA- TILE ON IGNI-		GEN, NITRATE TOTAL (MG/L	GEN, NITRITE TOTAL (MG/L	GEN, NO2+NO3 TOTAL (MG/L	GEN, AMMONIA TOTAL (MG/L	GEN, AMMONIA TOTAL (MG/L	GEN, ORGANIC	GEN, AM- MONIA + ORGANIC	GEN,
DATE APR 1987	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	RESIDUE AT 105 DEG. C, TOTAL	VOLA- TILE ON IGNI- TION, TOTAL	TOTAL FIXED	GEN, NITRATE TOTAL	GEN, NITRITE TOTAL	GEN, NO2+NO3 TOTAL	GEN, AMMONIA TOTAL	GEN, AMMONIA TOTAL	GEN, ORGANIC TOTAL (MG/L	GEN, AM- MONIA + ORGANIC TOTAL (MG/L	GEN, TOTAL (MG/L
APR 1987 30	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	RESIDUE AT 105 DEG. C, TOTAL	VOLA- TILE ON IGNI- TION, TOTAL	TOTAL FIXED	GEN, NITRATE TOTAL (MG/L	GEN, NITRITE TOTAL (MG/L	GEN, NO2+NO3 TOTAL (MG/L	GEN, AMMONIA TOTAL (MG/L	GEN, AMMONIA TOTAL (MG/L	GEN, ORGANIC TOTAL (MG/L	GEN, AM- MONIA + ORGANIC TOTAL (MG/L	GEN, TOTAL (MG/L
APR 1987 30	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	RESIDUE AT 105 DEG. C, TOTAL (MG/L)	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L)	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N) 0.010	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)
APR 1987 30 MAY 14	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	RESIDUE AT 105 DEG. C, TOTAL (MG/L)	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L)	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)
APR 1987 30 MAY 14 JUN	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 78	RESIDUE AT 105 DEG. C, TOTAL (MG/L) 80	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L) 46	GEN, NITRATE TOTAL (MG/L AS N) 0.390	GEN, NITRITE TOTAL (MG/L AS N) 0.010	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.400 0.510	GEN, AMMONIA TOTAL (MG/L AS N) 0.240	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.31	GEN, ORGANIC TOTAL (MG/L AS N) 0.07	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.31	GEN, TOTAL (MG/L AS N) 0.71
APR 1987 30 MAY 14 JUN 19	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	RESIDUE AT 105 DEG. C, TOTAL (MG/L)	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L)	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N) 0.010	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)
APR 1987 30 MAY 14 JUN 19 JUL	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 78 87	RESIDUE AT 105 DEG. C, TOTAL (MG/L) 80 94	VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 34 24	TOTAL FIXED (MG/L) 46 72	GEN, NITRATE TOTAL (MG/L AS N) 0.390 0.460	GEN, NITRITE TOTAL (MG/L AS N) 0.010 0.050	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.400 0.510	GEN, AMMONIA TOTAL (MG/L AS N) 0.240 0.600	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.31 0.77	GEN, ORGANIC TOTAL (MG/L AS N) 0.07 0.40	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.31 1.0 0.44	GEN, TOTAL (MG/L AS N) 0.71 1.5
APR 1987 30 MAY 14 JUN 19 JUL 28	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 78	RESIDUE AT 105 DEG. C, TOTAL (MG/L) 80	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L) 46	GEN, NITRATE TOTAL (MG/L AS N) 0.390	GEN, NITRITE TOTAL (MG/L AS N) 0.010	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.400 0.510	GEN, AMMONIA TOTAL (MG/L AS N) 0.240	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.31	GEN, ORGANIC TOTAL (MG/L AS N) 0.07	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.31	GEN, TOTAL (MG/L AS N) 0.71
APR 1987 30 MAY 14 JUN 19 JUL 28 SEP	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 78 87	RESIDUE AT 105 DEG. C, TOTAL (MG/L) 80 94 85	VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 34 24 33 33	TOTAL FIXED (MG/L) 46 72 59	GEN, NITRATE TOTAL (MG/L AS N) 0.390 0.460	GEN, NITRITE TOTAL (MG/L AS N) 0.010 0.050 0.030	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.400 0.510 0.350	GEN, AMMONIA TOTAL (MG/L AS N) 0.240 0.600 0.290 0.040	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.31 0.77 0.37	GEN, ORGANIC TOTAL (MG/L AS N) 0.07 0.40 0.15	GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N) 0.31 1.0 0.44	GEN, TOTAL (MG/L AS N) 0.71 1.5 0.79
APR 1987 30 MAY 14 JUN 19 JUL 28	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 78 87	RESIDUE AT 105 DEG. C, TOTAL (MG/L) 80 94	VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 34 24	TOTAL FIXED (MG/L) 46 72	GEN, NITRATE TOTAL (MG/L AS N) 0.390 0.460 0.320	GEN, NITRITE TOTAL (MG/L AS N) 0.010 0.050	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.400 0.510	GEN, AMMONIA TOTAL (MG/L AS N) 0.240 0.600	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.31 0.77	GEN, ORGANIC TOTAL (MG/L AS N) 0.07 0.40	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.31 1.0 0.44	GEN, TOTAL (MG/L AS N) 0.71 1.5
APR 1987 30 MAY 14 JUN 19 JUL 28 SEP 22	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 78 87	RESIDUE AT 105 DEG. C, TOTAL (MG/L) 80 94 85	VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 34 24 33 33	TOTAL FIXED (MG/L) 46 72 59	GEN, NITRATE TOTAL (MG/L AS N) 0.390 0.460 0.320	GEN, NITRITE TOTAL (MG/L AS N) 0.010 0.050 0.030	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.400 0.510 0.350	GEN, AMMONIA TOTAL (MG/L AS N) 0.240 0.600 0.290 0.040	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.31 0.77 0.37	GEN, ORGANIC TOTAL (MG/L AS N) 0.07 0.40 0.15	GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N) 0.31 1.0 0.44	GEN, TOTAL (MG/L AS N) 0.71 1.5 0.79

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 01327755 HUDSON RIVER AT ROGERS ISLAND AT FORT EDWARD, NY - continued

DATE	NITRO- GEN, TOTAL (MG/L AS NO3)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)
APR 1987 30	3.1	0.030	0.010	0.03	<10	~-	<10		170	<100	
MAY 14	6.7	0.040	0.010	0.03	<10		<10		170	8	
<b>Ј</b> ИМ 19	3.5	0.020	0.00	0.0	<10		<10		200	10	
JUL 28	3.5	0.030	0.00	0.0	<10	1.0	20	2	220	<5	<5
SEP 22	2.6	0.020	0.00	0.0	<1	1.0	5	2	300	<5	<5
DEC 08	4.3	0.010	0.00	0.0	<1		9		150	<b>&lt;</b> 5	
DATE	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)	BROMO- FORM TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)
APR 1987	30	<0.10	<100		10	~ =	ND	ND	ND	ND	ND
MAY 14	30	<0.10	<1	~-	10		ND	ND	ND	ND	ND
JUN 19	30	<0.10	<1		<10		ND	ND	ND	ND	ND
JUL 28	40	<0.10	4	<1	30	10	ИD	ND	ND	ND	ND
SEP 22	30	<0.10	4	<1	<10	30	ND	ND	ND	ND	ND
DEC 08	10	<0.10	7	~-	<10		ND	ND	ND	ND	ND
DATE	CHLORO- FORM TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)
APR 1987 30	FORM TOTAL	1,3-DI- CHLORO- PROPENE TOTAL	CHLORO- BROMO- METHANE TOTAL	BROMIDE TOTAL	CHLO- RIDE TOTAL	ENE CHLO- RIDE TOTAL	TRI- CHLORO- ETHANE TOTAL	CHLORO- ETHANE TOTAL	CHLORO- ETHYL- ENE TOTAL	TRI- CHLORO- ETHANE TOTAL	TETRA- CHLORO- ETHANE TOTAL
APR 1987 30 MAY 14	FORM TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- BROMO- METHANE TOTAL (UG/L)	BROMIDE TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)	ENE CHLO- RIDE TOTAL (UG/L)	TRI- CHLORO- ETHANE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	TRI- CHLORO- ETHANE TOTAL (UG/L)	TETRA- CHLORO- ETHANE TOTAL (UG/L)
APR 1987 30 MAY 14 JUN 19	FORM TOTAL (UG/L) ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- BROMO- METHANE TOTAL (UG/L)	BROMIDE TOTAL (UG/L) ND	CHLO- RIDE TOTAL (UG/L)	ENE CHLO- RIDE TOTAL (UG/L) ND	TRI - CHLORO- ETHANE TOTAL (UG/L) ND	CHLORO- ETHANE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	TRI - CHLORO- ETHANE TOTAL (UG/L)	TETRA- CHLORO- ETHANE TOTAL (UG/L)
APR 1987 30 MAY 14 JUN	FORM TOTAL (UG/L) ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND	CHLORO- BROMO- METHANE TOTAL (UG/L) ND	BROMIDE TOTAL (UG/L) ND	CHLO- RIDE TOTAL (UG/L) ND	ENE CHLO- RIDE TOTAL (UG/L) ND	TRI - CHLORO- ETHANE TOTAL (UG/L) ND	CHLORO- ETHANE TOTAL (UG/L) ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	TRI - CHLORO- ETHANE TOTAL (UG/L) ND	TETRA- CHLORO- ETHANE TOTAL (UG/L) ND
APR 1987 30 MAY 14 JUN 19 JUL 28	FORM TOTAL (UG/L) ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND	CHLORO- BROMO- METHANE TOTAL (UG/L) ND ND	BROMIDE TOTAL (UG/L) ND ND	CHLO- RIDE TOTAL (UG/L) ND ND	ENE CHLO- RIDE TOTAL (UG/L) ND ND	TRI- CHLORO- ETHANE TOTAL (UG/L) ND ND	CHLORO- ETHANE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	TRI- CHLORO- ETHANE TOTAL (UG/L) ND ND	TETRA- CHLORO- ETHANE TOTAL (UG/L) ND ND
APR 1987 30 MAY 14 JUN 19 JUL 28 SEP 22	FORM TOTAL (UG/L)  ND  ND  ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND	CHLORO- BROMO- METHANE TOTAL (UG/L) ND ND	BROMIDE TOTAL (UG/L) ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND	ENE CHLO- RIDE TOTAL (UG/L) ND ND ND	TRI- CHLORO- ETHANE TOTAL (UG/L) ND ND	CHLORO-ETHANE TOTAL (UG/L) ND ND ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	TRI- CHLORO- ETHANE TOTAL (UG/L) ND ND	TETRA- CHLORO- ETHANE TOTAL (UG/L) ND ND ND ND
APR 1987 30 MAY 14 JUN 19 JUL 28 SEP 22 DEC 08	FORM TOTAL (UG/L)  ND  ND  ND  ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND	CHLORO- BROMO- METHANE TOTAL (UG/L) ND ND ND	BROMIDE TOTAL (UG/L) ND ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND ND	ENE CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND	TRI - CHLORO- ETHANE TOTAL (UG/L) ND ND ND ND ND	CHLORO-ETHANE TOTAL (UG/L) ND ND ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND	TRI- CHLORO- ETHANE TOTAL (UG/L) ND ND ND ND ND	TETRA- CHLORO- ETHANE TOTAL (UG/L) ND ND ND ND ND
APR 1987 30 MAY 14 JUN 19 28 SEP 22 DEC 08  DATE  APR 1987 30	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  TOTAL	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  T,2-DI-CHLORO-ETHANE WATER WHOLE TOTAL	CHLORO-BROMO-METHANE TOTAL (UG/L) ND ND ND ND ND ND ND PO ND	BROMIDE TOTAL (UG/L) ND ND ND ND ND ND CHCANSDI CHLORO- ETHENE TOTAL	CHLO-RIDE RIDE TOTAL (UG/L) ND ND ND ND ND ND CHLORO-BENZENE TOTAL	ENE CHLO- RIDE TOTAL (UG/L) ND TOTAL ND	TRI- CHLORO- ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  TETRA- CHLORO- ETHYL- ENE TOTAL	CHLORO-ETHANE TOTAL (UG/L) ND ND ND ND ND ND TRANS- 1,3-DI- CHLORO-PROPENE TOTAL	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  ETRI-CHLORO-ETHYL-ENE TOTAL	TRI- CHLORO- ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA- CHLORO- ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  VINYL CHLO- RIDE TOTAL
APR 1987 30 MAY 14 JUN 19 28 SEP 22 DEC 08  DATE  APR 1987 30 MAY 14	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  TOTAL (UG/L)	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BROMO-METHANE TOTAL (UG/L) ND ND ND ND ND CHLORO-PROPANE TOTAL (UG/L)	BROMIDE TOTAL (UG/L) ND ND ND ND ND ND CHLORO-ETHENE TOTAL (UG/L)	CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND CHLORO-BENZENE TOTAL (UG/L)	ENE CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND TOTAL CHLORO- BENZENE TOTAL (UG/L)	TRI- CHLORO- ETHANE TOTAL (UG/L) ND ND ND ND ND ND TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO-ETHANE TOTAL (UG/L) ND ND ND ND ND ND TRANS- 1,3-DI-CHLORO-PROPENE TOTAL (UG/L)	CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND CHLORO-ETHYL-ENE TOTAL (UG/L)	TRI- CHLORO- ETHANE TOTAL (UG/L) ND ND ND ND ND VD	TETRA-CHLORO-ETHANE TOTAL (UG/L) ND ND ND ND ND VINYL CHLO-RIDE TOTAL (UG/L)
APR 1987 30 MAY 14 JUN 19 SEP 22 DEC 08  DATE  APR 1987 30 MAY 14 JUN 19	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BROMO-METHANE TOTAL (UG/L) ND	BROMIDE TOTAL (UG/L) ND ND ND ND ND ND TOTAL (UG/L) ND	CHLO-RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	ENE CHLO- RIDE TOTAL (UG/L) ND	TRI- CHLORO- ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHANE TOTAL (UG/L) ND ND ND ND ND ND TRANS-1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  TRI-CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	TRI- CHLORO- ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA- CHLORO- ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 30 MAY 14 JUN 19 JUL 28 SEP 22 DEC 08  DATE  APR 1987 30 MAY 14 JUN 19 JUL 28	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BROMO-METHANE TOTAL (UG/L) ND	BROMIDE TOTAL (UG/L) ND	CHLO-RIDE TOTAL (UG/L) ND	ENE CHLO- RIDE TOTAL (UG/L) ND	TRI- CHLORO- ETHANE TOTAL (UG/L) ND	CHLORO-ETHANE TOTAL (UG/L) ND	CHLORO-ETHYL-ENE TOTAL (UG/L) ND	TRI- CHLORO- ETHANE TOTAL (UG/L) ND	TETRA- CHLORO- ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 30 MAY 14 JUN 19 SEP 22 DEC 08  DATE  APR 1987 30 MAY 14 JUN 19 JUL	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BROMO-METHANE TOTAL (UG/L) ND	BROMIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLO-RIDE RIDE TOTAL (UG/L) ND	ENE CHLO- RIDE TOTAL (UG/L) ND	TRI- CHLORO- ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHANE TOTAL (UG/L) ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRI- CHLORO- ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA- CHLORO- ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

### 01329500 BATTEN KILL AT BATTENVILLE, NY

LOCATION.--Lat 43*06'05",long 73*25'55", Washington County, Hydrologic Unit 02020003, at Niagara Mohawk forebay near Route 29 bridge in Middle Falls.

DRAINAGE AREA. -- 394 mi2.

PERIOD OF RECORD.--Water years 1987-89.

CHEMICAL DATA: 1987 (b), 1988 (c), 1989 (a).

MINOR ELEMENTS DATA: 1987 (b), 1988 (c), 1989 (a).

PESTICIDE DATA: 1987 (b), 1988 (c), 1989 (a).

ORGANIC DATA: PCB--1988 (a).

NUTRIENT DATA: 1987 (b), 1988 (c), 1989 (a).

BIOLOGICAL DATA:

Bacteria--1987 (b), 1988 (c), 1989 (a).

SEDIMENT DATA: 1988 (b), 1989 (a).

REMARKS.--Water-discharge data obtained from a discharge rating developed for this site.

### WATER-QUALITY DATA

		DIS-		SPE-	PH			BARO-		OXYGEN,	COLI-	FECAL
		CHARGE, INST.	SPE- CIFIC	CIFIC CON-	WATER WHOLE			METRIC		DIS-	FORM,	COLI-
		CUBIC	CON-	DUCT-	FIELD	TEMPER-	TUR-	PRES- SURE	OXYGEN,	SOLVED (PER-	TOTAL, IMMED.	FORM 24-HR
		FEET	DUCT-	ANCE	(STAND-	ATURE	BID-	(MM	DIS-	CENT	(COLS.	MEM.FIL
DATE	TIME	PER	ANCE	LAB	ARD	WATER	ITY	OF	SOLVED	SATUR-	PER	(COLS./
2		SECOND	(US/CM)	(US/CM)	UNITS)	(DEG C)	(NTU)	HG)	(MG/L)	ATION)	100 ML)	100 ML)
			•	•		•	•					,
APR 1987	4445											ŗ
30	1145				8.0		0.40		11.8			
MAY	1215			222		14 5	0.70		0.0		2200	120
12 JUN	1215			233	8.0	14.5	0.70		9.9		3300	120
11	1250			142	8.0	17.5	1.3		11.6		500	200
JUL	1230			142	0.0	11.5	1.3		11.0		300	200
30	1300				8.3	21.0	0.55		10.8		>100	80.0
SEP	+555					2	0.55		10.0		7100	00.5
21	1030			153	7.5	14.0	1.9		10.7			
OCT												ŀ
27	1030			187	7.7	6.0	0.80		12.6			
DEC												I
09	1030			197	7.5	3.0	1.0		17.7		240	60.0
MAR 1988	4050	24.42	400									
29	1050	2140	130	134	7.6	3.5	4.0	772	13.6	101	110	12.0
APR 11	1100	760	163	160	7.7	7.5		760	12.5	104	110	20.0
26	1300	699	188	188	6.7	8.0	0.80	760	12.5	104	100	5.00
MAY	1300	095	100	100	0.,	0.0	0.00		12.0		100	3.00
16	1100	617	192	194	8.1	14.5	0.70	758	10.8	107	240	35.0
23	1030	612	193	189	7.9	16.0	1.2	760	11.0	111	160	55.0
JUN	•••	•••				****					•••	33.5
14	1030	258	224	236	7.6	19.5	0.30		7.5		100	90.0
AUG												
16	1030	377	237	238	8.1	21.5	1.9		8.8		>850	490
OCT												
03	1030	185	252	257	8.3	15.5	0.40	763	9.6	96	500	200
NOV								_		_		
01	1100	304	198	202	7.4	4.5	0.50	764	13.7	105	200	55.0

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 01329500 BATTEN KILL AT BATTENVILLE, NY - continued

	HARD-		MAGNE-		POTAS-	ALKA-		CHLO-	FLUO~	SOLIDS, RESIDUE	SOLIDS, SUM OF	SOLIDS,
DATE	NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	AT 180 DEG. C DIS- SOLVED (MG/L)	CONSTI- TUENTS, DIS- SOLVED (MG/L)	RESIDUE AT 105 DEG. C, TOTAL (MG/L)
APR 1987												
30	98	28	6.7							122		122
MAY 12	110	30	7.4							118		128
JUN 11	63	18	4.4							84		102
JUL 30	110	30	7.4							132		167
SEP 21	80	24	4.9							84		115
ОСТ 27	90	26	6.2							80		90
DEC 09	84	24	5.9							122		125
MAR 1988 29	61	18	4.0	3.0	0.70	49	11	4.4	0.10	83	71	105
APR												
11	71 88	20 24	5.2 6.7	3.1 4.2	0.70 0.70	63 76	11 9.9	5.4 6.6	0.10 0.10	93 113	<b>83</b> 98	116 119
MAY 16 23	87 85	24 24	6.5 6.2	3.8 3.8	0.70 0.70	79 75	10 11	6.0 6.0	0.20 0.20	132	99 9 <b>7</b>	141 116
JUN 14	110	29	8.5	4.9	0.80	97	10	8.0	0.10	133	119	151
AUG 16	110	30	9.6	5.3	0.90	103	8.9	7.9	<0.10	~-	124	135
OCT 03	120	32	9.7	5.7	1.2	109	9.9	9.1	<0.10	156	133	173
NOV 01	94	25	7.7	4.2	0.90	83	10	6.6	<0.10	119	104	129
	SOLIDS, VOLA-		NITRO-	NITRO-	NITRO-	NITRO-	NITRO-	NITRO-	NITRO- GEN, AM-			
	VOLA- TILE ON	PECINIF	NITRO- GEN,	NITRO- GEN,	NITRO- GEN,	NITRO- GEN,	NITRO- GEN,	NITRO- GEN,	GEN,AM- MONIA +	NITRO-	NITRO-	PHOS-
DAME	VOLA- TILE ON IGNI- TION,	RESIDUE TOTAL	GEN, NITRATE TOTAL	GEN, NITRITE TOTAL	GEN, NO2+NO3 TOTAL	GEN, AMMONIA TOTAL	GEN, AMMONIA TOTAL	GEN, ORGANIC TOTAL	GEN, AM- MONIA + ORGANIC TOTAL	GEN, TOTAL	GEN, TOTAL	PHORUS TOTAL
DATE	VOLA- TILE ON IGNI-		GEN, NITRATE	GEN, NITRITE	GEN, NO2+NO3	GEN, AMMONIA	GEN, AMMONIA	GEN, ORGANIC	GEN, AM- MONIA + ORGANIC	GEN,	GEN,	PHORUS
APR 1987	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L)	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS NO3)	PHORUS TOTAL (MG/L AS P)
	VOLA- TILE ON IGNI- TION, TOTAL	TOTAL FIXED	GEN, NITRATE TOTAL (MG/L	GEN, NITRITE TOTAL (MG/L	GEN, NO2+NO3 TOTAL (MG/L	GEN, AMMONIA TOTAL (MG/L	GEN, AMMONIA TOTAL (MG/L	GEN, ORGANIC TOTAL (MG/L	GEN, AM- MONIA + ORGANIC TOTAL (MG/L	GEN, TOTAL (MG/L	GEN, TOTAL (MG/L	PHORUS TOTAL (MG/L
APR 1987 30 MAY 12	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L)	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS NO3)	PHORUS TOTAL (MG/L AS P)
APR 1987 30 MAY 12 JUN 11	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L)	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N) ND	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS NO3)	PHORUS TOTAL (MG/L AS P)
APR 1987 30 MAY 12 JUN 11 JUL 30	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L) 74	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N) ND 0.00	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.850 0.780	GEN, AMMONIA TOTAL (MG/L AS N) 0.020	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.03	GEN, ORGANIC TOTAL (MG/L AS N) 0.04	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.06	GEN, TOTAL (MG/L AS N) 0.91	GEN, TOTAL (MG/L AS NO3) 4.0	PHORUS TOTAL (MG/L AS P) 0.00
APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21	VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 48 42	TOTAL FIXED (MG/L) 74 111 57	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)  ND  0.00	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.850 0.780	GEN, AMMONIA TOTAL (MG/L AS N) 0.020 0.030 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.03 0.04	GEN, ORGANIC TOTAL (MG/L AS N) 0.04 0.09	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.06 0.12	GEN, TOTAL (MG/L AS N) 0.91 0.90	GEN, TOTAL (MG/L AS NO3) 4.0 4.0	PHORUS TOTAL (MG/L AS P) 0.00 0.010
APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 OCT 27	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  48 42 45	TOTAL FIXED (MG/L)  74  111  57  97	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)  ND 0.00  ND ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.850 0.780 0.400 0.760	GEN, AMMONIA TOTAL (MG/L AS N) 0.020 0.030 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.03 0.04 0.01	GEN, ORGANIC TOTAL (MG/L AS N) 0.04 0.09 0.13	GEN, AM- MONIA + ORGANIC TOTPAL (MG/L AS N)  0.06 0.12 0.14 0.19	GEN, TOTAL (MG/L AS N) 0.91 0.90 0.54	GEN, TOTAL (MG/L AS NO3) 4.0 4.0 2.4	PHORUS TOTAL (MG/L AS P) 0.00 0.010 0.010
APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 OCT 27 DEC 09	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  48 42 45 70 74	TOTAL FIXED (MG/L)  74  111  57  97  41	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)  ND  O.00  ND  ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.850 0.780 0.400 0.760 0.480	GEN, AMMONIA TOTAL (MG/L AS N) 0.020 0.030 0.010 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.03 0.04 0.01 0.01	GEN, ORGANIC TOTAL (MG/L AS N) 0.04 0.09 0.13 0.18	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.06 0.12 0.14 0.19	GEN, TOTAL (MG/L AS N) 0.91 0.90 0.54 0.95	GEN, TOTAL (MG/L AS NO3) 4.0 4.0 2.4 4.2	PHORUS TOTAL (MG/L AS P) 0.00 0.010 0.010 0.00
APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  48 42 45 70 74 50	TOTAL FIXED (MG/L)  74  111  57  97  41  73	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)  ND 0.00  ND ND ND ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.850 0.780 0.400 0.760 0.480 0.740	GEN, AMMONIA TOTAL (MG/L AS N) 0.020 0.030 0.010 0.010 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.03 0.04 0.01 0.01 0.01	GEN, ORGANIC TOTAL (MG/L AS N) 0.04 0.09 0.13 0.18 0.21	GEN, AM- MONIA + ORGANIC TOTPAL (MG/L AS N)  0.06 0.12 0.14 0.19 0.22 0.09	GEN, TOTAL (MG/L AS N) 0.91 0.90 0.54 0.95 0.70	GEN, TOTAL (MG/L AS NO3) 4.0 4.0 2.4 4.2 3.1	PHORUS TOTAL (MG/L AS P) 0.00 0.010 0.010 0.00 0.020
APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  48 42 45 70 74 50	TOTAL FIXED (MG/L)  74  111  57  97  41  73  75	GEN, NITRATE TOTAL (MG/L AS N)  0.780	GEN, NITRITE TOTAL (MG/L AS N)  ND  O.00  ND  ND  ND  ND  ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.850 0.780 0.400 0.760 0.480 0.740	GEN, AMMONIA TOTAL (MG/L AS N) 0.020 0.030 0.010 0.010 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.03 0.04 0.01 0.01 0.01	GEN, ORGANIC TOTAL (MG/L AS N) 0.04 0.09 0.13 0.18 0.21 0.09	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.06 0.12 0.14 0.19 0.22 0.09	GEN, TOTAL (MG/L AS N) 0.91 0.90 0.54 0.95 0.70 0.83	GEN, TOTAL (MG/L AS NO3) 4.0 4.0 2.4 4.2 3.1 3.7 4.5	PHORUS TOTAL (MG/L AS P) 0.00 0.010 0.010 0.020 0.00 0.010
APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  48 42 45 70 74 50 50	TOTAL FIXED (MG/L)  74  111  57  97  41  73  75  79	GEN, NITRATE TOTAL (MG/L AS N)  0.780	GEN, NITRITE TOTAL (MG/L AS N)  ND 0.00  ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.850 0.780 0.400 0.760 0.480 0.740 0.930 0.730	GEN, AMMONIA TOTAL (MG/L AS N)  0.020 0.030 0.010 0.010 0.010 0.010 0.00	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.03 0.04 0.01 0.01 0.01	GEN, ORGANIC TOTAL (MG/L AS N) 0.04 0.09 0.13 0.18 0.21 0.09	GEN, AM- MONIA + ORGANIC TOTPAL (MG/L AS N)  0.06 0.12 0.14 0.19 0.22 0.09 0.09	GEN, TOTAL (MG/L AS N) 0.91 0.90 0.54 0.95 0.70 0.83 1.0	GEN, TOTAL (MG/L) AS NO3) 4.0 4.0 2.4 4.2 3.1 3.7 4.5	PHORUS TOTAL (MG/L AS P) 0.00 0.010 0.010 0.020 0.00 0.020
APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  48 42 45 70 74 50 50 26 22	TOTAL FIXED (MG/L)  74  111  57  97  41  73  75  79  94	GEN, NITRATE TOTAL (MG/L AS N)  0.780	GEN, NITRITE TOTAL (MG/L AS N)  ND 0.00  ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.850 0.780 0.400 0.760 0.480 0.740 0.930 0.730 0.720 0.640 0.600	GEN, AMMONIA TOTAL (MG/L AS N)  0.020 0.030 0.010 0.010 0.010 0.010 ND 0.010 ND 0.010 ND 0.000 0.000	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.03 0.04 0.01 0.01 0.01 0.01 0.01 0.00	GEN, ORGANIC TOTAL (MG/L AS N) 0.04 0.09 0.13 0.18 0.21 0.09  0.22	GEN, AM- MONIA + ORGANIC TOTPAL (MG/L AS N)  0.06 0.12 0.14 0.19 0.22 0.09 0.09 0.23 0.14 0.30 0.16	GEN, TOTAL (MG/L AS N) 0.91 0.90 0.54 0.95 0.70 0.83 1.0 0.96 0.86	GEN, TOTAL (MG/L AS NO3) 4.0 4.0 2.4 4.2 3.1 3.7 4.5 4.2	PHORUS TOTAL (MG/L AS P) 0.00 0.010 0.010 0.020 0.00 0.010 0.020 0.010
APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  48 42 45 70 74 50 26 22 56 81	TOTAL FIXED (MG/L)  74  111  57  97  41  73  75  79  94 63 60	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)  ND 0.00  ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.850 0.780 0.400 0.760 0.480 0.740 0.930 0.730 0.720 0.640	GEN, AMMONIA TOTAL (MG/L AS N)  0.020 0.030 0.010 0.010 0.010 0.010 ND 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.03 0.04 0.01 0.01 0.0  0.01	GEN, ORGANIC TOTAL (MG/L AS N) 0.04 0.09 0.13 0.18 0.21 0.09  0.22  0.30 0.13 0.18	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.06 0.12 0.14 0.19 0.22 0.09 0.09 0.23 0.14 0.30	GEN, TOTAL (MG/L AS N) 0.91 0.90 0.54 0.95 0.70 0.83 1.0 0.96 0.86 0.94	GEN, TOTAL (MG/L) AS NO3) 4.0 4.0 2.4 4.2 3.1 3.7 4.5 4.2 3.8 4.2	PHORUS TOTAL (MG/L AS P)  0.00 0.010 0.010 0.020 0.00 0.010 0.010 0.020 0.010 0.010 0.010 0.010
APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 16 23 JUN 14 AUG	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  48  42  45  70  74  50  50  26  22  56  81 39  72	TOTAL FIXED (MG/L)  74  111  57  97  41  73  75  79  94  63  60  77  79	GEN, NITRATE TOTAL (MG/L AS N)  0.780 0.540	GEN, NITRITE TOTAL (MG/L AS N)  ND 0.00  ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.850 0.780 0.400 0.760 0.480 0.740 0.930 0.730 0.720 0.640 0.600 0.540 0.780	GEN, AMMONIA TOTAL (MG/L AS N)  0.020 0.030 0.010 0.010 0.010 ND 0.010 ND 0.010 0.010 0.010 0.010 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.03 0.04 0.01 0.01 0.01 0.01 0.01 0.00	GEN, ORGANIC TOTAL (MG/L AS N) 0.04 0.09 0.13 0.18 0.21 0.09  0.22  0.30 0.13 0.18	GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N)  0.06 0.12 0.14 0.19 0.22 0.09 0.09 0.23 0.14 0.30 0.16 0.19 0.14	GEN, TOTAL (MG/L AS N) 0.91 0.90 0.54 0.95 0.70 0.83 1.0 0.96 0.94 0.76 0.73	GEN, TOTAL (MG/L AS NO3) 4.0 2.4 4.2 3.1 3.7 4.5 4.2 3.8 4.2 3.4 3.2	PHORUS TOTAL (MG/L AS P)  0.00 0.010 0.010 0.020 0.000 0.010 0.020 0.010 0.010 0.010 0.010
APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 CCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 16 23 JUN 14 AUG 16 OCT	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  48  42  45  70  74  50  50  26  22  56  81  39  72  41	TOTAL FIXED (MG/L)  74  111  57  97  41  73  75  79  94  63  60  77  79  94	GEN, NITRATE TOTAL (MG/L AS N)  0.780	GEN, NITRITE TOTAL (MG/L AS N)  ND 0.00  ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.850 0.780 0.400 0.760 0.480 0.740 0.930 0.730 0.720 0.640 0.600 0.540 0.780 0.300	GEN, AMMONIA TOTAL (MG/L AS N)  0.020 0.030 0.010 0.010 0.010 0.00 ND 0.010 ND 0.010 0.030 0.010 0.030 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.03 0.04 0.01 0.01 0.0  0.01  0.0 0.04 0.01 0.01	GEN, ORGANIC TOTAL (MG/L AS N) 0.04 0.09 0.13 0.18 0.21 0.09  0.22  0.30 0.13 0.18 0.13	GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N)  0.06 0.12 0.14 0.19 0.22 0.09 0.09 0.23 0.14 0.30 0.16 0.19 0.14 0.30	GEN, TOTAL (MG/L AS N) 0.91 0.90 0.54 0.95 0.70 0.83 1.0 0.96 0.94 0.76 0.73	GEN, TOTAL (MG/L) AS NO3) 4.0 2.4 4.2 3.1 3.7 4.5 4.2 3.8 4.2 3.4 3.2 4.1	PHORUS TOTAL (MG/L AS P)  0.00 0.010 0.010 0.020 0.00 0.010 0.010 0.020 0.010 0.010 0.010 0.010 0.010 0.010
APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 16 23 JUN 14 AUG 16	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  48  42  45  70  74  50  50  26  22  56  81 39  72	TOTAL FIXED (MG/L)  74  111  57  97  41  73  75  79  94  63  60  77  79	GEN, NITRATE TOTAL (MG/L AS N)  0.780 0.540 0.780	GEN, NITRITE TOTAL (MG/L AS N)  ND 0.00  ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.850 0.780 0.400 0.760 0.480 0.740 0.930 0.730 0.720 0.640 0.600 0.540 0.780	GEN, AMMONIA TOTAL (MG/L AS N)  0.020 0.030 0.010 0.010 0.010 ND 0.010 ND 0.010 0.010 0.010 0.010 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.03 0.04 0.01 0.01 0.01 0.01 0.0 0.01 0.01 0.00 0.01	GEN, ORGANIC TOTAL (MG/L AS N) 0.04 0.09 0.13 0.18 0.21 0.09  0.22  0.30 0.13 0.18	GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N)  0.06 0.12 0.14 0.19 0.22 0.09 0.09 0.23 0.14 0.30 0.16 0.19 0.14	GEN, TOTAL (MG/L AS N) 0.91 0.90 0.54 0.95 0.70 0.83 1.0 0.96 0.94 0.76 0.73	GEN, TOTAL (MG/L AS NO3) 4.0 2.4 4.2 3.1 3.7 4.5 4.2 3.8 4.2 3.4 3.2	PHORUS TOTAL (MG/L AS P)  0.00 0.010 0.010 0.020 0.00 0.010 0.010 0.020 0.010 0.000 0.010 0.000

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

### 01329500 BATTEN KILL AT BATTENVILLE, NY - continued

	PHOS-	PHOS-	ALUM-									
DATE	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)
APR 1987												
30 MAY	ND				<10		<10		90		<100	
12 JUN	ND				<10		<10		90		<5	
11	0.00	0.0			<10		10		300		<5	
30					<10		20		100		12	
SEP 21	0.00	0.0			<1	<1.0	5	3	320		<5	<b>&lt;</b> 5
ост 27	ND				<1		5		90		<5	
DEC 09	0.00	0.0			<1		4		120		<5	
MAR 1988 29	0.00	0.0	700	50	1	<1.0	4	1	1200	30	<5	<b>&lt;</b> 5
APR 11	0.00	0.0	140		<1		4		180		<b>&lt;</b> 5	
26	ND		90	40	<1	<1.0	14	4	100	35	<5	<b>&lt;</b> 5
MAY 16 23	ND		70	20	1 7		2 10	1	130 110	 2 <b>4</b>	<5 <5	 <b>&lt;</b> 5
JUN	0.00	0.0	70			<1.0					<b>&lt;</b> 5	<b>~</b> 5
14 AUG	ND		50		1		5		120	~-		
16	ND		110		<1		4		960		<5	
03 NOV	ND		50		<1		3		100		<5	
01	ND		40	20	<1	<1.0	3	3	100	36	<5	<b>&lt;</b> 5
DATE	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)	BROMO- FORM TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)
APR 1987	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L	FORM TOTAL (UG/L)	TETRA- CHLO- RIDE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	DI- BROMO- METHANE TOTAL (UG/L)	ETHANE TOTAL (UG/L)
APR 1987 30 MAY	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)	TETRA- CHLO- RIDE TOTAL (UG/L)	BENZENE TOTAL (UG/L) ND	DI- BROMO- METHANE TOTAL (UG/L)	ETHANE TOTAL (UG/L) ND
APR 1987 30 MAY 12 JUN	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG) <0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L) ND	TETRA- CHLO- RIDE TOTAL (UG/L) ND	BENZENE TOTAL (UG/L) ND	DI- BROMO- METHANE TOTAL (UG/L) ND	ETHANE TOTAL (UG/L) ND
APR 1987 30 MAY 12 JUN 11 JUL	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 10 <10	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  30  <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L) ND ND	TETRA- CHLO- RIDE TOTAL (UG/L) ND ND	BENZENE TOTAL (UG/L) ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND	ETHANE TOTAL (UG/L) ND ND
APR 1987 30 MAY 12 JUN 11 JUL 30 SEP	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 10 <10 30	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10  0.20	TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  30  30  <10  70	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND  ND	TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND	BENZENE TOTAL (UG/L) ND ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND	ETHANE TOTAL (UG/L)  ND  ND  ND
APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 OCT	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 10 <10 30 20	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 0.20 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 <1 <1 <2	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  30  <10  70  <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND  ND  ND	TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND	BENZENE TOTAL (UG/L) ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND
APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 OCT 27 DEC	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 10 <10 30	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  30  30  <10  70  <10  <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND	TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND
APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 OCT 27	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)  10  <10  20  20  20  <10	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 0.20 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 <1 <1 <2	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  30  <10  70  <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND  ND  ND	TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND	BENZENE TOTAL (UG/L) ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND
APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)  10  <10  20  20  20  <10	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOVERABLE (UG/L AS NI)  <100 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  30  30  <10  70  <10  <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND	TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND
APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)  10  <10  20  20  20  <10  50  20	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <100 <1 <1 <1 <1 <1 <1 <1 <1 <1 <7 <1 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  30  30  <10  70  <10  <10  <10  <10  <10  <10	DIS- SOLVED (UG/L AS ZN)  10 <10	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE TOTAL (UG/L)  ND	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)  10  <10  20  20  <10  50  20  20	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOVERABLE (UG/L AS NI)  <100 <1 <1 <1 <1 <1 <1 <1 <7 <1 <7 <1 <7 <1 <7 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  30  <10  70  <10  <10  <10  <10  50	DIS- SOLVED (UG/L AS ZN)  10 <10	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE TOTAL (UG/L)  ND	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 16 23	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)  10  <10  20  20  20  <10  50  20	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <100 <1 <1 <1 <1 <1 <1 <1 <1 <1 <7 <1 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <7 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  30  30  <10  70  <10  <10  <10  <10  <10  <10	DIS- SOLVED (UG/L AS ZN)  10 <10	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE TOTAL (UG/L)  ND	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 16 23 JUN 14	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)  10  <10  20  20  <10  50  20  20  20  20  20  20  20	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOVERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOVERABLE (UG/L AS NI)  <100 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	DIS- SOLVED (UG/L AS NI) 1311	TOTAL RECOVERABLE (UG/L AS ZN)  30  30  <10  70  <10  <10  <10  <10  <10  <10	DIS- SOLVED (UG/L AS ZN)  10 <10 38	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE TOTAL (UG/L)  ND	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	ETHANE TOTAL (UG/L)  ND
APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 16 23 JUN 14 AUG 16	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)  10  <10  20  20  <10  50  20  20  20  20  20  20	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOVERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOVERABLE (UG/L AS NI)  <100 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	DIS- SOLVED (UG/L AS NI) 1 31	TOTAL RECOV-ERABLE (UG/L AS ZN)  30  30  <10  70  <10  <10  20  <10  50  <10  10	DIS- SOLVED (UG/L AS ZN)  10 <10 38 6	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 16 23 JUN 14 AUG	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)  10  <10  20  20  <10  50  20  20  20  20  20  20  20  20  2	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOVERABLE (UG/L AS NI)  <100 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	DIS- SOLVED (UG/L AS NI) 1 31 1	TOTAL RECOV- ERABLE (UG/L AS ZN)  30  410  70  410  410  20  410  50  410  410  410  410  410  410	DIS- SOLVED (UG/L AS ZN)  10 <10 38 6	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE TOTAL (UG/L)  ND	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 01329500 BATTEN KILL AT BATTENVILLE, NY - continued

DATE	CHLORO- FORM TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)
APR 1987 30	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MAY 12	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
JUN 11	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
JUL 30	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SEP 21	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ост 27	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DEC 09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MAR 1988 29	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
APR 11	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
26	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MAY 16	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
23	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
JUN 14 AUG	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
16 OCT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
03	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DATE	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)
APR 1987	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
APR 1987 30 MAY	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
APR 1987 30 MAY 12 JUN	CHLORO- BENZENE TOTAL (UG/L) ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND	CHLORO- PROPANE TOTAL (UG/L) ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND	CHLORO-BENZENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND	CHLO- RIDE TOTAL (UG/L) ND
APR 1987 30 MAY 12 JUN 11 JUL	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND	CHLO- RIDE TOTAL (UG/L) ND ND
APR 1987 30 MAY 12 JUN 11 JUL 30 SEP	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND	CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND  ND  ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND
APR 1987 30 MAY 12 JUN 30 SEP 21 OCT	CHLORO- BENZENE TOTAL (UG/L) ND ND ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)  ND ND ND ND ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND	CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND  ND  ND  ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND ND
APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 OCT 27 DEC	CHLORO- BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND ND ND ND ND ND ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND	CHLORO- ETHYL - VINYL - ETHER TOTAL (UG/L)  ND ND ND ND ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND ND ND
APR 1987 30 MAY 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)  ND ND ND ND ND ND ND ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND	CHLO-RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	CHLORO-ETHYL-VINYL-ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND
APR 1987 30 MAY 12 JUN 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)  ND ND ND ND ND ND ND ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND	CHLO-RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 16 23	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENETOTAL (UG/L)  ND	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 16 23 JUN	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-VINYL-ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND
APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 16 23 JUN 14 AUG 16	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO-ETHENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLO-RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 CCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 16 23 JUN 14 AUG 16 CCT 03	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND N
APR 1987 30 MAY 12 JUN 11 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 16 23 JUN 14 AUG 16 OCT	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO-ETHENE TOTAL (UG/L)  ND	CHLOROBENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLOROBENZEME TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLO-RIDE TOTAL (UG/L)  ND N

# 01329500 BATTEN KILL AT BATTENVILLE, NY - continued

# SUSPENDED SEDIMENT DISCHARGE

		DIS-		SEDI-
		CHARGE,		MENT,
		INST.	SEDI-	DIS-
		CUBIC	MENT,	CHARGE,
		FEET	SUS-	SUS-
DATE	TIME	PER	PENDED	PENDED
		SECOND	(MG/L)	(T/DAY)
MAY 1988				
16	1100	617	2	3.3
23	1030	612	3	5.0
JUN				
14	1030	258	2	1.4
AUG				
16	1030	377	7	7.1
OCT				
03	1030	185	1	0.50
NOV				
01	1100	304	<1	

# BED MATERIAL ANALYSES

DATE	TIME	SOLII VOLA TILE BOTTO MA- TERI (MG/F	A- IN IN RE OM FM - TOM IAL TE	IUM, RE CCOV. FM BOT- TOM MA- TE CRIAL (U	ECOV. N BOT- F MA- FN ERIAL TO JG/G T	CHRO- MIUM, RECOV. M BOT- OM MA- TERIAL (UG/G)	REG FM TOM TE (U	COV. RI BOT- FM I MA- TOI CRIAL TI IG/G (1	RON, ECOV. BOT- M MA- ERIAL UG/G S FE)	RE FM TOM TE (U		MANGA- NESE, RECOV- FM BOT- TOM MA- TERIAI (UG/G)	RE FM TOM TE L (U	RCURY ECOV. BOT- M MA- ERIAL UG/G S HG)	REG FM I TOM TEI (UG	CCOV. BOT- I MA- CRIAL IG/G NI)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)
OCT 1987 14 AUG 1988	1330	25	700		<1	<10		10	14000		30	260	0 <	<0.10		20	60
16	1030	290	000	7200	<10			10	12000		<100	240	0	0.03		20	60
DATE	AROCLO 1221 IN BOTTOI MAT (UG/KO	) A ) M ! E	AROCLOR 1248 PCB BOT.MAT (UG/KG)	AROCLOR 1254 PCB BOT.MAT (UG/KG)	AROCLOF 1260 PCB BOT.MAT (UG/KG)	IN BOM TOM T	AL OT- MA- IAL	ALPHA BHC TOTAL IN BOT- TOM MA- TERIAL (UG/KG)		E, TAL SOT- MA- RIAL	BETA BENZEN HEXA- CHLOF IDE BOT.MA	NE DA - TO R- IN TOA AT TI	HLOR- PANE, OTAL BOT- M MA- PERIAL G/KG)	CHLOI PYRII IN BO MAT (UG/I	FOS OT	DELT BENZE HEXA CHLC IDE BOT.N (UG/H	ENE A- OR- E MAT
OCT 1987 14						_	_		_	_				_	_		_
AUG 1988 16	<b>N</b> D		ND	ND	ND	ND	,	ND	ND	,	ND		ND	ND	ı	ND	
DATE	DI- AZINOI TOTAI IN BO TOM MA TERIA (UG/KO	DN, E L VT- I IA- I	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN ALPHA BOT.MAT (UG/KG)	ENDO- SULFAN BETA BOT.MAI (UG/KG)		FAN ATE MAT	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HY! BOT.	DE- DE MAT	ETHION TOTAL IN BOT TOM MA TERIA (UG/KG	N, CI L TY T- IN A- TOI AL TI	EPTA- CHLOR, OTAL BOT- M MA- PERIAL (G/KG)	HEP CHLC EPOX: TOT. BOT MAT (UG/I	OR IDE IN TOM TL.	MALA THIC TOTA IN BO TOM N TERI (UG/H	ON, AL OT- MA- IAL
OCT 1987 14						_	_		-					_	_		-
AUG 1988 16	ND		ND	ND	ND	ND	ı	ND	ND	,	ND	1	ND	ND	1	ND	
DATE	METHOXY - CHLOITOTO : BOTTK MATT	R, IN I OM I	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	P,P' DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	P,P' DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DD TOT. - IN B - TOM I L TER	AL OT- MA- IAL	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOM 1	NE, PAL SOT- MA- RIAL	BED MAT. FALI DIAM. % FINE THAN	. ! L S: . D: ER % !	BED MAT. IEVE IAM. FINER THAN 62 MM	BEI MA' SIEV DIAI % FIL THA	T. VE M. NER	BEI MAT SIEV DIAN * FIN THA 2.00	T. VE M. NER AN
OCT 1987 14 AUG 1988						-	-		-	-		1	17		33		99
16	ND		ND	ND	ND	ND		ND	ND	ı		1	10		100		-

### 01329650 HUDSON RIVER AT SCHUYLERVILLE, NY

LOCATION.--Lat 43 05'54", long 73 34'25", at Saratoga-Washington County line, Hydrologic Unit 02020003, at bridge on State Highway 29, 0.2 mi east of Schuylerville, 0.8 mi downstream from Batten Kill, and 1.0 mi downstream from Champlain (Barge) Canal lock 5.

DRAINAGE AREA. -- 3,440 mi 2 , approximately.

PERIOD OF RECORD.--Water years 1976 to current year.

CHEMICAL DATA: 1976 (a), 1980 (b), 1981 (c), 1982-84 (e), 1985-87 (d), 1988 (c), 1989 (a).

MINOR ELEMENTS DATA: 1976 (a), 1977 (e), 1978-79 (d), 1980, 1987 (b), 1988 (c), 1989 (a).

PESTICIDE DATA: 1977 (e), 1978-79 (d), 1987 (b), 1988 (c), 1989 (a).

ORGANIC DATA: PCB--1977 (e), 1978-80 (d), 1981-84 (e), 1985-88 (d), 1989 (c).

PCN--1977 (e), 1978-79 (d).

NUTRIENT DATA: 1977 (e), 1978 (d), 1987 (b), 1988 (c), 1989 (a).

BIOLOGICAL DATA:

Bacteria--1987 (b), 1988 (c), 1989 (a).

SEDIMENT DATA: 1976 (b), 1977 (e), 1978-80 (d), 1981-84 (e), 1985 (d), 1986 (e), 1987 (d), 1988 (e), 1989 (c).

PERIOD OF DAILY RECORD. -- SUSPENDED-SEDIMENT DISCHARGE: March 1977 to September 1979.

REMARKS.--Water-discharge data obtained from a discharge rating developed for this site. Streamflow affected by regulation for power generation and diversion for canal operations. Samples for PCB analysis are collected at this site but are not included in this report.

#### WATER-QUALITY DATA

DATE	TIME	DIS- CHARGE, IN CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	BARO~ METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	FECAL COLI- FORM 24-HR MEM.FIL (COLS./ 100 ML)
APR 1987												
22 MAY	1200		87				2,0					
14	1330			127	7.5	20.0	1.0		9.9		4000	1000
JUN 15	1105		-~	115	7.4	23.0	1.2		8.7		>6800	>500
JUL 29	0945	~-			7.4	23.5	0.50		7.7		7000	800
SEP 24	1200				7.6	16.0	1.9		10.5		14000	1300
OCT 26 DEC	1330			113	7.2	19.0	1.3		11.9		170000	>2000
07	1330	~-			7.2	2.0	3.0		18.8		9000	1000
MAR 1988	1200	9100	82	117	6.2	4.0	2.9	772	14.0	105	5900	660
APR 13 25	1330 1130	6800 3000	80 1 <b>4</b> 6	104 160	6.6 6.4	9.5 9.0	1.6 1.2	765 755	12.1 11.7	105 102	36000 7000	800 >800
MAY 10	1230	4300	98	139	6.8	14.5	7.5		10.6		5600	500
JUN 01 13	1130 12 <b>4</b> 5	2700 1 <b>4</b> 00	139 1 <b>4</b> 9	1 <b>4</b> 1 16 <b>4</b>	6.7 6.8	20.5 22.5	2.0 1.0	 765	8.0 7.6	 87	2000 10000	200 700
AUG 15 OCT	1230	3700	130	125	6.7	29.0	1.6	757	7.5	98	400	ND
04 NOV	1230	770	129	130	7.6	17.5	1.2	763	9.2	96	19000	>1200
07	1200	14000	76	77	6.6	7.0	6.4	754	14.2	118	~-	

# 01329650 HUDSON RIVER AT SCHUYLERVILLE, NY - continued

DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, TOTAL (MG/L)
APR 1987 22	27	8.3	1.5							43		68
MAY 14	21									67		79
JUN 15	40	13	1.9							96		96
JUL 29	44	14	2.3							87		117
SEP 24	34	11	1.9							62		73
OCT 26	44	14	2.3							60		71
DEC 07	30	9.0	1.9							61		73
MAR 1988 31	49	15	2.7	4.1	0.60	34	13	5.8	0.10	88	62	90
APR 13	37	11	2.3	4.0	0.60	27	15	6.2	0.10	74	55	80
25 MAY	59	18	3.3	7.2	0.70	39	20	10	0.10	112	83	124
10 JUN	50	15	3.1	5.3	0.60	37	14	7.9	0.20	91	68	135
01 13 AUG	51 59	16 18	2.7 3.5	6. <b>4</b> 7.3	0.70 0.70	35 40	19 15	10 10	0.30 0.10	8 <b>4</b> 111	76 79	108 123
15	40	13	1.9	7.8	0.70	23	16	9.7	0.10	78	63	81
04 NOV	42	13	2.2	6.7	0.80	22	23	8.6	0.10	95	68	99
07	27	8.2	1.6	3.5	0.60	15	14	5.1	0.10	54	42	93
DATE	SOLIDS, VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	RESIDUE TOTAL FIXED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS NH4)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS NO3)	PHOS- PHORUS TOTAL (MG/L AS P)
APR 1987 22	VOLA- TILE ON IGNI- TION, TOTAL	TOTAL FIXED	GEN, NITRATE TOTAL (MG/L	GEN, NITRITE TOTAL (MG/L	GEN, NO2+NO3 TOTAL (MG/L	GEN, AMMONIA TOTAL (MG/L	GEN, AMMONIA TOTAL (MG/L	GEN, ORGANIC TOTAL (MG/L	GEN, AM- MONIA + ORGANIC TOTAL (MG/L	GEN, TOTAL (MG/L	GEN, TOTAL (MG/L	PHORUS TOTAL (MG/L
APR 1987 22 MAY 14	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L)	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS NO3)	PHORUS TOTAL (MG/L AS P)
APR 1987 22 MAY 14 JUN 15	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L)	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS NO3)	PHORUS TOTAL (MG/L AS P)
APR 1987 22 MAY 14 JUN 15 JUL 29	VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 28	TOTAL FIXED (MG/L) 38	GEN, NITRATE TOTAL (MG/L AS N) 0.430	GEN, NITRITE TOTAL (MG/L AS N) 0.00	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.430	GEN, AMMONIA TOTAL (MG/L AS N) 0.080	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.10	GEN, ORGANIC TOTAL (MG/L AS N) 0.32	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.40	GEN, TOTAL (MG/L AS N) 0.83	GEN, TOTAL (MG/L AS NO3) 3.7 5.4	PHORUS TOTAL (MG/L AS P) 0.020
APR 1987 22 MAY 14 JUN 15 JUL 29 SEP 24	VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 28 22	TOTAL FIXED (MG/L) 38 53	GEN, NITRATE TOTAL (MG/L AS N) 0.430 0.590	GEN, NITRITE TOTAL (MG/L AS N) 0.00 0.020	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.430 0.610	GEN, AMMONIA TOTAL (MG/L AS N) 0.080 0.190	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.10 0.24	GEN, ORGANIC TOTAL (MG/L AS N) 0.32 0.41	GEN, AM- MONIA + ORGANIC TOTATAL (MG/L AS N) 0.40 0.60	GEN, TOTAL (MG/L AS N) 0.83 1.2	GEN, TOTAL (MG/L AS NO3) 3.7 5.4	PHORUS TOTAL (MG/L AS P) 0.020 0.020
APR 1987 22 MAY 14 JUN 15 JUL 29 SEP 24 OCT 26	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  28 22 43 36	TOTAL FIXED (MG/L) 38 53 53	GEN, NITRATE TOTAL (MG/L AS N) 0.430 0.590	GEN, NITRITE TOTAL (MG/L AS N)  0.00  0.020  0.010  ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.430 0.610 0.430	GEN, AMMONIA TOTAL (MG/L AS N) 0.080 0.190 0.050	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.10 0.24 0.06	GEN, ORGANIC TOTAL (MG/L AS N) 0.32 0.41 0.25	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.40  0.60  0.30  0.26	GEN, TOTAL (MG/L AS N) 0.83 1.2 0.73	GEN, TOTAL (MG/L AS NO3) 3.7 5.4 3.2 2.3	PHORUS TOTAL (MG/L AS P) 0.020 0.020 0.020
APR 1987 22 MAY 14 JUN 15 JUL 29 SEP 24 OCT 26 DEC 07	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  28 22 43 36 47	TOTAL FIXED (MG/L) 38 53 53 81 33	GEN, NITRATE TOTAL (MG/L AS N)  0.430 0.590 0.420 0.330	GEN, NITRITE TOTAL (MG/L AS N)  0.00  0.020  0.010  ND  0.00	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.430 0.610 0.430 0.270 0.330	GEN, AMMONIA TOTAL (MG/L AS N) 0.080 0.190 0.050 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.10 0.24 0.06 0.01	GEN, ORGANIC TOTAL (MG/L AS N) 0.32 0.41 0.25 0.25	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.40 0.60 0.30 0.26	GEN, TOTAL (MG/L AS N) 0.83 1.2 0.73 0.53	GEN, TOTAL (MG/L AS NO3) 3.7 5.4 3.2 2.3	PHORUS TOTAL (MG/L AS P) 0.020 0.020 0.020 0.020
APR 1987 22 MAY 14 JUN 15 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 31	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  28 22 43 36 47 68	TOTAL FIXED (MG/L) 38 53 53 81 33	GEN, NITRATE TOTAL (MG/L AS N) 0.430 0.590 0.420  0.330 0.320	GEN, NITRITE TOTAL (MG/L AS N)  0.00  0.020  0.010  ND  0.00  0.00	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.430 0.610 0.430 0.270 0.330 0.320	GEN, AMMONIA TOTAL (MG/L AS N) 0.080 0.190 0.050 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.10  0.24  0.06  0.01  0.05	GEN, ORGANIC TOTAL (MG/L AS N) 0.32 0.41 0.25 0.25 0.27	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.40  0.60  0.30  0.26  0.31  0.15	GEN, TOTAL (MG/L AS N) 0.83 1.2 0.73 0.53 0.64	GEN, TOTAL (MG/L AS NO3) 3.7 5.4 3.2 2.3 2.8	PHORUS TOTAL (MG/L AS P) 0.020 0.020 0.020 0.020 0.020
APR 1987 22 MAY 14 JUN 15 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 31 APR 13	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  28 22 43 36 47 68 35 28 31	TOTAL FIXED (MG/L) 38 53 53 81 33 32 39 62 49	GEN, NITRATE TOTAL (MG/L AS N)  0.430 0.590 0.420 0.330 0.320 0.360	GEN, NITRITE TOTAL (MG/L AS N)  0.00 0.020 0.010 ND 0.00 0.00 ND ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.430 0.610 0.430 0.270 0.330 0.320 0.360 0.640 0.670	GEN, AMMONIA TOTAL (MG/L AS N) 0.080 0.190 0.050 0.010 0.040 0.050 0.050	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.10 0.24 0.06 0.01 0.05 0.01 0.06 0.06	GEN, ORGANIC TOTAL (MG/L AS N) 0.32 0.41 0.25 0.25 0.27 0.14 0.38 0.25	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.40 0.60 0.30 0.26 0.31 0.15 0.43 0.30 0.25	GEN, TOTAL (MG/L AS N)  0.83  1.2  0.73  0.53  0.64  0.47  0.79  0.94	GEN, TOTAL (MG/L AS NO3) 3.7 5.4 3.2 2.3 2.8 2.1 3.5 4.2	PHORUS TOTAL (MG/L AS P) 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.040
APR 1987 22 MAY 14 JUN 15 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 31 APR 13 25 MAY 10	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  28 22 43 36 47 68 35	TOTAL FIXED (MG/L) 38 53 53 81 33 32 39 62	GEN, NITRATE TOTAL (MG/L AS N) 0.430 0.590 0.420  0.330 0.320 0.360	GEN, NITRITE TOTAL (MG/L AS N)  0.00 0.020 0.010 ND 0.00 0.00 0.00 ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.430 0.610 0.430 0.270 0.330 0.320 0.360 0.640	GEN, AMMONIA TOTAL (MG/L AS N) 0.080 0.190 0.050 0.010 0.040 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.10  0.24  0.06  0.01  0.05  0.01  0.06	GEN, ORGANIC TOTAL (MG/L AS N) 0.32 0.41 0.25 0.25 0.27 0.14	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.40  0.60  0.30  0.26  0.31  0.15  0.43	GEN, TOTAL (MG/L AS N) 0.83 1.2 0.73 0.53 0.64 0.47	GEN, TOTAL (MG/L AS NO3) 3.7 5.4 3.2 2.3 2.8 2.1 3.5 4.2	PHORUS TOTAL (MG/L AS P) 0.020 0.020 0.020 0.020 0.020 0.020 0.020
APR 1987 22 MAY 14 JUN 15 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 31 APR 13 25 MAY 10 JUN 01	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  28 22 43 36 47 68 35 28 31 48 50 35	TOTAL FIXED (MG/L) 38 53 53 81 33 32 39 62 49 76 85 54	GEN, NITRATE TOTAL (MG/L AS N)  0.430 0.590 0.420 0.330 0.320 0.360 0.720 0.490 0.400	GEN, NITRITE TOTAL (MG/L AS N)  0.00 0.020 0.010 ND 0.00 0.00 ND ND ND 0.020 0.010 0.010	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.430 0.610 0.430 0.270 0.330 0.320 0.360 0.640 0.670 0.740 0.500 0.410	GEN, AMMONIA TOTAL (MG/L AS N)  0.080  0.190  0.050  0.010  0.050  0.050  0.050  0.050  0.060  0.080  0.030	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.10  0.24  0.06  0.01  0.05  0.06  0.06  0.06  0.06  0.06  0.06  0.07  0.06  0.08  0.10  0.04	GEN, ORGANIC TOTAL (MG/L AS N) 0.32 0.41 0.25 0.25 0.27 0.14 0.38 0.25 0.19 0.13	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.40 0.60 0.30 0.26 0.31 0.15 0.43 0.30 0.25 0.21 0.34	GEN, TOTAL (MG/L AS N)  0.83  1.2  0.73  0.53  0.64  0.47  0.79  0.94  0.92  0.95  0.84  0.80	GEN, TOTAL (MG/L AS NO3) 3.7 5.4 3.2 2.3 2.8 2.1 3.5 4.2 4.1 4.2 3.7	PHORUS TOTAL (MG/L AS P) 0.020 0.020 0.020 0.020 0.020 0.010 0.040 0.060 0.030 0.070
APR 1987 22 MAY 14 JUN 15 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 31 APR 13 25 MAY 10 JUN 01 13 AUG	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  28 22 43 36 47 68 35 28 31 48 50 35 47	TOTAL FIXED (MG/L)  38 53 53 81 33 32 39 62 49 76 85 54 76	GEN, NITRATE TOTAL (MG/L AS N)  0.430 0.590 0.420 0.330 0.320 0.360 0.720 0.490 0.400 0.540	GEN, NITRITE TOTAL (MG/L AS N)  0.00 0.020 0.010 ND 0.00 ND ND ND 0.020 0.010 0.020	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.430 0.610 0.430 0.270 0.330 0.320 0.360 0.640 0.670 0.740 0.500 0.410 0.560	GEN, AMMONIA TOTAL (MG/L AS N)  0.080 0.190 0.050 0.010 0.040 0.050 0.060 0.080 0.030 0.040 0.050	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.10  0.24  0.06  0.01  0.05  0.06  0.06  0.06  0.06  0.06  0.06  0.06	GEN, ORGANIC TOTAL (MG/L AS N) 0.32 0.41 0.25 0.27 0.14 0.38 0.25 0.19 0.13	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.40 0.60 0.30 0.26 0.31 0.15 0.43 0.30 0.25 0.21 0.34	GEN, TOTAL (MG/L AS N)  0.83  1.2  0.73  0.53  0.64  0.47  0.79  0.94  0.92  0.95  0.84  0.80  0.98	GEN, TOTAL (MG/L AS NO3) 3.7 5.4 3.2 2.3 2.8 2.1 3.5 4.2 4.1 4.2 3.7 3.5	PHORUS TOTAL (MG/L AS P) 0.020 0.020 0.020 0.020 0.020 0.040 0.040 0.060 0.030 0.070
APR 1987 22 MAY 14 JUN 15 JUL 29 SEP 24 OCT DEC 07 MAR 1988 31 APR 13 25 MAY 10 JUN 01 13	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  28 22 43 36 47 68 35 28 31 48 50 35	TOTAL FIXED (MG/L) 38 53 53 81 33 32 39 62 49 76 85 54	GEN, NITRATE TOTAL (MG/L AS N)  0.430 0.590 0.420 0.330 0.320 0.360 0.720 0.490 0.400	GEN, NITRITE TOTAL (MG/L AS N)  0.00 0.020 0.010 ND 0.00 0.00 ND ND ND 0.020 0.010 0.010	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.430 0.610 0.430 0.270 0.330 0.320 0.360 0.640 0.670 0.740 0.500 0.410	GEN, AMMONIA TOTAL (MG/L AS N)  0.080  0.190  0.050  0.010  0.050  0.050  0.050  0.050  0.060  0.080  0.030	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.10  0.24  0.06  0.01  0.05  0.06  0.06  0.06  0.06  0.06  0.06  0.07  0.06  0.08  0.10  0.04	GEN, ORGANIC TOTAL (MG/L AS N) 0.32 0.41 0.25 0.25 0.27 0.14 0.38 0.25 0.19 0.13	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.40 0.60 0.30 0.26 0.31 0.15 0.43 0.30 0.25 0.21 0.34	GEN, TOTAL (MG/L AS N)  0.83  1.2  0.73  0.53  0.64  0.47  0.79  0.94  0.92  0.95  0.84  0.80	GEN, TOTAL (MG/L AS NO3) 3.7 5.4 3.2 2.3 2.8 2.1 3.5 4.2 4.1 4.2 3.7	PHORUS TOTAL (MG/L AS P) 0.020 0.020 0.020 0.020 0.020 0.010 0.040 0.060 0.030 0.070

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

### 01329650 HUDSON RIVER AT SCHUYLERVILLE, NY - continued

							IA (CONCI					
DATE	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)
APR 1987												
22 MAY	0.00	0.0			<10		<10		230		<100	
14	0.00	0.0			<10		<10		210		10	
JUN 15	0.00	0.0			<10		10		230		<b>&lt;</b> 5	
JUL 29	0.00	0.0			<10	<1.0	20	5	210		<b>&lt;</b> 5	5
SEP 24	0.00	0.0			<1		5		320		<b>&lt;</b> 5	
ост 26	0.00	0.0			<1	<1.0	6	3	230		<b>&lt;</b> 5	<b>&lt;</b> 5
DEC 07	0.00	0.0			<1		5		200		<b>&lt;</b> 5	
MAR 1988 31	0.00	0.0	470	40	<1	<1.0	3	<1	780	60	<b>&lt;</b> 5	<b>&lt;</b> 5
APR 13	0.00	0.0	400		1		3		630		<b>&lt;</b> 5	
25 MAY	0.00	0.0	100	40	1	<1.0	7	2	180	68	<b>&lt;</b> 5	<b>&lt;</b> 5
10 JUN	0.00	0.0	1000		1		5		2000		6	
01 13 AUG	0.00	0.0	110 80	<b>4</b> 0	1 <1	<1.0 	7 3	3	240 200	93 	<b>&lt;</b> 5 <b>&lt;</b> 5	<5 
15	0.00	0.0	60		<1		6		30		<5	
04	0.00	0.0	70		<1		5		170		<b>&lt;</b> 5	
NOV 07	ND		910	40	<1	2.0	7	5	960	93	<b>&lt;</b> 5	<b>&lt;</b> 5
DATE	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)	PHENOL (C6H- 5OH) TOTAL (UG/L)	BROMO- FORM TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)
APR 1987	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L	(C6H- 5OH) TOTAL	FORM TOTAL (UG/L)	TETRA- CHLO- RIDE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	DI- BROMO- METHANE TOTAL (UG/L)
APR 1987 22 MAY	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L AS ZN)	(C6H- 5OH) TOTAL (UG/L)	FORM TOTAL (UG/L)	TETRA- CHLO- RIDE TOTAL (UG/L)	BENZENE TOTAL (UG/L) ND	DI- BROMO- METHANE TOTAL (UG/L)
APR 1987 22 MAY 14 JUN	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG) <0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN) <10	DIS- SOLVED (UG/L AS ZN)	(C6H- 5OH) TOTAL (UG/L)	FORM TOTAL (UG/L) ND ND	TETRA- CHLO- RIDE TOTAL (UG/L) ND	BENZENE TOTAL (UG/L) ND	DI- BROMO- METHANE TOTAL (UG/L) ND
APR 1987 22 MAY 14 JUN 15	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 30 30	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 20 <10	DIS- SOLVED (UG/L AS ZN)	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L) ND ND	TETRA- CHLO- RIDE TOTAL (UG/L) ND ND	BENZENE TOTAL (UG/L) ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND
APR 1987 22 MAY 14 JUN 15 JUL 29 SEP	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 30 30 30	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10  0.20	TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS ZN)  <10 20 <10 10	DIS- SOLVED (UG/L AS ZN)	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND  ND  ND	TETRA- CHLO- RIDE TOTAL (UG/L) ND ND ND	BENZENE TOTAL (UG/L) ND ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND
APR 1987 22 MAY 14 JUN 15 JUL 29 SEP 24 OCT	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 30 30 30	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 0.20 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 1 1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 20 <10 10 <10	DIS- SOLVED (UG/L AS ZN)	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND  ND  ND  ND	TETRA- CHLO- RIDE TOTAL (UG/L) ND ND ND ND	BENZENE TOTAL (UG/L) ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND
APR 1987 22 MAY 14 JUN 15 JUL 29 SEP 24 CCT 26 DEC	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 30 30 30 30	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 <0.10  <0.10  <0.10  <0.10  <0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 1 1 1 1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS ZN)  <10	DIS- SOLVED (UG/L AS 2N)   20  <10	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND	TETRA- CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND	BENZENE TOTAL (UG/L) ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND
APR 1987 22 MAY 14 JUN 15 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 30 30 30 30	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10  <0.10 <0.10 <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <100 <1 1 1 <1 <1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS ZN)  <10 20 <10 10 <10 <10 <10 <10	DIS-SOLVED (UG/L AS ZN)  20 <10	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND	TETRA- CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND	BENZENE TOTAL (UG/L) ND ND ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND
APR 1987 22 MAY 14 JUN 15 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 31 APR	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 30 30 30 30 30 30	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 <0.10  <0.10  <0.10  <0.10  <0.10  <0.10  <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <100  <1  1  1  <1  2	DIS- SOLVED (UG/L AS NI)  1 4	TOTAL RECOV-ERABLE (UG/L AS ZN)  <10	DIS- SOLVED (UG/L AS ZN) 20 <10 <10	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND	TETRA- CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	BENZENE TOTAL (UG/L) ND ND ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 22 MAY 14 JUN 15 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 31 APR 13 25	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 30 30 30 30	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10  <0.10 <0.10 <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <100 <1 1 1 <1 <1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS ZN)  <10 20 <10 10 <10 <10 <10 <10	DIS-SOLVED (UG/L AS ZN)  20 <10	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND	TETRA- CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND	BENZENE TOTAL (UG/L) ND ND ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND
APR 1987 22 MAY 14 JUN 15 JUL 29 SEP 24 CCT 26 DEC 07 MAR 1988 31 APR 13 APR 13 APR 13 APR 13	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 30 30 30 30 30 50	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 <0.10  <0.10  <0.10  <0.10  <0.10  <0.10  <0.10  <0.10  <0.10	TOTAL RECOVERABLE (UG/L AS NI)  <100 <1 1 1	DIS-SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS ZN)  <10	DIS- SOLVED (UG/L AS ZN)  20 <10 <10	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA- CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	BENZENE TOTAL (UG/L) ND ND ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 22 MAY 14 JUN 15 JUL 29 SEP 24 CCT 26 DEC 07 MAR 1988 31 APR 13 25 MAY 10 JUN 01 13	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 30 30 30 30 10 50 50	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 <0.10  <0.10  <0.10  <0.10  <0.10  <0.10  <0.10	TOTAL RECOVERABLE (UG/L AS NI)  <100 <1 1 1 <1 2 7 5	DIS-SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS ZN)  <10	DIS- SOLVED (UG/L AS 2N) 20 <10 <10 <3	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE TOTAL (UG/L) ND	BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 22 MAY 14 JUN 15 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 31 APR 13 25 MAY 10 JUN 01 13 AUG 15	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 30 30 30 30 10 50 40 120	NESE, DIS- SOLVED (UG/L AS MN)  10 34	TOTAL RECOVERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOVERABLE (UG/L AS NI)  <100 <1 1 1 <1 1 <1 2 7 5 3 8	DIS- SOLVED (UG/L AS NI)	TOTAL RECOVERABLE (UG/L AS ZN)  <10	DIS-SOLVED (UG/L AS ZN)  20 <10 <10 <3 18	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 22 MAY 14 JUN 15 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 31 APR 13 25 MAY 10 JUN 01 13 AUG	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 30 30 30 30 10 50 40	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- REABLE (UG/L AS HG)  <0.10 <0.10  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOVERABLE (UG/L AS NI)  <100  <1  1  1  <1  2  7  5  3  8 4	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS ZN)  <10	DIS-SOLVED (UG/L AS 2N)  20 <10 <10 <3 18	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE TOTAL (UG/L)  ND	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N

# 01329650 HUDSON RIVER AT SCHUYLERVILLE, NY - continued

DATE	CHLORO- ETHANE TOTAL (UG/L)	CHLORO- FORM TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)
APR 1987												
22	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MAY 14 JUN	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
15	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
JUL 29 SEP	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
24	ND	ND	ND	ND	ND	ND	ND	ND	ИD	ND	ND	ND
OCT 26 DEC	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
07	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MAR 1988 31 APR	ND	ND	ND	ND	ND	ND	0.5	ND	ND	ND	ND	ND
13	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
25	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MAY 10 JUN	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
01	ND	ND	ND	ИD	ND	ND	ND	ND	ND	ND	ND	ND
13	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
AUG 15	ND	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
04	ND	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
07	ND	0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

DATE	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)
APR 1987											
22 MAY	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
14 JUN	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
15 JUL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
29 SEP	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
24 OCT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
26 DEC	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
07	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MAR 1988 31	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
APR 13 25	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	nd nd	ND ND	ND ND	ND ND	ND ND
MAY 10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
JUN					2						
01 13	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
AUG	110	ND									
15 OCT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
07	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

01329650 HUDSON RIVER AT SCHUYLERVILLE, NY - continued

# SUSPENDED SEDIMENT DISCHARGE

DATE	TIME	DIS- CHARGE, IN CUBIC FEET PER SECOND	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)
JUN 1988				
01	1130	2700	2	15
13	1245	1400	3	11
AUG				
15	1230	3700	2	20
NOV				
07	1200	14000	38	1440

### BED MATERIAL ANALYSES

DATE  OCT 1987 26 AUG 1988 15		SOLIDS VOLA- TILE 1 BOTTOM MA- TERIA (MG/KG	IN RE TON TON AL TE	IUM, RECOV. FM BOT- TOM MA- TE CRIAL (U	ECOV. M BOT- F MA- FM ERIAL TO JG/G T	IIUM, RECOV.		OV. RE OT FM IA TOM IAL TE 'G (U	ECOV. RI BOT- FM MA- TOI ERIAL TI JG/G (I	ECOV. N BOT- R M MA- FM ERIAL TO JG/G T	ESE, F ECOV. FR BOT- TO M MA- T ERIAL	RECOV. M BOT-	NICKEL, RECOV. FM BOT- TOM MA- TERIAI (UG/G AS NI)	RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)
DATE OCT 1987	AROCL 1221 IN BOTTO MAT (UG/K	M BC	ROCLOR 1248 PCB PT.MAT JG/KG)	AROCLOR 1254 PCB BOT.MAT (UG/KG)	AROCLOF 1260 PCB BOT.MAT (UG/KG)	IN BO TOM M	N, L T T- I IA- T	LPHA BHC OTAL N BOT- OM MA- PERIAL UG/KG)	ATRA- ZINE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	BETA BENZENE HEXA- CHLOR- IDE BOT.MAT (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAI (UG/KG)	CHLOR PYRIF IN BO	BEN - HE OS CH T. I	ELTA NZENE SXA- HLOR- IDE LMAT G/KG)
26 AUG 1988										-				
15	ND		ND	ND	ND	ND		ND	ND	ND	ND	<b>N</b> D	ŀ	1D
DATE	DI- AZINO TOTA IN BO TOM M TERI (UG/K	L I T- IN A- TC AL I	DI- DRIN, POTAL BOT- DM MA- PERIAL JG/KG)	ENDO- SULFAN ALPHA BOT.MAT (UG/KG)	ENDO- SULFAN BETA BOT.MAT (UG/KG)		)- 'AN I TE T IAT	ENDRIN, TOTAL IN BOT- OM MA- TERIAL UG/KG)	ENDRIN ALDE- HYDE BOT.MAT (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAI (UG/KG)	CHLO EPOXI TOT BOTT MAT	R TH DE TO IN IN OM TON L. TE	ALA- HION, DTAL BOT- MA- GRIAL G/KG)
ОСТ 1987 26														
AUG 1988 15	ND		ND	ND	ND	ND		ND	ND	ND	<b>N</b> D	ND	h	<b>I</b> D
DATE OCT 1987	METH OXY- CHLO TOT. BOTTN MAT: (UG/K	R, T IN IN OM TO L. T	MIREX, NOTAL MOT- MMA- PERIAL MG/KG)	P,P' DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	P,P' DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOM M	', L T- I IA- T	PARA- THION, TOTAL N BOT- OM MA- TERIAL UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	BED MAT. FALL DIAM. % FINER THAN .004 MM	BED MAT. SIEVE DIAM. % FINEF THAN .062 MM	THA	. N E SI . DI ER % F	BED MAT. LEVE AM. FINER THAN O MM
26 AUG 1988										1	16		40	100
15	ND		ND	ND	ND	ND		ND	ND	3	9	1	00	

### 01329907 CLOVER MILL BROOK ON SHAW HILL ROAD NEAR ROCK CITY FALLS, NY

LOCATION.--Lat 43*04'09", long 73*56'20", Saratoga County, Hydrologic Unit 0202003, at bridge on Shaw Hill Road, 600 ft west of Route 29, approx 1.5 mi northwest of Rock City Falls.

DRAINAGE AREA. -- 2.51 mi2.

PERIOD OF RECORD.--Water years 1987 to 1989.
CHEMICAL DATA: 1987 (b), 1988 (c), 1989 (a).
MINOR ELEMENT DATA: 1987 (b), 1988 (c), 1989 (a).
PESTICIDE DATA: 1987 (b), 1988 (c), 1989 (a).
ORGANIC DATA: PCB--1988 (a).
NUTRIENT DATA: 1987 (b), 1988 (c), 1989 (a).
BIOLOGICAL DATA:
Bacteria-- 1987 (b), 1988 (c), 1989 (a).
SEDIMENT DATA: 1988 (a), 1989 (a).

REMARKS. -- Water-discharge data obtained from a discharge rating developed for this site.

### WATER-QUALITY DATA

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	FECAL COLI- FORM 24-HR MEM.FIL (COLS./ 100 ML)
APR 1987												
30 May	1310				7.8	8.5	1.2		11.1			
14 JUN	1015			332	8.0	13.5	1.1		10.4		100	ND
11 JUL	0955			328	8.0	16.0	1.5		9.9		200	35.0
28	1020				8.0	18.5	1.3		9.0		650	140
SEP 24 OCT	0945			310	7.8	13.0	1.6		10.4		250	25.0
26 DEC	1100			315	7.9	5.0	1.3		12.1		650	ND
07 MAR 1988	1030			289	8.0	2.0	1.5		19.0			
28	1100	5.2	170	174	7.9	2.5	3.0	768	13.8	101	140	ND
APR 13	1045	3.2	290	284	7.3	7.5	0.80	765	11.9	98	30	5.00
25 May	1030	3.2	299	300	7.9	7.5	1.4	755	11.7	99	40	ND
10 24	1000 0900	3.7	295 279	333 275	7.7 7.9	10.0 14.0	1.5 4.7		10.7 9.4		100 300	90.0 10.0
JUN 13	1015		358	366	8.1	15.5	2.0	765	8.0	80	50	25.0
AUG 15 OCT	1000		362	363	7.9	20.0	1.4	757	8.1	90	900	150
04 NOV	1000	2.9	367	385	7.7	11.0	1.1	763 [°]	10.9	98	>90	10.0
02	1100	4.5	198	204	7.6	5.5	6.3	764	14.0	110	500	190

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 01329907 CLOVER MILL BROOK ON SHAW HILL ROAD NEAR ROCK CITY FALLS, NY - continued

DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, TOTAL (MG/L)
APR 1987		•										4.50
30 May	110	28	9.6							141		160
14 JUN	130	32	11							177		193
11 JUL	140	35	12									244
28	140	35	12							109		222
SEP 24	120	30	11							192		228
ост 26	120	30	12							170		205
DEC 07	100	24	9.7							138		180
MAR 1988 28	64	16	5.8	9.4	1.2	54	12	13	0.10	98	90	117
APR 13	100	24	9.9	15	2.3	100	14	22	0.10	165	147	174
25 MAY	110	26	11	16	2.3	100	12	22	0.10	180	150	191
10 24	120 99	28 24	11 9.6	17 14	2.6 2.0	111 90	12 12	2 <b>4</b> 19	0.20 0.20	2 <b>0</b> 5 140	1 <b>61</b> 135	214 177
JUN 13	130	32	13	18	3.9	123	9.9	24	0.10	207	175	220
AUG 15	150	35	14	17	4.2	131	10	23	0.10		182	204
OCT 04	150	35	14	18	3.8	141	11	25	0.10	222	191	235
NOV 02	76	18	7.6	11	1.5	5 <b>9</b>	22	15	<0.10		111	138
			, , ,						10120			
DATE	SOLIDS, VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	RESIDUE TOTAL FIXED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS NH4)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS NO3)	PHOS- PHORUS TOTAL (MG/L AS P)
APR 1987	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L)	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS NO3)	PHORUS TOTAL (MG/L AS P)
APR 1987 30 MAY	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L)	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS NO3)	PHORUS TOTAL (MG/L AS P)
APR 1987 30 MAY 14 JUN	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L) 106 147	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS NO3)	PHORUS TOTAL (MG/L AS P)
APR 1987 30 MAY 14	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L)	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS NO3)	PHORUS TOTAL (MG/L AS P)
APR 1987 30 MAY 14 JUN 11	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L) 106 147	GEN, NITRATE TOTAL (MG/L AS N) 0.570	GEN, NITRITE TOTAL (MG/L AS N) 0.00	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.570	GEN, AMMONIA TOTAL (MG/L AS N) 0.780	GEN, AMMONIA TOTAL (MG/L AS NH4) 1.0	GEN, ORGANIC TOTAL (MG/L AS N) 0.20 0.93	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.98	GEN, TOTAL (MG/L AS N) 1.6 2.3	GEN, TOTAL (MG/L AS NO3) 6.9	PHORUS TOTAL (MG/L AS P) 0.030
APR 1987 30 MAY 14 JUN 11 JUL 28 SEP 24	VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 58 46	TOTAL FIXED (MG/L) 106 147 123	GEN, NITRATE TOTAL (MG/L AS N) 0.570 0.900	GEN, NITRITE TOTAL (MG/L AS N) 0.00 0.020	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.570 0.920	GEN, AMMONIA TOTAL (MG/L AS N) 0.780 0.470	GEN, AMMONIA TOTAL (MG/L AS NH4) 1.0 0.61	GEN, ORGANIC TOTAL (MG/L AS N) 0.20 0.93	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.98 1.4 2.3	GEN, TOTAL (MG/L AS N) 1.6 2.3 3.6	GEN, TOTAL (MG/L AS NO3) 6.9 10	PHORUS TOTAL (MG/L AS P) 0.030 0.00
APR 1987 30 MAY 14 JUN 11 JUL 28 SEP 24 OCT 26	VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 58 46 77 74	TOTAL FIXED (MG/L) 106 147 123 168	GEN, NITRATE TOTAL (MG/L AS N) 0.570 0.900 1.28 1.66	GEN, NITRITE TOTAL (MG/L AS N) 0.00 0.020 0.040 0.180	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.570 0.920 1.32	GEN, AMMONIA TOTAL (MG/L AS N) 0.780 0.470 1.00 0.630	GEN, AMMONIA TOTAL (MG/L AS NH4) 1.0 0.61 1.3	GEN, ORGANIC TOTAL (MG/L AS N) 0.20 0.93 1.3	GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N) 0.98 1.4 2.3	GEN, TOTAL (MG/L AS N) 1.6 2.3 3.6	GEN, TOTAL (MG/L AS NO3) 6.9 10 16	PHORUS TOTAL (MG/L AS P) 0.030 0.00 0.00
APR 1987 30 MAY 14 JUN 11 JUL 28 SEP 24 OCT 26 DEC 07	VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 58 46 77 74 66	TOTAL FIXED (MG/L) 106 147 123 168 162	GEN, NITRATE TOTAL (MG/L AS N) 0.570 0.900 1.28 1.66 0.840	GEN, NITRITE TOTAL (MG/L AS N) 0.00 0.020 0.040 0.180 0.030	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.570 0.920 1.32 1.84 0.870	GEN, AMMONIA TOTAL (MG/L AS N) 0.780 0.470 1.00 0.630 0.850	GEN, AMMONIA TOTAL (MG/L AS NH4) 1.0 0.61 1.3 0.81	GEN, ORGANIC TOTAL (MG/L AS N) 0.20 0.93 1.3 0.57	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.98  1.4  2.3  1.2	GEN, TOTAL (MG/L AS N) 1.6 2.3 3.6 3.0 2.3	GEN, TOTAL (MG/L AS NO3) 6.9 10 16 13	PHORUS TOTAL (Mg/L AS P) 0.030 0.00 0.00 0.010
APR 1987 30 MAY 14 JUN 11 JUL 28 SEP 24 OCT 26 DEC 07 MAR 1988 28	VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 58 46 77 74 66 86	TOTAL FIXED (MG/L) 106 147 123 168 162 119	GEN, NITRATE TOTAL (MG/L AS N) 0.570 0.900 1.28 1.66 0.840 0.620	GEN, NITRITE TOTAL (MG/L AS N) 0.00 0.020 0.040 0.190 0.030	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.570 0.920 1.32 1.84 0.870 0.620	GEN, AMMONIA TOTAL (MG/L AS N) 0.780 0.470 1.00 0.630 0.850 0.720	GEN, AMMONIA TOTAL (MG/L AS NH4)  1.0 0.61 1.3 0.81 1.1 0.93	GEN, ORGANIC TOTAL (MG/L AS N) 0.20 0.93 1.3 0.57 0.55	GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N) 0.98 1.4 2.3 1.2 1.4	GEN, TOTAL (MG/L AS N) 1.6 2.3 3.6 3.0 2.3	GEN, TOTAL (MG/L AS NO3) 6.9 10 16 13	PHORUS TOTAL (MG/L AS P) 0.030 0.00 0.00 0.010 0.010
APR 1987 30 MAY 14 JUN 11 JUL 28 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR	VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 58 46 77 74 66 86 61 29 54	TOTAL FIXED (MG/L) 106 147 123 168 162 119 119 88	GEN, NITRATE TOTAL (MG/L AS N) 0.570 0.900 1.28 1.66 0.840 0.620	GEN, NITRITE TOTAL (MG/L AS N)  0.00 0.020 0.040 0.180 0.030 0.00 ND 0.00	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.570 0.920 1.32 1.84 0.870 0.620 0.470 0.220	GEN, AMMONIA TOTAL (MG/L AS N) 0.780 0.470 1.00 0.630 0.850 0.720 1.00 0.340 0.660	GEN, AMMONIA TOTAL (MG/L AS NH4)  1.0 0.61 1.3 0.81 1.1 0.93 1.3 0.44 0.85	GEN, ORGANIC TOTAL (MG/L AS N) 0.20 0.93 1.3 0.57 0.55 0.98 5.6 0.32	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.98  1.4  2.3  1.2  1.4  1.7  6.6  0.66  0.99	GEN, TOTAL (MG/L AS N) 1.6 2.3 3.6 3.0 2.3 2.3 7.1 0.88	GEN, TOTAL (MG/L AS NO3) 6.9 10 16 13 10 10 31 3.9 7.3	PHORUS TOTAL (MG/L AS P) 0.030 0.00 0.010 0.010 0.010 0.00 0.00
APR 1987 30 MAY 14 JUN 11 JUL 28 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  58 46 77 74 66 86 61 29 54 69	TOTAL FIXED (MG/L) 106 147 123 168 162 119 119 88 120 122	GEN, NITRATE TOTAL (MG/L AS N)  0.570 0.900 1.28 1.66 0.840 0.620 0.220 0.640	GEN, NITRIE TOTAL (MG/L AS N) 0.00 0.020 0.040 0.180 0.030 0.00 ND 0.00	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.570 0.920 1.32 1.84 0.870 0.620 0.470 0.220	GEN, AMMONIA TOTAL (MG/L AS N)  0.780  0.470  1.00  0.630  0.850  0.720  1.00  0.340  0.660  0.620	GEN, AMMONIA TOTAL (MG/L AS NH4)  1.0 0.61 1.3 0.81 1.1 0.93 1.3 0.44 0.85 0.80	GEN, ORGANIC TOTAL (MG/L AS N) 0.20 0.93 1.3 0.57 0.55 0.98 5.6 0.32 0.33	GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N)  0.98  1.4  2.3  1.2  1.4  1.7  6.6  0.66  0.99  2.0	GEN, TOTAL (MG/L AS N) 1.6 2.3 3.6 3.0 2.3 2.3 7.1 0.88 1.7 2.6	GEN, TOTAL (MG/L AS NO3) 6.9 10 16 13 10 10 31 3.9 7.3	PHORUS TOTAL (MG/L AS P)  0.030 0.00 0.010 0.010 0.00 0.00 0.000 0.000 0.000 0.000
APR 1987 30 MAY 14 JUN 11 JUL 28 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY	VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 58 46 77 74 66 86 61 29 54	TOTAL FIXED (MG/L) 106 147 123 168 162 119 119 88	GEN, NITRATE TOTAL (MG/L AS N) 0.570 0.900 1.28 1.66 0.840 0.620	GEN, NITRITE TOTAL (MG/L AS N)  0.00 0.020 0.040 0.180 0.030 0.00 ND 0.00	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.570 0.920 1.32 1.84 0.870 0.620 0.470 0.220	GEN, AMMONIA TOTAL (MG/L AS N) 0.780 0.470 1.00 0.630 0.850 0.720 1.00 0.340 0.660	GEN, AMMONIA TOTAL (MG/L AS NH4)  1.0 0.61 1.3 0.81 1.1 0.93 1.3 0.44 0.85	GEN, ORGANIC TOTAL (MG/L AS N) 0.20 0.93 1.3 0.57 0.55 0.98 5.6 0.32	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.98  1.4  2.3  1.2  1.4  1.7  6.6  0.66  0.99	GEN, TOTAL (MG/L AS N) 1.6 2.3 3.6 3.0 2.3 2.3 7.1 0.88	GEN, TOTAL (MG/L AS NO3) 6.9 10 16 13 10 10 31 3.9 7.3	PHORUS TOTAL (MG/L AS P) 0.030 0.00 0.010 0.010 0.010 0.00 0.00
APR 1987 30 MAY 14 JUN 11 JUL 28 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY 10 24 JUN 13	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  58 46 77 74 66 86 61 29 54 69 72	TOTAL FIXED (MG/L)  106 147 123 168 162 119 119 88 120 122 142	GEN, NITRATE TOTAL (MG/L AS N)  0.570 0.900 1.28 1.66 0.840 0.620 0.220 0.640 0.560	GEN, NITRITE TOTAL (MG/L AS N)  0.00 0.020 0.040 0.180 0.030 0.00 ND 0.00 ND 0.00	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.570 0.920 1.32 1.84 0.870 0.620 0.470 0.220 0.660 0.640 0.570	GEN, AMMONIA TOTAL (MG/L AS N)  0.780  0.470  1.00  0.630  0.950  1.00  0.340  0.660  0.620  0.610	GEN, AMMONIA TOTAL (MG/L AS NH4)  1.0 0.61 1.3 0.81 1.1 0.93 1.3 0.44 0.85 0.80 0.79	GEN, ORGANIC TOTAL (MG/L AS N) 0.20 0.93 1.3 0.57 0.55 0.98 5.6 0.32 0.33 1.4	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.98 1.4 2.3 1.2 1.4 1.7 6.6 0.66 0.99 2.0 1.0	GEN, TOTAL (MG/L AS N) 1.6 2.3 3.6 3.0 2.3 7.1 0.88 1.7 2.6 1.6	GEN, TOTAL (MG/L AS NO3) 6.9 10 16 13 10 10 31 3.9 7.3 12 6.9	PHORUS TOTAL (MG/L AS P)  0.030 0.00 0.010 0.010 0.000 0.000 0.000 0.000 0.010 0.010
APR 1987 30 MAY 14 JUN 11 JUL 28 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY 10 24 JUN 13 AUG 15	VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 58 46 77 74 66 86 61 29 54 69 72 59	TOTAL FIXED (MG/L) 106 147 123 168 162 119 119 88 120 122 142 118	GEN, NITRATE TOTAL (MG/L AS N)  0.570 0.900 1.28 1.66 0.840 0.620 0.220 0.640 0.560 0.700	GEN, NITRITE TOTAL (MG/L AS N)  0.00  0.020  0.040  0.180  0.030  0.00  ND  0.00  ND  0.00  0.010  0.020	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.570 0.920 1.32 1.84 0.870 0.620 0.470 0.220 0.660 0.640 0.570 0.720	GEN, AMMONIA TOTAL (MG/L AS N)  0.780  0.470  1.00  0.630  0.850  0.720  1.00  0.340  0.660  0.620  0.610  0.390	GEN, AMMONIA TOTAL (MG/L AS NH4)  1.0 0.61 1.3 0.81 1.1 0.93 1.3 0.44 0.85 0.80 0.79 0.50	GEN, ORGANIC TOTAL (MG/L AS N) 0.20 0.93 1.3 0.57 0.55 0.98 5.6 0.32 0.33 1.4	GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N)  0.98  1.4  2.3  1.2  1.4  1.7  6.6  0.66  0.99  2.0  1.0  1.2	GEN, TOTAL (MG/L AS N) 1.6 2.3 3.6 3.0 2.3 7.1 0.88 1.7 2.6 1.6 1.9	GEN, TOTAL (MG/L AS NO3) 6.9 10 16 13 10 31 3.9 7.3 12 6.9 8.5	PHORUS TOTAL (MG/L AS P)  0.030 0.00 0.010 0.010 0.000 0.020 0.000 0.010 0.010 0.020
APR 1987 30 MAY 14 JUN 11 JUL 28 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY 10 JUN 13 AUG	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  58 46 77 74 66 86 61 29 54 69 72 59	TOTAL FIXED (MG/L)  106 147 123 168 162 119 119 88 120 122 142 118 141	GEN, NITRATE TOTAL (MG/L AS N) 0.570 0.900 1.28 1.66 0.840 0.620  0.220  0.640 0.560 0.700 1.45	GEN, NITRITE TOTAL (MG/L AS N)  0.00 0.020 0.040 0.180 0.030 0.00 ND 0.00 ND 0.00 0.010 0.020 0.060	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.570 0.920 1.32 1.84 0.870 0.620 0.470 0.220 0.660 0.640 0.570 0.720 1.51	GEN, AMMONIA TOTAL (MG/L AS N)  0.780  0.470  1.00  0.630  0.850  0.720  1.00  0.340  0.660  0.620  0.610  0.390  0.720	GEN, AMMONIA TOTAL (MG/L AS NH4)  1.0 0.61 1.3 0.81 1.1 0.93 1.3 0.44 0.85 0.80 0.79 0.50 0.93	GEN, ORGANIC TOTAL (MG/L AS N) 0.20 0.93 1.3 0.57 0.55 0.98 5.6 0.32 0.33 1.4 0.39 0.81	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.98  1.4  2.3  1.2  1.4  1.7  6.6  0.66  0.99  2.0  1.0  1.2  1.1	GEN, TOTAL (MG/L AS N) 1.6 2.3 3.6 3.0 2.3 7.1 0.88 1.7 2.6 1.6 1.9 2.6	GEN, TOTAL (MG/L AS NO3) 6.9 10 16 13 10 10 31 3.9 7.3 12 6.9 8.5	PHORUS TOTAL (MG/L) AS P)  0.030 0.00 0.010 0.010 0.000 0.000 0.000 0.010 0.010 0.010 0.010 0.010

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

01329907 CLOVER MILL BROOK ON SHAW HILL ROAD NEAR ROCK CITY FALLS, NY - continued

DATE	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)
APR 1987 30	0.00	0.0			<10		<10		560		<100	
MAY 14	0.00	0.0			<10		<10		470		<100	
JUN 11	0.00	0.0			<10		<10		640		8	
JUL 28	0.00	0.0			<10		20		840		<b>&lt;</b> 5	~~
SEP 24	0.00	0.0			<1	<1.0	7	1	640		<5	5
ОСТ 26	ND				<1		2		450		<b>&lt;</b> 5	
DEC 07 MAR 1988	ND				<1		4		540		<b>&lt;</b> 5	
28 APR	0.00	0.0	160	20	1	<1.0	6	<1	990	270	<5	<b>&lt;</b> 5
13 25	ND ND		<b>4</b> 0 50	 <b>&lt;</b> 10	<1 1	<1.0	1 2	1	540 620	270	<5 <5	 <b>&lt;</b> 5
MAY 10	0.00	0.0	60		<1		1	 5	690		<b>&lt;</b> 5	6
24 JUN 13	0.00 ND	0.0	170 70	10	8 <1	<1.0	16 5		1100 520	230	<b>&lt;</b> 5 <b>&lt;</b> 5	
AUG 15	ND		60		1		5		740		<b>&lt;</b> 5	
OCT 04	ND		30		<1		7		530		<5	
NOV 02	ND		210	30	1	<1.0	2	3	1100	270	<b>&lt;</b> 5	<b>&lt;</b> 5
DATE	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)	BROMO- FORM TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)
DATE APR 1987 30	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	FORM TOTAL	TETRA- CHLO- RIDE TOTAL	BENZENE TOTAL	DI- BROMO- METHANE TOTAL	ETHANE TOTAL
APR 1987 30 MAY 14	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)	TETRA- CHLO- RIDE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	DI- BROMO- METHANE TOTAL (UG/L)	ETHANE TOTAL (UG/L)
APR 1987 30 MAY 14 JUN 11	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)	TETRA- CHLO- RIDE TOTAL (UG/L)	BENZENE TOTAL (UG/L) ND	DI- BROMO- METHANE TOTAL (UG/L)	ETHANE TOTAL (UG/L) ND
APR 1987 30 MAY 14 JUN 11 JUL 28	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG) <0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 <100	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L) ND	TETRA- CHLO- RIDE TOTAL (UG/L) ND	BENZENE TOTAL (UG/L) ND	DI- BROMO- METHANE TOTAL (UG/L) ND	ETHANE TOTAL (UG/L) ND
APR 1987 30 MAY 14 JUN 11 JUL 28 SEP 24	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 20 <10	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 <100	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 20	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND	TETRA- CHLO- RIDE TOTAL (UG/L) ND ND	BENZENE TOTAL (UG/L) ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND	ETHANE TOTAL (UG/L)  ND  ND  ND
APR 1987 30 MAY 14 JUN 11 JUL 28 SEP 24 OCT 26	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 20 <10 30	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 <100 1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 <10 20 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND  ND	TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND ND ND ND	BENZENE TOTAL (UG/L) ND ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND	ETHANE TOTAL (UG/L)  ND  ND  ND  ND
APR 1987 30 MAY 14 JUN 11 JUL 28 SEP 24 OCT 26 DEC 07	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 20 <10 30 20 10 20	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10  0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 <100 1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 20 <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND	TETRA- CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND	BENZENE TOTAL (UG/L) ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND
APR 1987 30 MAY 14 JUN 11 JUL 28 SEP 24 OCT 26 DEC 07 MAR 1988 28	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 20 <10 30 20 10 20	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 <100 1 <1 2 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND	TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND	BENZENE TOTAL (UG/L) ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND
APR 1987 30 MAY 14 JUN 11 JUL 28 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 20 <10 30 20 10 20	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10  <0.10  <0.10  <0.10  <0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 <100 1 <1 2 <1 <1 <1	DIS- SOLVED (UG/L AS NI)  <1	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND	TETRA- CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND	BENZENE TOTAL (UG/L) ND ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 30 MAY 14 JUN 11 JUL 28 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY 10 24	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)  20  410  30  20  10  20  50  20	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)  <100 <100 1 <1 2 <1 41 5 44	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 10 <10 10 <10 10 <10 10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA- CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	BENZENE TOTAL (UG/L) ND ND ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	ETHANE TOTAL (UG/L)  ND
APR 1987 30 MAY 14 JUN 11 JUL 28 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY 10 24 JUN 13	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)  20  410  30  20  10  20  50  20  20  20	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)  <100 <100  1  <1  2  <1  41  5  45  55	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	DIS- SOLVED (UG/L AS ZN)  20 <10 <3	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE TOTAL (UG/L)  ND	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 30 MAY 14 JUN 11 28 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY 10 24 JUN 13 AUG 15	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)  20 <10 20 20 20 20 20 30 20 70	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOVERABLE (UG/L AS NI)  <100 <100 1 <1 2 <1 <1 5 4 5 8	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 30 MAY 14 JUN 11 JUL 28 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY 10 24 JUN 13 AUG	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)  20  <10  30  20  10  20  50  20  30  20  70  30	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOVERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOVERABLE (UG/L AS NI)  <100 <100  1  <1  <1  4  5  4  5  8  8	DIS- SOLVED (UG/L AS NI)  41 4	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	DIS- SOLVED (UG/L AS ZN)  20 <10 <3 11	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE TOTAL (UG/L)  ND	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 01329907 CLOVER MILL BROOK ON SHAW HILL ROAD NEAR ROCK CITY FALLS, NY - continued

							continued	,			
DATE	CHLORO- FORM TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)
APR 1987											
30 MAY	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
14 JUN	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
11 JUL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
28 SEP	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
24 OCT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
26	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
07	1.0	ND	2.0	ND	ND	ND	3.0	ND	ND	ND	ND
MAR 1988 28	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
APR 13	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
25 MAY	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
24 Jun	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
13 AUG	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
15 ⊙CT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
04 NOV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
02	0.1	ND	<b>N</b> D	ND	ND	ND	ND	ND	ND	ND	ND
DATE	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)
DATE APR 1987 30	CHLORO- BENZENE TOTAL	CHLORO- ETHANE WATER WHOLE TOTAL	CHLORO- PROPANE TOTAL	TRANSDI CHLORO- ETHENE TOTAL	CHLORO- BENZENE TOTAL	CHLORO- BENZENE TOTAL	CHLORO- ETHYL- ENE TOTAL	1,3-DI- CHLORO- PROPENE TOTAL	CHLORO- ETHYL- ENE TOTAL	CHLORO- ETHYL- VINYL- ETHER TOTAL	CHLO- RIDE TOTAL
APR 1987	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
APR 1987 30 MAY 14 JUN 11	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
APR 1987 30 MAY 14 JUN	CHLORO- BENZENE TOTAL (UG/L) ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND	CHLORO- PROPANE TOTAL (UG/L) ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND	CHLORO- BENZENE TOTAL (UG/L) ND	CHLORO- BENZENE TOTAL (UG/L) ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND	CHLO- RIDE TOTAL (UG/L) ND
APR 1987 30 MAY 14 JUN 11 JUL 28 SEP	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND  ND  ND  ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND ND ND ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND  ND  ND	CHLO- RIDE TOTAL (UG/L)  ND ND ND
APR 1987 30 MAY 14 JUN 11 JUL 28	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND	CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND  ND  ND  ND  ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND	CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND
APR 1987 30 MAY 14 JUN 11 JUL 28 SEP 24 OCT	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)  ND ND ND ND ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND ND	CHLORO-ETHYL-ENETOTAL (UG/L)  ND ND ND ND ND ND ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND  ND  ND  ND	CHLO- RIDE TOTAL (UG/L)  ND ND ND
APR 1987 30 MAY 14 JUN 11 JUL 28 SEP 24 OCT 26 DEC	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND	CHLORO-PROPANE TOTAL (UG/L)  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 30 MAY 14 JUN 11 JUL 28 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 30 MAY 14 JUN 11 JUL 28 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND	CHLORO-PROPANE TOTAL (UG/L)  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 30 MAY 14 JUN 11 JUL 28 SEP 24 CCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY 10	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLO-RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 30 MAY 14 JUN 11 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY 10 24 JUN	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 30 MAY 14 JUN 11 JUL 28 SEP 24 CCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY 10 24 JUN 13 AUG	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 30 MAY 14 JUN 11 JUL 28 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY 10 24 JUN 13 AUG 15 OCT	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLOROBENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 30 MAY 14 JUN 11 JUL 28 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY 10 24 JUN 13 AUG 15	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 01329907 CLOVER MILL BROOK ON SHAW HILL ROAD NEAR ROCK CITY FALLS, NY - continued SUSPENDED SEDIMENT DISCHARGE

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)
MAY 1988				
10	1000	3.7	4	0.04
24	0900		21	
JUN				
13	1015		4	
AUG				
15	1000		4	
OCT				
04	1000	2.9	2	0.02
NOV				
02	1100	4.5	13	0.16

# BED MATERIAL ANALYSES

DATE  OCT 1987 26  AUG 1988 15	T B TIME	OLIDS, VOLA- TLE IN OTTOM MA- TERIAL MG/KG) 8360	ALUM- INUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	MI REC FM TOM TEI (UC	UM, RE COV. FM BOT- TOM MA- TE RIAL (U	COV. RE BOT- FM MA- TOM RIAL TE G/G (U	COV. RE BOT- FM MA- TOM CRIAL TE	COV. NE BOT- RE MA- FM RIAL TOM G/G TE	SE, RE COV. FM BOT- TOM MA- TE RIAL (U G/G) AS	COV. RE BOT- FM MA- TOM RIAL TE G/G (U HG) AS	BOT- FM E MA- TOM RIAL TEF G/G (UG	COV.
DATE	AROCLO 1221 IN BOTTOM MAT. (UG/KG	AROC 12 PC BOT.	48 12 B PC MAT BOT.	54 12 B F MAT BOT	OCLOR 260 PCB T.MAT G/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALPHA BHC TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ATRA- ZINE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	BETA BENZENE HEXA- CHLOR- IDE BOT.MAT (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- PYRIFOS IN BOT. MAT. (UG/KG)	DELTA BENZENE HEXA- CHLOR- I DE BOT.MAT (UG/KG)	
26 AUG 1988		-		-									
15	ND	ND	NI	) <u> </u>	1D	ND	ND	ND	NÐ	ND	ND	ND	
DATE	DI- AZINON TOTAL IN BOT TOM MA TERIA (UG/KG	TOT IN B IN TOM L TER	IN, AL END OT-SULF MA-ALF IAL BOT.	AN SUI PHA BE MAT BOT	IDO- LFAN ETA T.MAT E/KG)	ENDO- SULFAN SULFATE BOT.MAT (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN ALDE- HYDE BOT.MAT (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
OCT 1987 26		_											
AUG 1988													
15 DATE	METH- OXY- CHLOR TOT. I BOTTC MATL (UG/KG	MIR TOT IN IN B OM TOM	P, EX, DI AL TOI OT- IN E MA- TOM IAL TEF	P' E DD, I PAL TO SOT- IN MA- TON RIAL TE	P, P' DDE, DTAL BOT- MA- ERIAL G/KG)	P,P' DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	BED MAT. FALL DIAM. % FINER THAN	BED MAT. SIEVE DIAM. % FINER THAN	BED MAT. SIEVE DIAM. % FINER THAN .125 MM	BED MAT. SIEVE DIAM. % FINER THAN 2.00 MM	
OCT 1987									_				
26 AUG 1988		-		-					0	3	15	98	
15	ND	ND	NI	) 1	4D	ND	ND	ND	1	4	100		

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

### 01330907 FISH CREEK NEAR GRANGERVILLE, NY

LOCATION.--Lat 43*05'42", long 73*36'47", Saratoga County, Hydrologic Unit 02020003, at unnamed road bridge off Haas Road near Victory Mills, 1 mi south of Schuylerville.

DRAINAGE AREA .-- 247mi2.

PERIOD OF RECORD.--Water years 1987 to 1989.
CHEMICAL DATA: 1987 (b), 1988 (c), 1989 (a).
MINOR ELEMENTS DATA: 1987 (b), 1988 (c), 1989 (a).
PESTICIDE DATA: 1987 (b), 1988 (c), 1989 (a).
ORGANIC DATA: PCE--1988 (a).
NUTRIENT DATA: 1987 (b), 1988 (c), 1989 (a).
BIOLOGICAL DATA:
Bacteria--1987 (a), 1988 (c), 1989 (a).
SEDIMENT DATA: 1988 (b), 1989 (a).

REMARKS .-- Water-discharge data obtained from a discharge rating developed for this site.

### WATER-QUALITY DATA

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	FECAL COLI- FORM 24-HR MEM.FIL (COLS./ 100 ML)
APR 1987												
22	1445				7.8	20.0	3.9		21.9			
MAY 12 JUN	1315			275	7.9	17.5	3.8	•	9.3		830	80.0
11	1115			273	8.1	21.0	3.0		9.2			
JUL 29	1045				7.8	23.5	2.0		7.8		>200	200
SEP 24 OCT	1100				7.6	16.0	3.0		8.6		300	30.0
26	1200			275	7.8	9.0	2.5		12.5		3000	20.0
DEC 07	1130				7.8	2.0	2.0		17.5		2000	40.0
MAR 1988												
28 APR	1300	720	268	275	6.7	3.5	4.5	768	13.1	98	800	20.0
13	1150	654	270	266	7.3	7.5	1.6	765	11.8	98	200	20.0
25 MAY	1300	226	275	272	7.1	8.5	1.2	755	11.7	101	12000	40.0
10	1045	200	239	271	7.1	14.5	2.0		10.2		>1200	260
24	1030	526	273	268	7.1	19.0	5.7		9.2		2000	>180
JUN 13	1115	93		277	8.1	22.0	3.8	765	7.6		800	240
AUG	1113	93		211	0.1	22.0	3.0	,65	7.0		000	240
15 ∞T	1100	62	280	280	7.7	28.5	2.9	757	6.9	90	1100	360
04	1100	62	289	293	7.7	16.5	1.2	763	8.1	83	2400	200
NOV 02	1300	407	269	278	7.3	4.0	26	764	11.3	86	19000	>4000

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 01330907 FISH CREEK NEAR GRANGERVILLE, NY - continued

DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, TOTAL (MG/L)
APR 1987												
22 May	110	31	6.9							135		170
12 JUN	110	31	6.9							155		178
11	110	31	7.1							173		178
JUL 29	110	31	7.0							161		180
SEP 24	39	12	2.1							141		223
ост 26	120	33	8.2							164		183
DEC 07	99	28	7.0							133		157
MAR 1988 28	100	29	7.0	13	1.3	85	18	21	0.20		141	187
APR 13	95	26	7.4	14	1.3	88	16	20	0.10	15 <b>4</b>	138	163
25	100	29	7.5	13	1.2	88	14	20	0.10	158	138	170
MAY 10 24	100 100	2 <b>9</b> 28	7.4 7.5	13 13	1.1 1.1	82 85	15 17	20 20	0.20 0.30	162 144	135 138	178 174
JUN 13	100	28	7.7	14	1.0	88	16	21	0.30	160	141	174
AUG 15	110	31	8.4	15	1.1	91	15	22	0.10	155	147	160
OCT 04	110	31	8.3	14	1.5	97	15	22	0.10	186	150	213
NOV 02	110	30	8.2	13	2.5	85	19	20	0.10	149	144	185
	SOLIDS,		N.T.M.D.O.	NIMBO	N7mpo	NIMBO	NT TO C	NITTO	NITRO-			
	VOLA- TILE ON		NITRO- GEN,	NITRO- GEN,	NITRO- GEN,	NITRO- GEN,	NITRO- GEN,	NITRO- GEN,	GEN, AM- MONIA +	NITRO-	NITRO-	PHOS-
	VOLA-	RESIDUE TOTAL				GEN, AMMONIA	GEN, AMMONIA	GEN, ORGANIC	GEN, AM-	NITRO- GEN, TOTAL	NITRO- GEN, TOTAL	PHOS- PHORUS TOTAL
DATE	VOLA- TILE ON IGNI- TION, TOTAL	TOTAL FIXED	GEN, NITRATE TOTAL (MG/L	GEN, NITRITE TOTAL (MG/L	GEN, NO2+NO3 TOTAL (MG/L	GEN, AMMONIA TOTAL (MG/L	GEN, AMMONIA TOTAL (MG/L	GEN, ORGANIC TOTAL (MG/L	GEN, AM- MONIA + ORGANIC TOTAL (MG/L	GEN, TOTAL (MG/L	GEN, TOTAL (MG/L	PHORUS TOTAL (MG/L
	VOLA- TILE ON IGNI- TION,	TOTAL	GEN, NITRATE TOTAL	GEN, NITRITE TOTAL	GEN, NO2+NO3 TOTAL	GEN, AMMONIA TOTAL	GEN, AMMONIA TOTAL	GEN, ORGANIC TOTAL	GEN, AM- MONIA + ORGANIC TOTAL	GEN, TOTAL	GEN, TOTAL	PHORUS TOTAL
APR 1987 22	VOLA- TILE ON IGNI- TION, TOTAL	TOTAL FIXED	GEN, NITRATE TOTAL (MG/L	GEN, NITRITE TOTAL (MG/L	GEN, NO2+NO3 TOTAL (MG/L	GEN, AMMONIA TOTAL (MG/L	GEN, AMMONIA TOTAL (MG/L	GEN, ORGANIC TOTAL (MG/L	GEN, AM- MONIA + ORGANIC TOTAL (MG/L	GEN, TOTAL (MG/L	GEN, TOTAL (MG/L	PHORUS TOTAL (MG/L
APR 1987 22 MAY 12	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L)	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS NO3)	PHORUS TOTAL (MG/L AS P)
APR 1987 22 MAY 12 JUN 11	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L)	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS NO3)	PHORUS TOTAL (MG/L AS P)
APR 1987 22 MAY 12 JUN 11 JUL 29	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L) 123 140	GEN, NITRATE TOTAL (MG/L AS N) 0.310	GEN, NITRITE TOTAL (MG/L AS N) 0.00	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.310	GEN, AMMONIA TOTAL (MG/L AS N) 0.070	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.09	GEN, ORGANIC TOTAL (MG/L AS N) 0.11	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.18	GEN, TOTAL (MG/L AS N) 0.49	GEN, TOTAL (MG/L AS NO3) 2.2	PHORUS TOTAL (MG/L AS P) 0.030
APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24	VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 47 38	TOTAL FIXED (MG/L) 123 140	GEN, NITRATE TOTAL (MG/L AS N)  0.310 0.110	GEN, NITRITE TOTAL (MG/L AS N) 0.00 ND 0.00	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.310 0.160	GEN, AMMONIA TOTAL (MG/L AS N) 0.070 0.030	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.09 0.04	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.13	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.18 0.16	GEN, TOTAL (MG/L AS N) 0.49 0.32	GEN, TOTAL (MG/L AS NO3) 2.2 1.4	PHORUS TOTAL (MG/L AS P) 0.030 0.030
APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26	VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 47 38 74 68	TOTAL FIXED (MG/L) 123 140 104	GEN, NITRATE TOTAL (MG/L AS N)  0.310 0.110	GEN, NITRITE TOTAL (MG/L AS N)  0.00  ND  0.00	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.310 0.160 0.110	GEN, AMMONIA TOTAL (MG/L AS N) 0.070 0.030 0.030	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.09 0.04 0.03	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.13 0.10	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.18  0.16  0.13	GEN, TOTAL (MG/L AS N) 0.49 0.32	GEN, TOTAL (MG/L AS NO3) 2.2 1.4	PHORUS TOTAL (MG/L AS P) 0.030 0.030 0.020
APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26 DEC 07	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  47 38 74 68 54	TOTAL FIXED (MG/L) 123 140 104 112	GEN, NITRATE TOTAL (MG/L AS N)  0.310 0.110	GEN, NITRITE TOTAL (MG/L AS N)  0.00  ND  0.00  ND  0.00	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.310 0.160 0.110 ND 0.110	GEN, AMMONIA TOTAL (MG/L AS N) 0.070 0.030 0.030 0.020	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.09 0.04 0.04 0.03	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.13 0.10 0.20	GEN, AM- MONIA + ORGANIC TYOTAL (MG/L AS N)  0.18  0.16  0.13  0.22  0.39	GEN, TOTAL (MG/L AS N) 0.49 0.32 0.24	GEN, TOTAL (MG/L AS NO3) 2.2 1.4 1.1	PHORUS TOTAL (MG/L AS P) 0.030 0.030 0.020 0.020
APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26 DEC	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  47  38  74  68  54	TOTAL FIXED (MG/L) 123 140 104 112 169 96	GEN, NITRATE TOTAL (MG/L AS N)  0.310 0.110	GEN, NITRITE TOTAL (MG/L AS N)  0.00  ND 0.00  ND ND ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.310  0.160  0.110  ND  0.110  0.080	GEN, AMMONIA TOTAL (MG/L AS N) 0.070 0.030 0.030 0.020 0.030	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.09 0.04 0.03 0.04	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.13 0.10 0.20 0.36	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.18  0.16  0.13  0.22  0.39	GEN, TOTAL (MG/L AS N) 0.49 0.32 0.24  0.50	GEN, TOTAL (MG/L AS NO3) 2.2 1.4 1.1  2.2	PHORUS TOTAL (MG/L AS P) 0.030 0.030 0.020 0.020 0.030
APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  47  38  74  68  54  87  73	TOTAL FIXED (MG/L)  123  140  104  112  169  96  105  139	GEN, NITRATE TOTAL (MG/L AS N)  0.310 0.110 0.1180	GEN, NITRITE TOTAL (MG/L AS N)  0.00  ND 0.00  ND ND ND ND ND ND ND ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.310 0.160 0.110 ND 0.110 0.080 0.180 0.360	GEN, AMMONIA TOTAL (MG/L AS N) 0.070 0.030 0.030 0.020 0.030 0.000	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.09  0.04  0.03  0.04  0.00  0.06	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.13 0.10 0.20 0.36 0.32	GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N)  0.18  0.16  0.13  0.22  0.39  0.32	GEN, TOTAL (MG/L AS N) 0.49 0.32 0.24  0.50 0.40 0.49	GEN, TOTAL (MG/L AS NO3) 2.2 1.4 1.1  2.2 1.8 2.2	PHORUS TOTAL (MG/L AS P) 0.030 0.030 0.020 0.020 0.030 0.010
APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  47 38 74 68 54 87 73	TOTAL FIXED (MG/L) 123 140 104 112 169 96	GEN, NITRATE TOTAL (MG/L AS N)  0.310 0.110 0.180 0.360	GEN, NITRITE TOTAL (MG/L AS N)  0.00  ND  0.00  ND  ND  ND  0.00  O.00  O.00  O.00	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.310  0.160  0.110  ND  0.110  0.080  0.180	GEN, AMMONIA TOTAL (MG/L AS N) 0.070 0.030 0.030 0.020 0.030 0.000	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.09 0.04 0.04 0.03 0.04 0.0	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.13 0.10 0.20 0.36 0.32	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.18  0.16  0.13  0.22  0.39  0.32  0.31  0.36	GEN, TOTAL (MG/L AS N) 0.49 0.32 0.24  0.50 0.40	GEN, TOTAL (MG/L AS NO3) 2.2 1.4 1.1  2.2 1.8 2.2	PHORUS TOTAL (MG/L AS P) 0.030 0.030 0.020 0.020 0.030 0.010 0.010
APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY 10	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  47  38  74  68  54  87  73  48  38  68  70	TOTAL FIXED (MG/L)  123  140  104  112  169  96  105  139  125  102  108	GEN, NITRATE TOTAL (MG/L AS N)  0.310 0.110 0.180 0.360 0.270	GEN, NITRITE TOTAL (MG/L AS N)  0.00  ND 0.00  ND ND 0.00  ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.310 0.160 0.110 ND 0.110 0.080 0.180 0.360 0.310 0.270 0.260	GEN, AMMONIA TOTAL (MG/L AS N) 0.070 0.030 0.020 0.030 0.050 0.050 0.040 0.070 0.030	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.09  0.04  0.03  0.04  0.00  0.05  0.09  0.04	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.13 0.10 0.20 0.36 0.32 0.26 0.32	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.18  0.16  0.13  0.22  0.39  0.32  0.31  0.36  0.30  0.24  0.33	GEN, TOTAL (MG/L AS N) 0.49 0.32 0.24  0.50 0.40 0.49 0.72 0.61 0.51	GEN, TOTAL (MG/L AS NO3) 2.2 1.4 1.1  2.2 1.8 2.2 3.2 2.7 2.3	PHORUS TOTAL (MG/L AS P) 0.030 0.020 0.020 0.030 0.010 0.010 0.030 0.010 0.020
APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY 10 24 JUN	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  47  38  74  68  54  87  73  48  38  68  70  60	TOTAL FIXED (MG/L) 123 140 104 112 169 96 105 139 125 102	GEN, NITRATE TOTAL (MG/L AS N)  0.310 0.110 0.180 0.360 0.270	GEN, NITRITE TOTAL (MG/L AS N)  0.00  ND  0.00  ND  ND  0.00  ND  ND  0.00  ND  ND  ND  ND  ND  ND  ND  ND  ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.310 0.160 0.110 ND 0.110 0.080 0.180 0.360 0.310 0.270 0.260 0.200	GEN, AMMONIA TOTAL (MG/L AS N) 0.070 0.030 0.020 0.030 0.050 0.040 0.070 0.030 0.030	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.09  0.04  0.03  0.04  0.0  0.06  0.05  0.09  0.04	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.13 0.10 0.20 0.36 0.32 0.26 0.32 0.21	GEN, AM- MONIA + ORGANIC (MG/L AS N)  0.18  0.16  0.13  0.22  0.39  0.32  0.31  0.36  0.30  0.24  0.33  0.32	GEN, TOTAL (MG/L AS N)  0.49  0.32  0.24   0.50  0.49  0.72  0.61  0.51  0.59  0.52	GEN, TOTAL (MG/L AS NO3)  2.2  1.4  1.1   2.2  1.8  2.2  3.2  2.7  2.3  2.6  2.3	PHORUS TOTAL (MG/L AS P)  0.030 0.030 0.020 0.020 0.010 0.010 0.010 0.020 0.020 0.040
APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY 10 24 JUN 13 AUG	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  47 38 74 68 54 87 73 48 38 68 70 60 55	TOTAL FIXED (MG/L)  123  140  104  112  169  96  105  139  125  102  108  114  119	GEN, NITRATE TOTAL (MG/L AS N)  0.310 0.110 0.180  0.360 0.270 0.080	GEN, NITRITE TOTAL (MG/L AS N)  0.00  ND 0.00  ND ND 0.00  ND ND 0.00  ND 0.00  ND 0.00	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.310 0.160 0.110 ND 0.110 0.080 0.360 0.360 0.370 0.270 0.260 0.200 0.080	GEN, AMMONIA TOTAL (MG/L AS N) 0.070 0.030 0.020 0.030 0.050 0.040 0.070 0.030 0.030	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.09  0.04  0.03  0.04  0.05  0.09  0.04  0.05  0.09	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.13 0.10 0.20 0.36 0.32 0.26 0.32 0.21 0.30 0.28	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.18  0.16  0.13  0.22  0.39  0.32  0.31  0.36  0.30  0.24  0.33  0.32  0.17	GEN, TOTAL (MG/L AS N) 0.49 0.32 0.24  0.50 0.40 0.49 0.72 0.61 0.51	GEN, TOTAL (MG/L AS NO3)  2.2  1.4  1.1  2.2  1.8  2.2  3.2  2.7  2.3  2.6  2.3  1.1	PHORUS TOTAL (MG/L AS P)  0.030 0.030 0.020 0.020 0.010 0.010 0.010 0.020 0.020 0.020 0.020 0.020
APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY 10 24 JUN 13 AUG 15 OCT	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  47  38  74  68  54  87  73  48  38  68  70  60  55  61	TOTAL FIXED (MG/L)  123  140  104  112  169  96  105  139  125  102  108  114  119  99	GEN, NITRATE TOTAL (MG/L AS N)  0.310 0.110 0.180 0.360 0.270 0.080	GEN, NITRITE TOTAL (MG/L AS N)  0.00  ND  0.00  ND  0.00  ND  0.00  ND  0.00  ND  0.00  ND  ND  0.00  ND  ND  ND  ND  ND  ND  ND  ND  ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.310 0.160 0.110 ND 0.110 0.080 0.180 0.360 0.270 0.260 0.200 0.080 0.070	GEN, AMMONIA TOTAL (MG/L AS N)  0.070 0.030 0.030 0.020 0.030 0.050 0.040 0.070 0.030 0.040 0.070 0.030 0.040 0.020	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.09  0.04  0.03  0.04  0.0  0.06  0.05  0.09  0.04  0.05  0.09  0.04	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.13 0.10 0.20 0.36 0.32 0.26 0.32 0.21 0.30 0.28 0.15	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.18  0.16  0.13  0.22  0.39  0.32  0.31  0.36  0.30  0.24  0.33  0.32  0.17  0.33	GEN, TOTAL (MG/L AS N)  0.49  0.32  0.24   0.50  0.40  0.49  0.72  0.61  0.51  0.59  0.52  0.25	GEN, TOTAL (MG/L AS NO3)  2.2  1.4  1.1   2.2  1.8  2.2  3.2  2.7  2.3  2.6  2.3  1.1  1.8	PHORUS TOTAL (MG/L AS P)  0.030 0.030 0.020 0.020 0.010 0.010 0.010 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020
APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY 10 24 JUN 13 AUG 15	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  47 38 74 68 54 87 73 48 38 68 70 60 55	TOTAL FIXED (MG/L)  123  140  104  112  169  96  105  139  125  102  108  114  119	GEN, NITRATE TOTAL (MG/L AS N)  0.310 0.110 0.180  0.360 0.270 0.080	GEN, NITRITE TOTAL (MG/L AS N)  0.00  ND 0.00  ND ND 0.00  ND ND 0.00  ND 0.00  ND 0.00	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.310 0.160 0.110 ND 0.110 0.080 0.360 0.360 0.370 0.270 0.260 0.200 0.080	GEN, AMMONIA TOTAL (MG/L AS N) 0.070 0.030 0.020 0.030 0.050 0.040 0.070 0.030 0.030	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.09  0.04  0.03  0.04  0.05  0.09  0.04  0.05  0.09	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.13 0.10 0.20 0.36 0.32 0.26 0.32 0.21 0.30 0.28	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.18  0.16  0.13  0.22  0.39  0.32  0.31  0.36  0.30  0.24  0.33  0.32  0.17	GEN, TOTAL (MG/L AS N) 0.49 0.32 0.24  0.50 0.40 0.49 0.72 0.61 0.51	GEN, TOTAL (MG/L AS NO3)  2.2  1.4  1.1  2.2  1.8  2.2  3.2  2.7  2.3  2.6  2.3  1.1	PHORUS TOTAL (MG/L AS P)  0.030 0.030 0.020 0.020 0.010 0.010 0.010 0.020 0.020 0.020 0.020 0.020 0.020

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 01330907 FISH CREEK NEAR GRANGERVILLE, NY - continued

DATE	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)
APR 1987												
22 MAY	0.00	0.0			<10		<10		490		<100	
12 JUN	0.00	0.0			<10		<10		310		20	
11 JUL	0.00	0.0			<10		<10		340		<5	
29 SEP	0.00	0.0			<10		20		270		<5	
24 OCT	0.00	0.0			<1		5		280		<5	
26 DEC	ND				<1	1.0	5	2	140		<5	<b>&lt;</b> 5
07 MAR 1988	0.00	0.0			<1		5	-~	200		<b>&lt;</b> 5	
28 APR	0.00	0.0	200	<10	<1	<1.0	4	1	520	50	<5	<5
13 25	0.00 ND	0.0	70 <b>46</b> 0		1		3 6		290		<5	
MAY				<10		<1.0		1	1100	21	<b>&lt;</b> 5	<5
10	0.00 ND	0.0	130 350	<10	1 5	<1.0	2 14	1	300 6 <b>4</b> 0	26	<5 <5	 <5
JUN 13	ND		160		<1		3		320		<5	
AUG 15	0.00	0.0	160		<1		5		90		<5	
OCT 04	ND	~-	60		<1		3		200		<5	
NOV 02	0.020	0.06	970	20	1	<1.0	11	3	1100	61	7	<5
DATE	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)	BROMO- FORM TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)
APR 1987	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)	TETRA- CHLO- RIDE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	DI- BROMO- METHANE TOTAL (UG/L)	TOTAL (UG/L)
APR 1987 22 MAY	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)	TETRA- CHLO- RIDE TOTAL (UG/L)	BENZENE TOTAL (UG/L) ND	DI- BROMO- METHANE TOTAL (UG/L)	ETHANE TOTAL (UG/L) ND
APR 1987 22 MAY 12 JUN	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG) <0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L) ND	TETRA- CHLO- RIDE TOTAL (UG/L) ND	BENZENE TOTAL (UG/L) ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND	ETHANE TOTAL (UG/L) ND ND
APR 1987 22 MAY 12 JUN 11	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 50 40	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND	TETRA-CHLO-RIDE TOTAL (UG/L) ND ND	BENZENE TOTAL (UG/L) ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND	ETHANE TOTAL (UG/L) ND ND ND
APR 1987 22 MAY 12 JUN 11 JUL 29 SEP	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 50 40 50	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 <0.10  <0.20	TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 2	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND  ND  ND	BENZENE TOTAL (UG/L) ND ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND	ETHANE TOTAL (UG/L)  ND  ND  ND  ND
APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 50 40 50 50	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10  <0.10  <0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 2 5	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND  ND  ND	TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND ND ND ND ND	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND
APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26 DEC	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 50 40 50 50 30	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 <0.10  <0.10  <0.10  <0.10  <0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 2 5 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND	BENZENE TOTAL (UG/L) ND ND ND	DI- BROMO- METHANE TOTAL (UG/L)  ND ND ND ND ND ND ND	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND
APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 50 40 50 50 30 20 60	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 <0.10  <0.10  <0.10  <0.10  <0.10  <0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 2 5	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND  ND  ND	TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND ND ND ND ND	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND
APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 50 50 50 30 20 60	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <100 <1 <1 2 5 <1 3 3	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND	DI- BROMO- METHANE TOTAL (UG/L)  ND ND ND ND ND ND ND	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND
APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 28	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 50 40 50 50 30 20 60	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 <0.10  <0.10  <0.10  <0.10  <0.10  <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <100 <1 <1 2 5 <11 3	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND	TETRA-CHLO-RIDE RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	DI- BROMO- METHANE TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 50 50 50 30 20 60 80 70	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <100 <1 <1 2 5 <1 3 3 9	DIS-SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE TOTAL (UG/L)  ND	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 50 50 50 30 20 60 80 70 60	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOVERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)  <100 <1 <1 2 5 <1 3 3 9 6	DIS-SOLVED (UG/L AS NI)	TOTAL RECOV- REABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <20 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE TOTAL (UG/L)  ND	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY 10 JUN 13 AUG	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)  50  40  50  30  20  60  80  70  60  50	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)  <100 <1 <1 2 5 <1 3 9 6 2	DIS-SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY 10 24 JUN 13	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 50 50 50 30 20 60 80 70 60 50 60	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOVERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)  <100 <1 <1 2 5 <1 3 3 9 6 2 5	DIS-SOLVED (UG/L AS NI)	TOTAL RECOV- REABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	DI- BRROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY 10 24 JUN 13 AUG 15	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 50 50 30 20 60 80 70 60 50 60	NESE, DIS- SOLVED (UG/L AS MN)  50 23 11	TOTAL RECOVERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)  <100 <1 <1 2 5 <1 3 9 6 2 5 2	DIS-SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE TOTAL (UG/L)  ND	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 01330907 FISH CREEK NEAR GRANGERVILLE, NY - continued

					TER-QUALI			•			
DATE	CHLORO- FORM TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)
APR 1987 22	<b>N</b> D	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MAY 12	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
JUN 11	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND-	ND
JUL 29	<b>N</b> D	<b>N</b> D	<b>N</b> D	<b>N</b> D	<b>N</b> D	ND	ND	ND	ND	ND	ND
SEP 24	<b>N</b> D	ND	<b>N</b> D	ND	ND	ND	ND	ND	ND	ND	ND
ОСТ 26	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<b>N</b> D
DEC 07	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<b>N</b> D
MAR 1988 28	ND	ND	ND	ND	ND	0.5	ND	ND	ND	ND	<b>N</b> D
APR 13	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
25 MAY											
10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
24 JUN	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
13 AUG	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
15 OCT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
04 NOV											
02	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DATE	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)
APR 1987	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
APR 1987 22 MAY	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
APR 1987 22 MAY 12 JUN	CHLORO- BENZENE TOTAL (UG/L) ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND	CHLORO- PROPANE TOTAL (UG/L) ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND	CHLORO- BENZENE TOTAL (UG/L) ND	CHLORO- BENZENE TOTAL (UG/L) ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND	CHLO- RIDE TOTAL (UG/L) ND
APR 1987 22 MAY 12 JUN 11 JUL	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND	CHLORO- ETHYL - ENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND	CHLO- RIDE TOTAL (UG/L) ND ND
APR 1987 22 MAY 12 JUN 11 JUL 29 SEP	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND  ND  ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND	CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND ND ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND ND ND ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND ND
APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND ND ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)  ND ND ND ND ND	CHLORO- PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND ND ND ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND ND	CHLORO-ETHYL- ENE TOTAL (UG/L)  ND ND ND ND ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND ND
APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26 DEC	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND ND ND ND ND ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND ND ND ND ND ND ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND ND ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND ND ND ND ND ND ND ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND ND ND
APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND ND ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)  ND ND ND ND ND	CHLORO- PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND ND ND ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND ND	CHLORO-ETHYL- ENE TOTAL (UG/L)  ND ND ND ND ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND ND
APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 28	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND ND ND ND ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND ND ND ND ND ND ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND ND ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND ND ND ND ND ND ND ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND ND ND
APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)  ND ND ND ND ND ND ND ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND ND ND	CHLORO-ETHYL- ENE TOTAL (UG/L)  ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND
APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND	CHLOROBENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND
APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY 10 24	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENETOTAL (UG/L)  ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE ROTAL (UG/L)  ND
APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY 10 24 JUN 13	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE RIDE TOTAL (UG/L)  ND
APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY 10 24 JUN 13 AUG 15	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND
APR 1987 22 MAY 12 JUN 11 JUL 29 SEP 24 OCT 26 DEC 07 MAR 1988 28 APR 13 25 MAY 10 24 JUN 13 AUG	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE RIDE TOTAL (UG/L)  ND

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 01330907 FISH CREEK NEAR GRANGERVILLE, NY - continued

# SUSPENDED SEDIMENT DISCHARGE

		DIS- CHARGE, INST. CUBIC FEET	SEDI- MENT, SUS-	SEDI- MENT, DIS- CHARGE, SUS-
DATE	TIME	PER SECOND	PENDED (MG/L)	PENDED (T/DAY)
MAY 1988				
10 JUN	1045	200	9	4.9
13	1115	93	9	2.3
AUG 15	1100	62	7	1.2
OCT 04	1100	62	3	0.50
NOV 02	1300	407	40	44

# BED MATERIAL ANALYSES

DATE OCT 1987 26 AUG 1988 15	TIME	OLIDS, VOLA- VILE IN WOTTOM MA- TERIAL MG/KG) 15000	INUM, RECOV.	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO-MIUM, RECOV. FM BOT-TOM MA-TERIAL (UG/G)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	TOM MA TERIA (UG/G AS PB	- RECO - FM BO L TOM M TERI ) (UG/	, REV. FM T- TOM A- TE AL (UG) AS	COV. REBOT- FM MA- TOM RIAL TE G/G (U HG) AS	COV. RE BOT- FM MA- TOM RIAL TE	NC, COV. BOT- MA- RIAL G/G ZN)
DATE OCT 1987 26	AROCLC 1221 IN BOTTOM MAT. (UG/KO	AROC 12 PC BOT.	48 125 B PCE MAT BOT.M	4 1260 PCI	O IN B B TOM MAT TER	AL TOT OT- IN MA- TOM IAL TER	IC ZI TAL TO BOT- IN I MA- TOM RIAL TE	NE, BEI TAL HI BOT- CI MA- RIAL BO	NZENE EXA- HLOR- I IDE T	CHLOR- DANE, TOTAL N BOT- OM MA- TERIAL UG/KG)	CHLOR- PYRIFOS IN BOT. MAT. (UG/KG)	DELTA BENZENE HEXA- CHLOR- IDE BOT.MAT (UG/KG)	
AUG 1988 15	ND	ND	ND	ND	ND	N	ID N	ו ס	ND	ND	ND	ND	
DATE	DI- AZINON TOTAL IN BOT TOM MA TERIA	TOT IN B TOM TER	IN, AL ENDO OT- SULFA MA- ALPH IAL BOT.M	N SULFA A BETA AT BOT.	AN SUL A SULF MAT BOT.	O- TO FAN IN ATE TOM MAT TE	BOT- AL I MA- H CRIAL BOT	RIN TO DE- IN YDE TO MAT T	HION, OTAL DOTAL D	HEPTA- CHLOR, TOTAL N BOT- OM MA- TERIAL UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
OCT 1987 26		_				_							
AUG 1988								_					
DATE OCT 1987	METH- OXY- CHLOF TOT. I BOTTIC MATI (UG/KG	MIR TOT N IN B M TOM	P,P EX, DDD AL TOTA OT- IN BO MA- TOM M IAL TERI	, DDE L TOTA T- IN BO A- TOM N AL TERI	E, DD AL TOT DT- IN B MA- TOM IAL TER	P' PA T, TH AL TO OT- IN MA- TOM IAL TE	ARA- TO HION, PH PTAL TO BOT- IN HMA- TOM CRIAL TE	XA-   ENE,   ITAL   IBOT- DIMA- % IRIAL   I	IAM. FINER % IHAN 04 MM .	BED MAT. SIEVE DIAM. FINER THAN 062 MM	BED MAT. SIEVE DIAM. % FINER THAN .125 MM	BED MAT. SIEVE DIAM. % FINER THAN 2.00 MM	
26 AUG 1988		~			-	-			0	7	42	100	
15	ND	47.	ND	ND	ND	N	ID N	D	2	7	100		

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

### 0133335001 HOOSIC RIVER BELOW NY-VT STATELINE, NEAR NORTH POWNAL, VT

LOCATION.--Lat 42*48'34", long 73*17'13", Rensselaer County, Hydrologic Unit 02020003, at Route 346 bridge on NY-VT border, 1.5 mi northwest of North Pownal, VT, and 4 mi southeast of North Petersburg, NY.

DRAINAGE AREA. -- 302 mi2.

PERIOD OF RECORD.--Water years 1987 to 1989.

CHEMICAL DATA: 1987 (b), 1988 (c), 1989 (a).

MINOR ELEMENTS DATA: 1987 (b), 1988 (c), 1989 (a).

PESTICIDE DATA: 1987 (b), 1988 (c), 1989 (a).

NUTRIENT DATA: 1987 (b), 1988 (c), 1989 (a).

BIOLOGICAL DATA:

Bacteria--1987 (b), 1988 (c), 1989 (a).

SEDIMENT DATA: 1988 (b), 1989 (a).

REMARKS.--Water-discharge data obtained from a discharge rating developed for this site. Diurnal fluctuation at medium and low flow caused by powerplants upstream from station.

### WATER-QUALITY DATA

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	FECAL COLI- FORM 24-HR MEM.FIL (COLS./ 100 ML)
APR 1987												
24 May	1030				8.0	11.0	8.0		9.9			
12 JUN	0945			287	8.0	15.5	2.6		9.3		4800	180
12 JUL	1000			312	8.0	16.5	0.50		8.3		>860	140
30 SEP	1020				8.2	22.0	0.50		10.0		100	20.0
21 OCT	1315			170	7.6	14.0	7.0					
27	1330			232	8.0	7.0	1.3		13.2			
09 MAR 1988	1330			210	7.9	4.0	1.0		19.3			
29 APR	1315	1050	142	148	7.1	3.5	8.8	772	13.4	100		
11 26	1300 1000	565 423	180 185	182 185	6.9 7.8	7.5 6.5	1.4 1.5	760 	12.2 13.6	102	480 1300	30.0 220
MAY	1000	423	103	103	7.0	0.5	1.3		15.0		1300	220
11	1130	774	212	219	8.0	15.0	0.90	760	9.0	90	2000	300
23 JUN	1300	684	167	161	6.9	15.5	80	760	9.5	96	>7200	<b>450</b> 0
14	1400		286	295	8.7	22.0	1.3		8.2		600	20.0
AUG 16 OCT	1330	479	240	241	7.6	22.5	7.0		8.9		>5800	1500
03	1300	166	310	318	8.7	17.5	1.0	763	11.9	124	1300	200
01	1300	239	232	239	7.7	4.5	1.9	764	14.0	108	940	180

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 0133335001 HOOSIC RIVER BELOW NY-VT STATELINE, NEAR NORTH POWNAL, VT - continued

DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, TOTAL (MG/L)
APR 1987 24	100	29	6.8							112		148
MAY 12	120	34	8.4							154		178
JUN 12	120	34	9.1									194
JUL 30	140	39	10							206		210
SEP 21	65	18	4.9		~-					124		130
ост 27	99	27	7.6	- <b>-</b>						118		127
DEC 09	83	23	6.1		~-					122		130
MAR 1988 29	56	16	3.9	5.3	0.80	45	11	8.7	0.10	92	73	102
APR 11	72	20	5.4	6.3	0.90	61	12	11	0.10	97	92	103
26 MAY	73	20	5.5	7.2	1.0	61	12	11	0.10	114	94	121
11 23	87 71	2 <b>4</b> 21	6.6 4.4	8.1 4.1	1.0	79 60	13 14	11 6.5	0.20	144	111 88	151 160
JUN 14	120	32	9.4	14	1.3	107	13	16	0.10	157	150	172
AUG 16	100	29	7.5	8.2	1.8	83	16	12	<0.10	142	124	152
03	130	34	11	14	1.9	116	17	17	0.10	191	165	262
NOV 01	100	27	7.9	8.8	1.2	84	17	12	0.10	137	125	139
DATE	SOLIDS, VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	RESIDUE TOTAL FIXED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS NH4)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS NO3)	PHOS- PHORUS TOTAL (MG/L AS P)
APR 1987	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L)	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS NO3)	PHORUS TOTAL (MG/L AS P)
APR 1987 24 MAY	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L)	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS NO3)	PHORUS TOTAL (MG/L AS P)
APR 1987 24 MAY 12 JUN	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L) 109	GEN, NITRATE TOTAL (MG/L AS N) 0.540	GEN, NITRITE TOTAL (MG/L AS N) 0.010	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.550	GEN, AMMONIA TOTAL (MG/L AS N) 0.100	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.13	GEN, ORGANIC TOTAL (MG/L AS N) 0.06	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.16	GEN, TOTAL (MG/L AS N) 0.71	GEN, TOTAL (MG/L AS NO3) 3.1 3.1	PHORUS TOTAL (MG/L AS P) 0.180 0.070
APR 1987 24 MAY 12 JUN 12	VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 38 39 66	TOTAL FIXED (MG/L) 109 139 133	GEN, NITRATE TOTAL (MG/L AS N) 0.540 0.530 0.620	GEN, NITRITE TOTAL (MG/L AS N) 0.010 0.020	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.550 0.550	GEN, AMMONIA TOTAL (MG/L AS N) 0.100 0.090 0.180	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.13 0.12	GEN, ORGANIC TOTAL (MG/L AS N) 0.06 0.06	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.16 0.15	GEN, TOTAL (MG/L AS N) 0.71 0.70	GEN, TOTAL (MG/L AS NO3) 3.1 3.1	PHORUS TOTAL (MG/L AS P) 0.180 0.070
APR 1987 24 MAY 12 JUN 12 JUL 30 SEP	VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 38 39 66	TOTAL FIXED (MG/L) 109 139 133	GEN, NITRATE TOTAL (MG/L AS N) 0.540 0.530 0.620 0.630	GEN, NITRITE TOTAL (MG/L AS N) 0.010 0.020 0.030 0.010	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.550 0.550 0.650	GEN, AMMONIA TOTAL (MG/L AS N) 0.100 0.090 0.180	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.13 0.12 0.23	GEN, ORGANIC TOTAL (MG/L AS N) 0.06 0.06 0.05	GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N)  0.16 0.15 0.23	GEN, TOTAL (MG/L AS N) 0.71 0.70 0.88	GEN, TOTAL (MG/L AS NO3) 3.1 3.1 3.9	PHORUS TOTAL (MG/L AS P) 0.180 0.070 0.100 0.110
APR 1987 24 MAY 12 JUN 30 SEP 21 OCT	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  38 39 66 72 75	TOTAL FIXED (MG/L) 109 139 133 138	GEN, NITRATE TOTAL (MG/L AS N) 0.540 0.530 0.620 0.630 0.350	GEN, NITRITE TOTAL (MG/L AS N) 0.010 0.020 0.030 0.010	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.550 0.550	GEN, AMMONIA TOTAL (MG/L AS N) 0.100 0.090 0.180 0.050	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.13 0.12 0.23 0.06	GEN, ORGANIC TOTAL (MG/L AS N) 0.06 0.05 0.15	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.16 0.15 0.23 0.20 0.22	GEN, TOTAL (MG/L AS N) 0.71 0.70 0.88 0.84	GEN, TOTAL (MG/L AS NO3) 3.1 3.1 3.9 3.7	PHORUS TOTAL (MG/L AS P) 0.180 0.070 0.100 0.110
APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21	VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 38 39 66	TOTAL FIXED (MG/L) 109 139 133	GEN, NITRATE TOTAL (MG/L AS N) 0.540 0.530 0.620 0.630	GEN, NITRITE TOTAL (MG/L AS N) 0.010 0.020 0.030 0.010 0.00	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.550 0.550 0.650 0.640 0.350 0.490	GEN, AMMONIA TOTAL (MG/L AS N) 0.100 0.090 0.180 0.050 0.050	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.13 0.12 0.23 0.06 0.06	GEN, ORGANIC TOTAL (MG/L AS N) 0.06 0.06 0.05 0.15 0.17	GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N)  0.16 0.15 0.23 0.20 0.22	GEN, TOTAL (MG/L AS N) 0.71 0.70 0.88 0.84 0.57	GEN, TOTAL (MG/L AS NO3) 3.1 3.1 3.9 3.7 2.5	PHORUS TOTAL (MG/L AS P) 0.180 0.070 0.100 0.110 0.050 0.040
APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  38 39 66 72 75 50	TOTAL FIXED (MG/L) 109 139 133 138 55	GEN, NITRATE TOTAL (MG/L AS N) 0.540 0.530 0.620 0.630 0.350 0.490	GEN, NITRITE TOTAL (MG/L AS N) 0.010 0.020 0.030 0.010	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.550 0.550 0.650 0.640	GEN, AMMONIA TOTAL (MG/L AS N) 0.100 0.090 0.180 0.050	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.13 0.12 0.23 0.06	GEN, ORGANIC TOTAL (MG/L AS N) 0.06 0.05 0.15	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.16 0.15 0.23 0.20 0.22	GEN, TOTAL (MG/L AS N) 0.71 0.70 0.88 0.84	GEN, TOTAL (MG/L AS NO3) 3.1 3.1 3.9 3.7	PHORUS TOTAL (MG/L AS P) 0.180 0.070 0.100 0.110
APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  38 39 66 72 75 50	TOTAL FIXED (MG/L) 109 139 133 138 55 87	GEN, NITRATE TOTAL (MG/L AS N)  0.540  0.530  0.620  0.630  0.350  0.490  0.570	GEN, NITRITE TOTAL (MG/L AS N)  0.010  0.020  0.030  0.010  0.00  0.00	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.550 0.550 0.650 0.640 0.350 0.490	GEN, AMMONIA TOTAL (MG/L AS N)  0.100 0.090 0.180 0.050 0.050 0.030	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.13 0.12 0.23 0.06 0.06 0.04	GEN, ORGANIC TOTAL (MG/L AS N) 0.06 0.05 0.15 0.17 0.11	GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N)  0.16  0.15  0.23  0.20  0.22  0.14  0.12	GEN, TOTAL (MG/L AS N) 0.71 0.70 0.88 0.84 0.57 0.63	GEN, TOTAL (MG/L AS NO3) 3.1 3.1 3.9 3.7 2.5 2.8	PHORUS TOTAL (MG/L AS P) 0.180 0.070 0.100 0.110 0.050 0.040
APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  38 39 66 72 75 50 51 18 23 57	TOTAL FIXED (MG/L) 109 139 133 138 55 87 79 84 80 64	GEN, NITRATE TOTAL (MG/L AS N) 0.540 0.530 0.620 0.630 0.350 0.490 0.570	GEN, NITRITE TOTAL (MG/L AS N)  0.010 0.020 0.030 0.010 0.00 0.00 0.00 0.00 ND ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.550 0.550 0.650 0.640 0.350 0.490 0.570 0.580 0.630 0.390	GEN, AMMONIA TOTAL (MG/L AS N) 0.100 0.090 0.180 0.050 0.050 0.030 0.030 0.020	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.13 0.12 0.23 0.06 0.06 0.04 0.04 0.03 0.05 0.01	GEN, ORGANIC TOTAL (MG/L AS N) 0.06 0.05 0.15 0.17 0.11 0.09 0.07	GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N)  0.16 0.15 0.23 0.20 0.22 0.14 0.12 0.09 0.56 0.23	GEN, TOTAL (MG/L AS N) 0.71 0.70 0.88 0.84 0.57 0.63 0.69 0.67	GEN, TOTAL, TOMG/L AS NO3) 3.1 3.1 3.9 3.7 2.5 2.8 3.1 3.0 5.3 2.7	PHORUS TOTAL (MG/L AS P) 0.180 0.070 0.110 0.050 0.040 0.320 0.130 0.070 0.030
APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 11 23	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  38 39 66 72 75 50 51 18 23	TOTAL FIXED (MG/L) 109 139 133 138 55 87 79 84	GEN, NITRATE TOTAL (MG/L AS N) 0.540 0.530 0.620 0.630 0.350 0.490 0.570	GEN, NITRITE TOTAL (MG/L AS N)  0.010 0.020 0.030 0.010 0.00 0.00 0.00 ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.550 0.550 0.650 0.640 0.350 0.490 0.570 0.580 0.630	GEN, AMMONIA TOTAL (MG/L AS N)  0.100 0.090 0.180 0.050 0.050 0.030 0.030 0.030	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.13 0.12 0.23 0.06 0.06 0.04 0.04	GEN, ORGANIC TOTAL (MG/L AS N) 0.06 0.05 0.15 0.17 0.11 0.09 0.07	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.16 0.15 0.23 0.20 0.22 0.14 0.12 0.09 0.56	GEN, TOTAL (MG/L AS N) 0.71 0.70 0.88 0.84 0.57 0.63 0.69	GEN, TOTAL (MG/L AS NO3) 3.1 3.1 3.9 3.7 2.5 2.8 3.1 3.0	PHORUS TOTAL (MG/L AS P) 0.180 0.070 0.100 0.110 0.050 0.040 0.320 0.130
APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 CCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 11 23 JUN 14	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  38 39 66 72 75 50 51 18 23 57	TOTAL FIXED (MG/L) 109 139 133 138 55 87 79 84 80 64	GEN, NITRATE TOTAL (MG/L AS N)  0.540  0.530  0.620  0.630  0.350  0.490  0.570  0.580  0.490	GEN, NITRITE TOTAL (MG/L AS N) 0.010 0.020 0.030 0.010 0.00 0.00 0.00 ND ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.550 0.550 0.650 0.640 0.350 0.490 0.570 0.580 0.630 0.390 0.520	GEN, AMMONIA TOTAL (MG/L AS N)  0.100 0.090 0.180 0.050 0.050 0.030 0.030 0.020 0.040 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.13 0.12 0.23 0.06 0.06 0.04 0.04 0.03 0.05 0.01 0.03	GEN, ORGANIC TOTAL (MG/L AS N) 0.06 0.05 0.15 0.17 0.11 0.09 0.07	GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N)  0.16 0.15 0.23 0.20 0.22 0.14 0.12 0.09 0.56 0.23 0.16	GEN, TOTAL (MG/L AS N) 0.71 0.70 0.88 0.84 0.57 0.63 0.69 0.67	GEN, TOTAL (MG/L AS NO3) 3.1 3.1 3.9 3.7 2.5 2.8 3.1 3.0 5.3 2.7	PHORUS TOTAL (MG/L AS P) 0.180 0.070 0.100 0.110 0.050 0.040 0.320 0.130 0.070 0.030
APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 11 23 JUN 14 AUG 16	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  38 39 66 72 75 50 51 18 23 57 57 28	TOTAL FIXED (MG/L) 109 139 133 138 55 87 79 84 80 64	GEN, NITRATE TOTAL (MG/L AS N)  0.540  0.530  0.620  0.630  0.350  0.490  0.570  0.580	GEN, NITRITE TOTIAL (MG/L AS N)  0.010 0.020 0.030 0.010 0.00 0.00 0.00 ND ND ND 0.030 0.030	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.550 0.550 0.650 0.640 0.350 0.490 0.570 0.580 0.630 0.390 0.520 0.380	GEN, AMMONIA TOTAL (MG/L AS N)  0.100 0.090 0.180 0.050 0.050 0.030 0.030 0.020 0.040 0.010 0.020 0.140	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.13  0.12  0.23  0.06  0.04  0.04  0.03  0.05  0.01	GEN, ORGANIC TOTAL (MG/L AS N) 0.06 0.05 0.15 0.17 0.11 0.09 0.07 0.52 0.22	GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N)  0.16 0.15 0.23 0.20 0.22 0.14 0.12 0.09 0.56 0.23 0.16 0.79	GEN, TOTAL (MG/L AS N) 0.71 0.70 0.88 0.84 0.57 0.63 0.69 0.67 1.2 0.62 0.68 1.2	GEN, TOTAL (MG/L AS NO3) 3.1 3.1 3.9 3.7 2.5 2.8 3.1 3.0 5.3 2.7	PHORUS TOTAL (MG/L AS P) 0.180 0.070 0.100 0.110 0.050 0.040 0.320 0.130 0.070 0.030
APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 11 23 JUN 14 AUG	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  38 39 66 72 75 50 51 18 23 57 57 28 72	TOTAL FIXED (MG/L)  109 139 133 138 55 87 79 84 80 64 94 132 100	GEN, NITRATE TOTAL (MG/L AS N)  0.540  0.530  0.620  0.630  0.350  0.490  0.570  0.580   0.490  0.380  0.540	GEN, NITRITE TOTAL (MG/L AS N)  0.010 0.020 0.030 0.010 0.00 0.00 0.00 ND ND ND 0.030 0.030 0.030 0.000	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.550 0.550 0.650 0.640 0.350 0.490 0.570 0.580 0.630 0.390 0.520 0.380 0.560	GEN, AMMONIA TOTAL (MG/L AS N)  0.100 0.090 0.180 0.050 0.050 0.030 0.030 0.020 0.040 0.010 0.020 0.140 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.13 0.12 0.23 0.06 0.04 0.04 0.03 0.05 0.01 0.03 0.18 0.01	GEN, ORGANIC TOTAL (MG/L AS N) 0.06 0.05 0.15 0.17 0.11 0.09 0.07 0.52 0.22 0.14 0.65	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.16 0.15 0.23 0.20 0.22 0.14 0.12 0.09 0.56 0.23 0.16 0.79 0.20	GEN, TOTAL (MG/L AS N) 0.71 0.70 0.88 0.84 0.57 0.63 0.69 0.67 1.2 0.62 0.68 1.2	GEN, TOTAL (MG/L AS NO3) 3.1 3.1 3.9 3.7 2.5 2.8 3.1 3.0 5.3 2.7 3.0 5.2	PHORUS TOTAL (MG/L AS P)  0.180 0.070 0.100 0.110 0.050 0.040 0.320 0.130 0.070 0.030 0.020 0.250 0.030

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 0133335001 HOOSIC RIVER BELOW NY-VT STATELINE, NEAR NORTH POWNAL, VT - continued

DATE	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)
APR 1987												
24	0.160	0.49			<10		<10		560		11	
MAY 12	0.020	0.06			<10		<10		200	~-	6	
JUN 12	0.070	0.21			<10		10		230		<5	
JUL 30	0.080	0.25			<10	~-	20		190		<b>&lt;</b> 5	
SEP 21	0.010	0.03			<1	1.0	8	5	700		<b>&lt;</b> 5	5
OCT							5		140		<b>&lt;</b> 5	
27 DEC	0.020	0.06	~-		1							
09 MAR 1988	0.280	0.86			<1		5	~-	140	~-	<5	
29 <b>A</b> PR	0.090	0.28	470	40	1	<1.0	11	<1	930	20	<b>&lt;</b> 5	<5
11 26	0.020 0.010	0.06	110 110	60	1	<1.0	3 5	4	180 120	17	<5 <5	 <5
MAY 11 23	0.00	0.0	70 2500	 90	1 1	<1.0	3 13	2	170 4700	120	<5 9	 <5
JUN 14 AUG	0.00	0.0	80		<1		4		190		6	
16	0.040	0.12	400		<1		6		230		<5	
03	0.010	0.03	90		<1		14		200		<5	
NOV 01	0.160	0.49	100	30	1	<1.0	11	4	180	34	<5	<5
DATE	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)	BROMO- FORM TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)
APR 1987	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)	TETRA- CHLO- RIDE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	DI- BROMO- METHANE TOTAL (UG/L)	ETHANE TOTAL (UG/L)
APR 1987 24 MAY	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L) ND	TETRA- CHLO- RIDE TOTAL (UG/L)	BENZENE TOTAL (UG/L) ND	DI- BROMO- METHANE TOTAL (UG/L)	ETHANE TOTAL (UG/L) ND
APR 1987 24 MAY 12 JUN	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG) <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN) <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L) ND	TETRA- CHLO- RIDE TOTAL (UG/L) ND	BENZENE TOTAL (UG/L) ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND	ETHANE TOTAL (UG/L) ND ND
APR 1987 24 MAY 12 JUN 12 JUL	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 50 30	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <1 <1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN) <10 20 10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND	TETRA- CHLO- RIDE TOTAL (UG/L) ND ND	BENZENE TOTAL (UG/L) ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND	ETHANE TOTAL (UG/L)  ND  ND  ND
APR 1987 24 MAY 12 JUN 12 JUL 30 SEP	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 50 30 60	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10  0.20	TOTAL RECOV- ERABLE (UG/L AS NI)  <1 <1 <1 <1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN) <10 20 10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND  ND  ND	BENZENE TOTAL (UG/L) ND ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND	ETHANE TOTAL (UG/L)  ND  ND  ND
APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 50 30 60 50	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 <0.10  <0.10  <0.10  0.20 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <1 <1 <1 <1 <1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 20 10 <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND	TETRA- CHLO- RIDE TOTAL (UG/L) ND ND ND ND	BENZENE TOTAL (UG/L) ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND
APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 50 30 60	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10  0.20	TOTAL RECOV- ERABLE (UG/L AS NI)  <1 <1 <1 <1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN) <10 20 10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND  ND  ND	BENZENE TOTAL (UG/L) ND ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND
APR 1987 24 MAY 12 JUN 12 SEP 21 OCT 27	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 50 30 60 50	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 <0.10  <0.10  <0.10  0.20 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <1 <1 <1 <1 <1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 20 10 <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND	TETRA- CHLO- RIDE TOTAL (UG/L) ND ND ND ND	BENZENE TOTAL (UG/L) ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND
APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 50 30 60 50 40	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 <0.10  <0.10  <0.10  <0.10  <0.10	TOTAL RECOVERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 20 10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND	TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND ND ND ND ND ND	BENZENE TOTAL (UG/L) ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND
APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 50 30 60 50 40 30	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 <0.10  <0.10  <0.10  <0.10  <0.10  <0.10  <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 20 10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND	TETRA- CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND	BENZENE TOTAL (UG/L) ND ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 50 30 60 50 40 30 20 50	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOVERABLE (UG/L AS NI)  <1 <1 <1 <1 <1 <1 <1 <1 <7 <1 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7 <7	DIS- SOLVED (UG/L AS NI)  1 2	TOTAL RECOV-ERABLE (UG/L AS ZN)  <10 20 10 <10 <10 <10 <10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS 2N)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 CCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 11 23 JUN 14	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)  50  30  40  30  20  50  30  30  30	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOVERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)  <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS ZN)  <10 20 10 <10 <10 <10 <10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS 2N)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE TOTAL (UG/L)  ND	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 11 23 JUN 14 AUG 16	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 50 30 60 50 40 30 20 50 30 30 30	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOVERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)  <1 <1 <1 <1 <1 <1 <1 <2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOVERABLE (UG/L AS ZN)  <10 20 10 <10 <10 <10 <10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)  20 <10 <3	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 11 23 JUN 14 AUG	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 50 30 60 40 30 20 50 30 30 60 60 60	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOVERABLE (UG/L AS NI)  <1 <1 <1 <1 <1 <1 <2	DIS- SOLVED (UG/L AS NI)	TOTAL RECOVERABLE (UG/L AS ZN)  <10 20 10 <10 <10 <10 <10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

0133335001 HOOSIC RIVER BELOW NY-VT STATELINE, NEAR NORTH POWNAL, VT - continued

					-		continued	•			
DATE	CHLORO- FORM TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)
APR 1987	ND	ND.	ND	N.D.	MD	ND.	ND	N.D.	ND	ND	ND
24 MAY 12	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND
JUN	ND ND	ND ND		ND	ND	ND		ND	ND	ND ND	ND
12 JUL			ND				ND				
30 SEP	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
21 OCT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
27 DEC 09	nd nd	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
MAR 1988										-	
29 APR	ND	ND	ND	ND	ND	0.5	ND	ND	ND	ND	ND
11 26	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
MAY 11	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
23 JUN	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
14 AUG	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
16	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
03	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
01	0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DATE	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	TRI - CHLORO- ETHYL- ENE TOTAL (UG/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)
APR 1987 24	CHLORO- BENZENE TOTAL	CHLORO- ETHANE WATER WHOLE TOTAL	CHLORO- PROPANE TOTAL	TRANSDI CHLORO- ETHENE TOTAL	CHLORO- BENZENE TOTAL	CHLORO- BENZENE TOTAL	CHLORO- ETHYL- ENE TOTAL	1,3-DI- CHLORO- PROPENE TOTAL	CHLORO- ETHYL- ENE TOTAL	CHLORO- ETHYL- VINYL- ETHER TOTAL	CHLO- RIDE TOTAL
APR 1987 24 MAY 12	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
APR 1987 24 MAY 12 JUN 12	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
APR 1987 24 MAY 12 JUN 12 JUL 30	CHLORO- BENZENE TOTAL (UG/L) ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND	CHLORO- PROPANE TOTAL (UG/L) ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND	CHLORO- BENZENE TOTAL (UG/L) ND	CHLORO- BENZENE TOTAL (UG/L) ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND	CHLORO- ETHYL- ENE TOTAL (UG/L) 2.0	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND	CHLO- RIDE TOTAL (UG/L) ND
APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) 2.0 ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND	CHLO- RIDE TOTAL (UG/L) ND ND
APR 1987 24 MAY 12 JUN 12 30 SEP 21 OCT 27	CHLORO-BENZENE TOTAL (UG/L) ND ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  2.0  ND  ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND	CHLO- RIDE TOTAL (UG/L) ND ND
APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND	CHLORO- PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  2.0  ND  ND  ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND	CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND
APR 1987 24 MAY 12 JUN 12 30 SEP 21 OCT 27 DEC 09 MAR 1988 29	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND ND ND ND ND ND ND ND	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  2.0  ND  ND  ND  ND  ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND ND ND ND	CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND
APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  2.0  ND  ND  1.0  ND  1.6  1.6  1.0	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENETOTAL (UG/L)  2.0  ND  ND  1.0  ND  1.0  1.6  1.0  1.0	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  2.0  ND  ND  1.0  ND  1.6  1.6  1.0	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 11 23	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  2.0  ND  ND  1.0  ND  1.6  1.0  1.0  ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 11 23 JUN 14	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE TOTAL (UG/L)  2.0  ND  ND  1.0  ND  1.0  ND  1.0  ND  ND  1.0	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 11 23 JUN 14 AUG 16	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE TOTAL (UG/L)  2.0  ND  ND  1.0  ND  1.6  1.0  1.0  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

0133335001 HOOSIC RIVER BELOW NY-VT STATELINE, NEAR NORTH POWNAL, VT - continued

### SUSPENDED SEDIMENT DISCHARGE

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)
MAY 1988				
11	1130	774	3	6.3
23	1300	684	93	172
JUN				
14	1400		4	
AUG				
16	1330	479	14	18
OCT				
03	1300	166	2	0.90
NOV				
01	1300	239	2	1.3

### BED MATERIAL ANALYSES

DATE	TIME	SOLIDS, VOLA- TILE IN BOTTOM MA- TERIAL (MG/KG)	ALUM- INUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)
OCT 1987								
1 <b>4</b> AUG 1988	1200	2780 <b>0</b>		1	20	20	7700	20
16	1330	60100	9400	2		10	15000	40
DATE	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	BED MAT. FALL DIAM. % FINER THAN .004 MM	BED MAT. SIEVE DIAM. % FINER THAN .062 MM	BED MAT. SIEVE DIAM. % FINER THAN .125 MM	BED MAT. SIEVE DIAM. % FINER THAN 2.00 MM
OCT 1987 14 AUG 1988	280	<0.10	10	60	2	35	60	100
16	560	0.16	20	120	6	47	100	

#### 01334805 HOOSIC RIVER AT EAGLE BRIDGE, NY

LOCATION.--Lat 42 57'05*, long 73 23'28*, Rensselaer County, Hydrologic Unit 02020003, at Route 67 bridge in Eagle Bridge, 2 mi east of Buskirk.

DRAINAGE AREA. -- 571 mi 2 .

PERIOD OF RECORD.--Water years 1987 to current year.

CHEMICAL DATA: 1987 (b), 1988 (c), 1989 (a).

MINOR ELEMENTS DATA: 1987 (b), 1988 (c), 1989 (a).

PESTICIDE DATA: 1987 (b), 1988 (c), 1989 (a).

ORGANIC DATA: PCB--1988 (a).

NUTRIENT DATA: 1987 (b), 1988 (c), 1989 (a).

BIOLOGICAL DATA:

Bacteria--1987 (b), 1988 (c), 1989 (a).

SEDIMENT DATA: 1988 (b), 1989 (a).

REMARKS.--Water-discharge data based on records obtained from 01334500 Hoosic River near Eagle Bridge.
Diurnal fluctuation at medium and low flow caused by powerplants upstream from station.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	FECAL COLI- FORM 24-HR MEM.FIL (COLS./ 100 ML)
APR 1987												
2 <b>4</b> MAY	1200	<b>7</b> 56			7.8	10.5	3.2		10.5			
12 JUN	1100	366		269	8.0	15.0	1.6		9.5		2000	ND
12	1130	292		268	7.8	17.5	0.60		8.9		500	110
JUL 30 SEP	1130	178			8.4	22.0	0.15		10.0		ND	40.0
21 ⊙T	1145	876		176	7.6	14.0	21		~-			
27	1145	1010		213	8.0	7.0	1.8		12.9			
DEC 09 MAR 1988	1200	864		198	8.0	4.0	2.1		20.5		3500	620
29 APR	1215	3040	134	144	7.3	3.0	14	<b>77</b> 2	13.9	102	2100	860
11	1200	1200	186	177	7.2	7.5		760	12.6	105	2900	260
26 MAY	1130	892	208	191	7.2	8.0	1.4		13.2		900	240
11	1230	2770	190	204	7.7	12.0	1.6	760	11.3	105	2400	360
23	1145	1370	206	203	7.2	17.0	39	760	9.5	99	>4400	2600
JUN 14	1200	291	266	274	8.5	22.0	0.60		7.8		300	90.0
aug 16 OCT	1200	702	232	232	8.1	22.5	12		8.9		>2000	740
03 NOV	1130	222	303	311	8.7	17.0	0.80	763	10.8	112	6200	740
01	1200	345	224	235	7.6	4.5	1.3	764	13.6	105	920	280

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

### 01334805 HOOSIC RIVER AT EAGLE BRIDGE, NY - continued

DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, TOTAL (MG/L)
APR 1987 24	94	27	6.4							107		136
MAY 12	110	31	7.4							155		170
JUN 12	110	31	7.9									171
JUL 30	130	35	9.2							172		188
SEP 21 OCT	67	19	4.8							94		170
27	93	26	6.7							97		118
09 MAR 1988	76	21	5.8							120		119
29 APR	61	18	4.0	5.2	0.80	44	11	9.2	0.10	90	75	108
11 26	68 7 <b>4</b>	19 20	5.1 5.9	6.3 3.8	0.90 0.90	59 <b>63</b>	12 12	11 11	0.10 0.10	97 112	90 92	107 123
MAY 11	79	22	5.9	7.1	1.0	70	16	11	0.20	126	105	149
23 JUN	82	23	6.0	6.9	1.0	71	13	10	0.20	110	103	143
AUG	110	29	8.8	12	1.4	94	15	16	0.10	153	139	170
16 ⊙CT	97	26	7.7	9.0	1.5	80	15	13	<0.10	130	120	151
03 NOV 01	130 98	33 26	11 8.1	14 9.5	1.8	112 81	15 15	19 13	0.10	192 128	161 122	207 140
01	96	26	8.1	9.3	1.3	81	15	13	0.10	128	122	140
DATE	SOLIDS, VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	RESIDUE TOTAL FIXED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS NH4)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS NO3)	PHOS- PHORUS TOTAL (MG/L AS P)
APR 1987	VOLA- TILE ON IGNI- TION, TOTAL	TOTAL FIXED	GEN, NITRATE TOTAL (MG/L	GEN, NITRITE TOTAL (MG/L	GEN, NO2+NO3 TOTAL (MG/L	GEN, AMMONIA TOTAL (MG/L	GEN, AMMONIA TOTAL (MG/L	GEN, ORGANIC TOTAL (MG/L	GEN, AM- MONIA + ORGANIC TOTAL (MG/L	GEN, TOTAL (MG/L	GEN, TOTAL (MG/L	PHORUS TOTAL (MG/L
	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L)	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS NO3)	PHORUS TOTAL (MG/L AS P)
APR 1987 24 MAY	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L)	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS NO3)	PHORUS TOTAL (MG/L AS P)
APR 1987 24 MAY 12 JUN 12 JUL 30	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L) 101 121	GEN, NITRATE TOTAL (MG/L AS N) 0.840	GEN, NITRITE TOTAL (MG/L AS N) 0.010	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.850	GEN, AMMONIA TOTAL (MG/L AS N) 0.030	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.04	GEN, ORGANIC TOTAL (MG/L AS N) 0.12	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.15	GEN, TOTAL (MG/L AS N) 1.0 0.79	GEN, TOTAL (MG/L AS NO3) 4.4 3.5	PHORUS TOTAL (MG/L AS P) 0.110 0.030
APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21	VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 30 49	TOTAL FIXED (MG/L) 101 121 111	GEN, NITRATE TOTAL (MG/L AS N) 0.840 0.690	GEN, NITRITE TOTAL (MG/L AS N) 0.010 0.010	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.850 0.700	GEN, AMMONIA TOTAL (MG/L AS N) 0.030 0.020	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.04 0.03	GEN, ORGANIC TOTAL (MG/L AS N) 0.12 0.07	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.15 0.09	GEN, TOTAL (MG/L AS N) 1.0 0.79	GEN, TOTAL (MG/L AS NO3) 4.4 3.5	PHORUS TOTAL (MG/L AS P) 0.110 0.030 0.070
APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27	VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 30 49 60	TOTAL FIXED (MG/L) 101 121 111 125	GEN, NITRATE TOTAL (MG/L AS N) 0.840 0.690 0.800	GEN, NITRITE TOTAL (MG/L AS N)  0.010  0.010  0.020  0.010	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.850 0.700 0.820 0.380	GEN, AMMONIA TOTAL (MG/L AS N)  0.030  0.020  0.050	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.04 0.03 0.06	GEN, ORGANIC TOTAL (MG/L AS N) 0.12 0.07 0.08	GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N)  0.15 0.09 0.13 0.16	GEN, TOTAL (MG/L AS N) 1.0 0.79 0.95	GEN, TOTAL (MG/L AS NO3) 4.4 3.5 4.2	PHORUS TOTAL (MG/L AS P) 0.110 0.030 0.070
APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09	VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 30 49 60 63	TOTAL FIXED (MG/L) 101 121 111 125 93	GEN, NITRATE TOTAL (MG/L AS N) 0.840 0.690 0.800 0.370 0.450	GEN, NITRITE TOTAL (MG/L AS N) 0.010 0.010 0.020 0.010	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.850 0.700 0.820 0.380 0.460	GEN, AMMONIA TOTAL (MG/L AS N)  0.030  0.020  0.050  0.050	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.04 0.03 0.06	GEN, ORGANIC TOTAL (MG/L AS N) 0.12 0.07 0.08 0.14	GEN, AM- MONIA + ORGANIC TYOTAL (MG/L AS N) 0.15 0.09 0.13 0.16	GEN, TOTAL (MG/L AS N) 1.0 0.79 0.95 0.54	GEN, TOTAL (MG/L AS NO3) 4.4 3.5 4.2 2.4	PHORUS TOTAL (MG/L AS P) 0.110 0.030 0.070 0.090
APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  30 49 60 63 77 48	TOTAL FIXED (MG/L) 101 121 111 125 93 81	GEN, NITRATE TOTAL (MG/L AS N) 0.840 0.690 0.800 0.370 0.450 0.710	GEN, NITRITE TOTAL (MG/L AS N)  0.010 0.010 0.020 0.010 0.010 0.010	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.850 0.700 0.820 0.380 0.460 0.710	GEN, AMMONIA TOTAL (MG/L AS N)  0.030  0.020  0.050  0.050  0.050	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.04 0.03 0.06 0.03	GEN, ORGANIC TOTAL (MG/L AS N) 0.12 0.07 0.08 0.14 0.28	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.15 0.09 0.13 0.16 0.33	GEN, TOTAL (MG/L AS N) 1.0 0.79 0.95 0.54 0.79	GEN, TOTAL MG/L AS NO3) 4.4 3.5 4.2 2.4 3.5 3.6	PHORUS TOTAL (MG/L AS P) 0.110 0.030 0.070 0.090 0.080
APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11	VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 30 49 60 63 77 48 60 21 20	TOTAL FIXED (MG/L)  101 121 111 125 93 81 66 87 87	GEN, NITRATE TOTAL (MG/L AS N)  0.840 0.690 0.800 0.370 0.450 0.710 0.810	GEN, NITRITE TOTAL (MG/L AS N)  0.010 0.010 0.020 0.010 0.010 0.010 0.000	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.850 0.700 0.820 0.380 0.460 0.710 0.810 ND 0.660	GEN, AMMONIA TOTAL (MG/L AS N)  0.030 0.020 0.050 0.020 0.050 0.020 0.020 0.020	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.04  0.03  0.06  0.03  0.06  0.03  0.03  0.03	GEN, ORGANIC TOTAL (MG/L AS N) 0.12 0.07 0.08 0.14 0.28 0.10 0.19 0.19	GEN, AM- MONTA + ORGANIC TOTAL (MG/L AS N)  0.15 0.09 0.13 0.16 0.33 0.10 0.21 0.21 0.16	GEN, TOTAL (MG/L AS N) 1.0 0.79 0.95 0.54 0.79 0.81 1.0	GEN, TOTAL (MG/L AS NO3) 4.4 3.5 4.2 2.4 3.5 3.6 4.5	PHORUS TOTAL (MG/L AS P) 0.110 0.030 0.070 0.090 0.080 0.020
APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR	VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 30 49 60 63 77 48 60 21	TOTAL FIXED (MG/L) 101 121 111 125 93 81 66 87	GEN, NITRATE TOTAL (MG/L AS N)  0.840 0.690 0.800 0.370 0.450 0.710 0.810	GEN, NITRITE TOTAL (MG/L AS N)  0.010 0.010 0.020 0.010 0.010 0.010 0.000 ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.850 0.700 0.820 0.380 0.460 0.710 0.810 ND	GEN, AMMONIA TOTAL (MG/L AS N)  0.030 0.020 0.050 0.020 0.050 0.020 0.020	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.04 0.03 0.06 0.03 0.06 0.0	GEN, ORGANIC TOTAL (MG/L AS N) 0.12 0.07 0.08 0.14 0.28 0.10 0.19	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.15 0.09 0.13 0.16 0.33 0.10 0.21	GEN, TOTAL (MG/L AS N) 1.0 0.79 0.95 0.54 0.79 0.81	GEN, TOTAL (MG/L AS NO3) 4.4 3.5 4.2 2.4 3.5 3.6 4.5	PHORUS TOTAL (MG/L AS P) 0.110 0.030 0.070 0.090 0.080 0.020 0.240 0.070
APR 1987 24 MAY 12 JUN 12 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 11 23 JUN	VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 30 49 60 63 77 48 60 21 20 51 89	TOTAL FIXED (MG/L) 101 121 111 125 93 81 66 87 87 72 60 99	GEN, NITRATE TOTAL (MG/L AS N) 0.840 0.690 0.370 0.450 0.710 0.810	GEN, NITRITE TOTAL (MG/L AS N)  0.010 0.010 0.020 0.010 0.010 0.00 ND ND ND ND ND 0.030 0.000	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.950 0.700 0.820 0.380 0.460 0.710 0.810 ND 0.660 0.390 0.580 0.370	GEN, AMMONIA TOTAL (MG/L AS N)  0.030 0.020 0.050 0.050 0.000 0.020 0.020 0.010 0.00	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.04  0.03  0.06  0.03  0.06  0.03  0.01  0.00  0.01  0.08	GEN, ORGANIC TOTAL (MG/L AS N) 0.12 0.07 0.08 0.14 0.28 0.10 0.19 0.19 0.15 0.20	GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N)  0.15 0.09 0.13 0.16 0.33 0.10 0.21 0.21 0.16 0.20 0.16 0.52	GEN, TOTAL (MG/L AS N) 1.0 0.79 0.95 0.54 0.79 0.81 1.0  0.82 0.59	GEN, TOTAL (MG/L AS NO3) 4.4 3.5 4.2 2.4 3.5 3.6 4.5  3.6 2.6 3.3	PHORUS TOTAL (MG/L AS P) 0.110 0.030 0.070 0.090 0.080 0.020 0.240 0.070 0.030 0.020
APR 1987 24 MAY 12 JUN 12 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 11 23 JUN 14 AUG	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  30 49 60 63 77 48 60 21 20 51 89 44 67	TOTAL FIXED (MG/L)  101  121  111  125  93  81  66  87  72  60  99  103	GEN, NITRATE TOTAL (MG/L AS N)  0.840 0.690 0.800 0.370 0.450 0.710 0.810 0.550 0.370 0.440	GEN, NITRITE TOTAL (MG/L AS N)  0.010  0.010  0.020  0.010  0.000  ND ND ND ND 0.030 0.000  0.010	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.850 0.700 0.820 0.380 0.460 0.710 0.810 ND 0.660 0.390 0.580 0.370 0.450	GEN, AMMONIA TOTAL (MG/L AS N)  0.030  0.020  0.050  0.020  0.050  0.000  0.020  0.010  0.010  0.010  0.010	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.04 0.03 0.06 0.03 0.06 0.03 0.01 0.0 0.01 0.08 0.01	GEN, ORGANIC TOTAL (MG/L AS N) 0.12 0.07 0.08 0.14 0.28 0.10 0.19 0.19 0.15 0.20 0.15 0.46	GEN, AM- MONIA + CREANIC TYOTAL (MG/L AS N)  0.15 0.09 0.13 0.16 0.33 0.10 0.21 0.21 0.21 0.16 0.20 0.16 0.52	GEN, TOTAL (MG/L AS N) 1.0 0.79 0.54 0.79 0.81 1.0  0.82 0.59 0.74 0.89	GEN, TOTAL (MG/L) AS NO3) 4.4 3.5 4.2 2.4 3.5 3.6 4.5  3.6 2.6 3.3 3.9 2.8	PHORUS TOTAL (MG/L AS P)  0.110 0.030 0.070 0.090 0.080 0.020 0.240 0.070 0.030 0.020 0.140 0.030
APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 09 MAR 1988 29 APR 11 26 MAY 11 23 JUN 14 AUG 16 OCT	VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 30 49 60 63 77 48 60 21 20 51 89 44 67	TOTAL FIXED (MG/L)  101  121  111  125  93  81  66  87  72  60  99  103  109	GEN, NITRATE TOTAL (MG/L AS N) 0.840 0.690 0.800 0.370 0.450 0.710 0.810	GEN, NITRITE TOTAL (MG/L AS N)  0.010 0.010 0.020 0.010 0.000 ND ND ND ND 0.030 0.000 0.010	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.850 0.700 0.820 0.380 0.460 0.710 0.810 ND 0.660 0.390 0.580 0.370 0.450 0.450	GEN, AMMONIA TOTAL (MG/L AS N)  0.030 0.020 0.050 0.020 0.050 0.000 0.020 0.010 0.000 0.010 0.060 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.04  0.03  0.06  0.03  0.06  0.00  0.03  0.01  0.00  0.01  0.09  0.01	GEN, ORGANIC TOTAL (MG/L AS N) 0.12 0.07 0.08 0.14 0.28 0.10 0.19 0.19 0.15 0.20 0.15 0.46	GEN, AM- MONIA + ORGANIC (MG/L AS N)  0.15 0.09 0.13 0.16 0.33 0.10 0.21 0.21 0.16 0.20 0.16 0.52 0.19	GEN, TOTAL (MG/L AS N) 1.0 0.79 0.54 0.79 0.81 1.0  0.82 0.59 0.74 0.89 0.64	GEN, TOTAL (MG/L AS NO3) 4.4 3.5 4.2 2.4 3.5 3.6 4.5  3.6 2.6 3.3 3.9 2.8	PHORUS TOTAL (MG/L AS P) 0.110 0.030 0.070 0.090 0.020 0.240 0.070 0.030 0.020 0.140 0.030
APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 11 23 JUN 14 AUG 16	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  30 49 60 63 77 48 60 21 20 51 89 44 67	TOTAL FIXED (MG/L)  101  121  111  125  93  81  66  87  72  60  99  103	GEN, NITRATE TOTAL (MG/L AS N)  0.840 0.690 0.800 0.370 0.450 0.710 0.810 0.550 0.370 0.440	GEN, NITRITE TOTAL (MG/L AS N)  0.010  0.010  0.020  0.010  0.000  ND ND ND ND 0.030 0.000  0.010	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.850 0.700 0.820 0.380 0.460 0.710 0.810 ND 0.660 0.390 0.580 0.370 0.450	GEN, AMMONIA TOTAL (MG/L AS N)  0.030  0.020  0.050  0.020  0.050  0.000  0.020  0.010  0.010  0.010  0.010	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.04 0.03 0.06 0.03 0.06 0.03 0.01 0.0 0.01 0.08 0.01	GEN, ORGANIC TOTAL (MG/L AS N) 0.12 0.07 0.08 0.14 0.28 0.10 0.19 0.19 0.15 0.20 0.15 0.46	GEN, AM- MONIA + CORGANIC TYOTAL (MG/L AS N)  0.15 0.09 0.13 0.16 0.33 0.10 0.21 0.21 0.21 0.16 0.20 0.16 0.52	GEN, TOTAL (MG/L AS N) 1.0 0.79 0.54 0.79 0.81 1.0  0.82 0.59 0.74 0.89	GEN, TOTAL (MG/L) AS NO3) 4.4 3.5 4.2 2.4 3.5 3.6 4.5  3.6 2.6 3.3 3.9 2.8	PHORUS TOTAL (MG/L AS P)  0.110 0.030 0.070 0.090 0.080 0.020 0.240 0.070 0.030 0.020 0.140 0.030

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

### 01334805 HOOSIC RIVER AT EAGLE BRIDGE, NY - continued

DATE	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)
APR 1987												
24	0.090	0.28			<10		<10		460		7	
MAY 12	0.010	0.03			<10		<10		140		6	
JUN							_					
12 JUL	0.040	0.12			<10		10		600		7	
30 SEP	0.070	0.21			<10		20		180		<5	
21	0.020	0.06			<1	1.0	8	1	1600		<5	<5
ост 27	0.010	0.03			<1		8		190		<5	
DEC 09	0.210	0.64			<1		28		180		<b>&lt;</b> 5	
MAR 1988 29	0.030	0.09	730	30	<1	<1.0	7	1	1300	20	<b>&lt;</b> 5	<b>&lt;</b> 5
APR 11	0.020	0.06	170		1		4		270		<b>&lt;</b> 5	
26	0.00	0.0	90	40	1	<1.0	6	2	120	15	<b>&lt;</b> 5	<5
MAY 11	0.00	0.0	80		1		4		170		5	
23 JUN	0.00	0.0	1700	50	6	<1.0	14	2	3000	30	6	<5
14 AUG	0.00	0.0	100		1		7		170		<5	
16 OCT	0.030	0.09	510		<1		8		260		<5	
03	0.00	0.0	70		<1		7		230		<5	
NOV 01	0.130	0.40	70	20	<1	1.0	13	7	120	22	<5	<b>&lt;</b> 5
D <b>ATE</b>	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)	BROMO- FORM TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)
DATE APR 1987	NESE, TOTAL RECOV- ERABLE (UG/L	NESE, DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	FORM TOTAL	TETRA- CHLO- RIDE TOTAL	BENZENE TOTAL	DI- BROMO- METHANE TOTAL	ETHANE TOTAL
APR 1987 24	NESE, TOTAL RECOV- ERABLE (UG/L	NESE, DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	FORM TOTAL	TETRA- CHLO- RIDE TOTAL	BENZENE TOTAL	DI- BROMO- METHANE TOTAL	ETHANE TOTAL
APR 1987 24 MAY 12	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)	TETRA- CHLO- RIDE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	DI- BROMO- METHANE TOTAL (UG/L)	ETHANE TOTAL (UG/L)
APR 1987 24 MAY 12 JUN 12	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)	TETRA- CHLO- RIDE TOTAL (UG/L)	BENZENE TOTAL (UG/L) ND	DI- BROMO- METHANE TOTAL (UG/L)	TOTAL (UG/L)
APR 1987 24 MAY 12 JUN 12 JUL 30	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG) <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN) <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L) ND	TETRA- CHLO- RIDE TOTAL (UG/L) ND	BENZENE TOTAL (UG/L) ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND	ETHANE TOTAL (UG/L) ND
APR 1987 24 MAY 12 JUN 12	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 30 20	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <1 <1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 <10 10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L) ND ND ND	TETRA-CHLO-RIDE TOTAL (UG/L) ND ND	BENZENE TOTAL (UG/L) ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND	ETHANE TOTAL (UG/L) ND ND
APR 1987 24 MAY 12 JUN 30 SEP 21 OCT	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 30 20 50 40	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 0.20 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <1 <1 <1 2 3	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND  ND  ND	TETRA- CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND	BENZENE TOTAL (UG/L) ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND	ETHANE TOTAL (UG/L)  ND ND ND ND ND ND
APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 30 20 50 40 60	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <1 <1 <1 2 3 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND	TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND	BENZENE TOTAL (UG/L) ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND
APR 1987 24 MAY 12 JUN 30 SEP 21 OCT 27 DEC 09 MAR 1988	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 30 20 50 40 60 20	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <1 <1 <1 <1 2 3 <1 9	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10  <10  <10  <10  <10  <20	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND	BENZENE TOTAL (UG/L) ND ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND	ETHANE TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND
APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 CCT 27 DEC 09 MAR 1988 29 APR	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 30 20 50 40 60 20 20	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <1 <1 <1 2 3 <1 9 2	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	DIS- SOLVED (UG/L AS ZN) 10 10	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE TOTAL (UG/L) ND	BENZENE TOTAL (UG/L) ND ND ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 CCT 27 DEC 09 MAR 1988 29	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 30 20 50 40 60 20	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <1 <1 <1 <1 2 3 <1 9	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10  <10  <10  <10  <10  <20	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND	BENZENE TOTAL (UG/L) ND ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND	ETHANE TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND
APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)  30  20  40  60  20  20  60  30  20	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)  <1 <1 <1 2 3 <1 9 2 7 6	DIS- SOLVED (UG/L AS NI)  1 5	TOTAL RECOV-ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND	BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 11 23	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 30 20 50 40 60 20 60 30	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)  1 5	TOTAL RECOV- REABLE (UG/L AS ZN)  <10	DIS- SOLVED (UG/L AS ZN)  10 10 3	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE TOTAL (UG/L) ND	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	ETHANE TOTAL (UG/L)  ND
APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 09 ARR 1988 29 APR 11 26 MAY 11 23 JUN 14	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)  30  20  40  60  20  60  30  20  30	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	DIS- SOLVED (UG/L AS ZN)  10 10 <3	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	ETHANE TOTAL (UG/L)  ND
APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 11 23 JUN 14 AUG 16	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)  30  20  60  20  60  30  20  30  150	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)  <1 <1 <1 2 3 <1 9 2 76 4 6	DIS- SOLVED (UG/L AS NI)	TOTAL RECOVERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	DIS- SOLVED (UG/L AS ZN)  10 10 17	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	ETHANE TOTAL (UG/L)  ND
APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 11 23 JUN 14 AUG	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)  30  20  50  40  60  20  60  30  20  30  150	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOVERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)  <1 <1 <1 2 3 <1 9 2 7 6 4 6 6 8 8	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	DIS- SOLVED (UG/L AS ZN)  10 10 17	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	ETHANE TOTAL (UG/L)  ND

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 01334805 HOOSIC RIVER AT EAGLE BRIDGE, NY - continued

DATE	CHLORO- FORM TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)
APR 1987 24	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MAY 12	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
JUN 12	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
JUL 30	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
21	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
OCT 27	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DEC 09 MAR 1988	ND	ND	ИD	ND	ND	ND	ND	ND	ND	ND	ND
29 APR	ND	ND	ND	ND	ND	0.5	ND	ND	ND	ND	ND
11	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
26 May	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
11	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
23	ND	ND	ND	ND	ИD	ND	ND	ND	ND	ND	ND
JUN 14	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
AUG 16 OCT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
03	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
01	0.1	ND	ND	ИД	ИD	ND	ND	ND	ИD	ND	ND
DATE	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)
APR 1987	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
APR 1987 24 MAY	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
APR 1987 24 MAY 12 JUN	CHLORO- BENZENE TOTAL (UG/L) ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND	CHLORO- PROPANE TOTAL (UG/L) ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND	CHLORO- BENZENE TOTAL (UG/L) ND	CHLORO- BENZENE TOTAL (UG/L) ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND	CHLO- RIDE TOTAL (UG/L) ND
APR 1987 24 MAY 12	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
APR 1987 24 MAY 12 JUN 12 JUL 30 SEP	CHLORO- BENZENE TOTAL (UG/L) ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND	CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND 1.0  ND ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND
APR 1987 24 MAY 12 JUN 30 SEP 21 OCT	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND ND ND ND ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND 1.0  ND ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND ND	CHLO- RIDE TOTAL (UG/L)  ND ND ND ND ND
APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC	CHLORO- BENZENE TOTAL (UG/L) ND ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)  ND  ND  ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND 1.0  ND ND ND ND ND ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND ND ND ND	CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND
APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND ND ND ND ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND 1.0  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND ND	CHLO- RIDE TOTAL (UG/L)  ND ND ND ND ND
APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09	CHLORO- BENZENE TOTAL (UG/L) ND ND ND ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND 1.0  ND ND ND ND ND ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND ND ND ND	CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND
APR 1987 24 MAY 12 JUN 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHEME TOTAL (UG/L) ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENETOTAL (UG/L)  ND 1.0  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND	CHLOROBENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLOROBENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND 1.0  ND N	CHLORO-ETHYL-VINYL-ETHER TOTAL (UG/L)  ND	CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 11	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLOROBENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENETOTAL (UG/L)  ND 1.0  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 CCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 11 23 JUN	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND	CHLOROBENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLOROBENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENETOTAL (UG/L)  ND 1.0  ND N	CHLORO-ETHYL-VINYL-ETHER TOTAL (UG/L)  ND	CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 24 MAY 12 JUN 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 11 23	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND 1.0  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND
APR 1987 24 MAY 12 JUL 30 SEP 21 OCT 27 DEC 09 MAR 1988 29 APR 11 26 MAY 11 23 JUN 14 AUG	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHEME TOTAL (UG/L) ND ND ND ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLOROBENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND 1.0  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

01334805 HOOSIC RIVER AT EAGLE BRIDGE, NY - continued

# SUSPENDED SEDIMENT DISCHARGE

		DIS-		SEDI-
		CHARGE,		MENT,
		INST.	SEDI-	DIS-
		CUBIC	MENT,	CHARGE,
		FEET	SUS-	SUS-
DATE	TIME	PER	PENDED	PENDED
		SECOND	(MG/L)	(T/DAY)
MAY 1988				
11	1230	2770	4	30
23	1145	1370	124	459
JUN				
14	1200	291	4	3.1
AUG				
16	1200	702	27	51
OCT				
03	1130	222	1	0.60
NOV				
01	1200	345	1	0.93

### BED MATERIAL ANALYSES

DATE  OCT 1987 14  AUG 1988 16	T B TIME		INUM, RECOV. FRECOV. FRECOV. FRECOV. FRECOV. FRECOV. FRECOVER FREC	RECOV. M M BOT- F DM MA- FM FERIAL TO (UG/G I	IUM, R RECOV. FM I BOT- TO DM MA- T PERIAL (	ECOV. F BOT- FM M MA- TO ERIAL T UG/G (	ECOV. R BOT- FM M MA- TO ERIAL T UG/G (	ECOV. NI BOT- RI M MA- FM ERIAL TOI UG/G TI	ESE, RE ECOV. FM BOT- TOM M MA- TE ERIAL (U UG/G) AS	CCOV. REBOT- FM MA- TOM CRIAL TE		OV. PT- IA- IAL 'G
DATE	AROCLO 1221 IN BOTTOM MAT. (UG/KG	PR AROCL 124 1 PCB BOT.M	OR AROCLOI 8 1254 PCB AT BOT.MAY	R AROCLOF 1260 PCB F BOT.MAT	IN BOT- TOM MA- TERIAL	ALPHA BHC TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ATRA- ZINE, TOTAL IN BOT-	BETA BENZENE HEXA- CHLOR- IDE	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- PYRIFOS IN BOT. MAT. (UG/KG)	DELTA BENZENE HEXA- CHLOR- IDE BOT.MAT (UG/KG)	
OCT 1987 14 AUG 1988 16	 ND	3.	 0 4.0	 ND	 ND	nd nd	 ND	 ND	 ND	 ND	ND	
DATE	DI- AZINON TOTAL IN BOT TOM MA TERIA	TOTA - IN BO - TOM M L TERI	N, L ENDO- T- SULFAN A- ALPHA AL BOT.MA			ENDRIN, TOTAL IN BOT- TOM MA-	HYDE BOT.MAT		HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL.	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL	
OCT 1987 14 AUG 1988 16	(UG/KG	(UG/K	G) (UG/KG  ND	(UG/KG)  ND	(UG/KG)  ND	(UG/KG)	(UG/KG)  ND	(UG/KG)	ND	(UG/KG)  ND	(UG/KG)  ND	
DATE	METH- OXY- CHLOF TOT. I BOTTO MATL (UG/KG	MIRE R, TOTA IN IN BO DM TOM M TERI	L TOTAL T- IN BOT A- TOM MA AL TERIA	TOM MA-	TOM MA- TERIAL	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOM MA- TERIAL	% FINER	BED MAT. SIEVE DIAM. % FINER THAN .062 MM	BED MAT. SIEVE DIAM. % FINER THAN .125 MM	BED MAT. SIEVE DIAM. % FINER THAN 2.00 MM	
OCT 1987 14 AUG 1988 16	 ND	 ND	ND	 ND		 ND	 ND	0	3	15 100	100	

#### 01335770 HUDSON RIVER AT WATERFORD, NY

LOCATION.--Lat 42 47'19", long 73 40'28", at Saratoga-Rensselaer County line, Hydrologic Unit 02020003, at bridge on U.S. Highway 4 in Waterford, 0.4 mi upstream from first branch of Mohawk River, and 2.8 mi downstream from dam at lock 1 of the Champlain (Barge) Canal.

DRAINAGE AREA. -- 4,620 mi 2

PERIOD OF RECORD.--Water years 1952, 1969 to current year.

CHEMICAL DATA: 1952 (a), 1969 (d), 1970-71 (e), 1972-76 (d), 1977 (c), 1978-79 (d), 1980-84 (e), 1985 (c),
1986 (e), 1987 (b), 1988 (c), 1989 (a).

MINOR ELEMENTS DATA: 1952 (a), 1969 (d), 1970-71 (e), 1972-76 (d), 1977-79 (e), 1980-81 (d), 1982 (a), 1983 (b),
1987 (b), 1988 (c), 1989 (a).

PESTICIDE DATA: 1975 (b), 1976 (d), 1977-79 (e), 1980, 1982 (a), 1987 (b), 1988 (c), 1989 (a).

ORGANIC DATA: OC--1975-77 (c), 1978 (d), 1979 (c), 1988 (c), 1989 (a).

PCB--1975 (b), 1976 (d), 1977-84 (e), 1985 (c), 1986-87 (e), 1988 (d), 1989 (c).

PCN--1977-79 (e), 1980, 1982 (a).

NOTRIENT DATA: 1952 (a), 1969 (d), 1970-71 (e), 1972-76 (d), 1977-78 (e), 1979-81 (d), 1987 (b), 1988 (c), 1989 (a).

BIOLOGICAL DATA: Bacteria--1977 (c), 1978 (d), 1979 (e), 1980-81 (d), 1987 (b), 1988 (c), 1989 (a).

SEDIMENT DATA: 1975 (b), 1976-77 (e), 1978 (a), 1979 (b), 1980 (c), 1981-88 (e), 1989 (c).

PERIOD OF DAILY RECORD. -- SUSPENDED-SEDIMENT DISCHARGE: October 1976 to current year.

REMARKS.--Water-discharge data based on records obtained 01335754 Hudson River above Lock 1 near Waterford, upstream. Streamflow affected by regulation for power generation and diversion for canal operations.

EXTREMES FOR PERIOD OF DAILY RECORD .--

SUSPENDED-SEDIMENT CONCENTRATION: Maximum daily mean (water years 1977-89), 810 mg/L March 14, 1977; minimum daily mean, 1 mg/L on many days.

SUSPENDED-SEDIMENT DISCHARGE: Maximum daily (water years 1977-89), 119,000 tons March 14, 1977; minimum daily, 3.9 tons Sept. 7, 1981.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	FECAL COLI- FORM 24-HR MEM.FIL (COLS./ 100 ML)
APR 1987												
22 May	1000	9600					3.8				3900	190
15	1000	3500		198	7.6	16.5	1.4		9.2		1200	40.0
JUN 15	0930	4140		142	7.6	22.0	1.3		8.4		1000	180
JUL					, , ,							
29 SEP	1315	2090			7.7	25.5	1.5		8.4		500	160
25	1030	6650			7.4	14.0	4.5		10.2		2000	480
NOV												
02	0930	12700		125	7.3	7.0	4.5				7600	600
DEC 11	0930	9480		124	7.5	2.0	2.9				7000	760
APR 1988	0,50	3400		144	,.,	2.0	2.,,				1000	700
01	1000	12900	191	131		5.5	6.0	771	12.0	94	2800	210
12	1000	8450	280	116	6.6	9.0	3.0		11.7		6000	380
28	0900	4420	280	185	6.2	10.5	4.0		10.6		1500	40.0
MAY												
09	1000	5470	148	157	8.0	15.0	1.4	7 <b>6</b> 6	8.2	81	900	120
26	0930	7710	157	149	7.0	17.0	7.2		9.0		2200	180
JUN							2 2				000	
16	1200	2730	194	192	8.5	24.5	2.2		5.0		800	ND
AUG 19	0845	2630	189	184	7.1	25.5	0.30		7.7		0	120
OCT	0043	2030	103	104	,	23.3	0.30		,.,		ŭ	120
06	1300	E3350	240	192	7.2	16.0	1.3		9.4			
NOV 09	1000	12200	163	99	7.2	8.0	4.4		11.8		5500	150

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 01335770 HUDSON RIVER AT WATERFORD, NY - continued

DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, TOTAL (MG/L)
APR 1987												
22 MAY	46	14	2.8							64		94
15 JUN	65	20	3.6							109		126
15	48	15	2.5									104
JUL 29	66	22	2.7							120		127
SEP 25	54	17	2.9							102		156
NOV 02	47	14	2.9									94
DEC 11	45	13	3.0							81		86
APR 1988	50	15	3.0	5.2	0.70	35	1.4	0.6	0.20	95	69	106
01 12	44	13	2.7	4.7	0.70 0.70	29	14 15	9.6 9.4	0.20 0.10	72	63	90
28	66	20	3.9	8.3	0.90	45	18	14	0.10	110	92	129
MAY												
09 26	59 57	18 17	3.5 3.5	6.7	0.70	39	14 15	12 9.5	0.20	110 81	78 77	116 11 <b>4</b>
JUN				6.1	0.70	41			0.20			
16 AUG	65	20	3.6	9.2	0.90	42	17	16	0.10	126	92	134
19 OCT	65	20	3.6	9.9	1.1	40	18	16	0.10	124	93	130
06 NOV	65	20	3.6	8.8	1.4	38	20	17	0.10	112	94	116
09	37	11	2.2	4.2	0.70	23	15	7.2	0.10	68	54	84
DATE	SOLIDS, VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	RESIDUE TOTAL FIXED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS NH4)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS NO3)	PHOS-PHORUS TOTAL (MG/L AS P)
DATE APR 1987	VOLA- TILE ON IGNI- TION, TOTAL	TOTAL FIXED	GEN, NITRATE TOTAL (MG/L	GEN, NITRITE TOTAL (MG/L	GEN, NO2+NO3 TOTAL (MG/L	GEN, AMMONIA TOTAL (MG/L	GEN, AMMONIA TOTAL (MG/L	GEN, ORGANIC TOTAL (MG/L	GEN, AM- MONIA + ORGANIC TOTAL (MG/L	GEN, TOTAL (MG/L	GEN, TOTAL (MG/L	PHORUS TOTAL (MG/L
	VOLA- TILE ON IGNI- TION, TOTAL	TOTAL FIXED	GEN, NITRATE TOTAL (MG/L	GEN, NITRITE TOTAL (MG/L	GEN, NO2+NO3 TOTAL (MG/L	GEN, AMMONIA TOTAL (MG/L	GEN, AMMONIA TOTAL (MG/L	GEN, ORGANIC TOTAL (MG/L	GEN, AM- MONIA + ORGANIC TOTAL (MG/L	GEN, TOTAL (MG/L	GEN, TOTAL (MG/L	PHORUS TOTAL (MG/L
APR 1987 22 MAY 15	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L)	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS NO3)	PHORUS TOTAL (MG/L AS P)
APR 1987 22 MAY 15 JUN 15	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L)	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS NO3)	PHORUS TOTAL (MG/L AS P)
APR 1987 22 MAY 15 JUN 15 JUL 29	VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 40	TOTAL FIXED (MG/L) 53	GEN, NITRATE TOTAL (MG/L AS N) 0.500	GEN, NITRITE TOTAL (MG/L AS N) 0.010	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.510 0.670	GEN, AMMONIA TOTAL (MG/L AS N) 0.020 0.190	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.03	GEN, ORGANIC TOTAL (MG/L AS N) 0.35	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.37	GEN, TOTAL (MG/L AS N) 0.88	GEN, TOTAL (MG/L AS NO3) 3.9	PHORUS TOTAL (MG/L AS P) 0.030
APR 1987 22 MAY 15 JUN 15 JUL 29 SEP 25	VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 40 33	TOTAL FIXED (MG/L) 53 92 65	GEN, NITRATE TOTAL (MG/L AS N) 0.500 0.620	GEN, NITRITE TOTAL (MG/L AS N) 0.010 0.050	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.510 0.670 0.430	GEN, AMMONIA TOTAL (MG/L AS N) 0.020 0.190 0.060	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.03 0.24	GEN, ORGANIC TOTAL (MG/L AS N) 0.35 0.01	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.37 0.20	GEN, TOTAL (MG/L AS N) 0.88 0.87	GEN, TOTAL (MG/L AS NO3) 3.9 3.9	PHORUS TOTAL (MG/L AS P) 0.030 0.030
APR 1987 22 MAY 15 JUN 15 JUL 29 SEP 25 NOV 02	VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 40 33 48 56	TOTAL FIXED (MG/L) 53 92 65 90	GEN, NITRATE TOTAL (MG/L AS N) 0.500 0.620 0.420	GEN, NITRITE TOTAL (MG/L AS N)  0.010  0.050  0.010  0.010	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.510 0.670 0.430 0.630	GEN, AMMONIA TOTAL (MG/L AS N) 0.020 0.190 0.060	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.03 0.24 0.08	GEN, ORGANIC TOTAL (MG/L AS N) 0.35 0.01 0.32	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.37  0.20  0.38  0.27	GEN, TOTAL (MG/L AS N) 0.88 0.87 0.81	GEN, TOTAL (MG/L AS NO3) 3.9 3.9 3.6 4.0	PHORUS TOTAL (MG/L AS P) 0.030 0.030 0.030
APR 1987 22 MAY 15 JUN 15 JUL 29 SEP 25 NOV 02 DEC 11	VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 40 33 48 56	TOTAL FIXED (MG/L) 53 92 65 90 108	GEN, NITRATE TOTAL (MG/L AS N) 0.500 0.620 0.420 0.620 0.340	GEN, NITRITE TOTAL (MG/L AS N) 0.010 0.050 0.010 0.010	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.510 0.670 0.430 0.630 0.340	GEN, AMMONIA TOTAL (MG/L AS N) 0.020 0.190 0.060 0.020 0.040	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.03 0.24 0.08 0.03	GEN, ORGANIC TOTAL (MG/L AS N) 0.35 0.01 0.32 0.25	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.37  0.20  0.38  0.27	GEN, TOTAL (MG/L AS N) 0.88 0.87 0.81 0.90	GEN, TOTAL (MG/L AS NO3) 3.9 3.9 3.6 4.0 2.9	PHORUS TOTAL (MG/L AS P) 0.030 0.030 0.030 0.030
APR 1987 22 MAY 15 JUN 15 JUL 29 SEP 25 NOV 02 DEC 11 APR 1988	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  40 33 48 56 48	TOTAL FIXED (MG/L) 53 92 65 90 108  55	GEN, NITRATE TOTAL (MG/L AS N) 0.500 0.620 0.420 0.620 0.340 0.350	GEN, NITRITE TOTAL (MG/L AS N)  0.010  0.050  0.010  0.010  0.000  0.00	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.510 0.670 0.430 0.630 0.340 0.350	GEN, AMMONIA TOTAL (MG/L AS N) 0.020 0.190 0.060 0.020 0.040 0.020 0.070	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.03 0.24 0.08 0.03 0.05 0.03	GEN, ORGANIC TOTAL (MG/L AS N) 0.35 0.01 0.32 0.25 0.27 0.16	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.37  0.20  0.38  0.27  0.31  0.18  0.37	GEN, TOTAL (MG/L AS N) 0.88 0.87 0.81 0.90 0.65 0.53	GEN, TOTAL (MG/L AS NO3) 3.9 3.6 4.0 2.9 2.3	PHORUS TOTAL (MG/L AS P) 0.030 0.030 0.030 0.030 0.030
APR 1987 22 MAY 15 JUN 15 JUL 29 SEP 25 NOV 02 DEC 11	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  40  33  48  56  48	TOTAL FIXED (MG/L) 53 92 65 90 108	GEN, NITRATE TOTAL (MG/L AS N) 0.500 0.620 0.420 0.620 0.340 0.350	GEN, NITRITE TOTAL (MG/L AS N) 0.010 0.050 0.010 0.010 0.00	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.510 0.670 0.430 0.630 0.340 0.350	GEN, AMMONIA TOTAL (MG/L AS N) 0.020 0.190 0.060 0.020 0.040	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.03 0.24 0.08 0.03 0.05	GEN, ORGANIC TOTAL (MG/L AS N) 0.35 0.01 0.32 0.25 0.27 0.16 0.30	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.37  0.20  0.38  0.27  0.31  0.18	GEN, TOTAL (MG/L AS N) 0.88 0.87 0.81 0.90 0.65	GEN, TOTAL (MG/L AS NO3) 3.9 3.6 4.0 2.9	PHORUS TOTAL (MG/L AS P) 0.030 0.030 0.030 0.030 0.030
APR 1987 22 MAY 15 JUN 15 JUL 29 SEP 25 NOV 02 DEC 11 APR 1988 01 12 28	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  40  33  48  56  48   43	TOTAL FIXED (MG/L) 53 92 65 90 108  55	GEN, NITRATE TOTAL (MG/L AS N) 0.500 0.620 0.420 0.620 0.340 0.350 0.380	GEN, NITRITE TOTAL (MG/L AS N)  0.010 0.050 0.010 0.010 0.00 0.00 0.00	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.510 0.670 0.430 0.630 0.340 0.350 0.380	GEN, AMMONIA TOTAL (MG/L AS N) 0.020 0.190 0.060 0.020 0.040 0.020 0.070	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.03  0.24  0.08  0.03  0.05  0.03  0.09	GEN, ORGANIC TOTAL (MG/L AS N) 0.35 0.01 0.32 0.25 0.27 0.16	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.37  0.20  0.38  0.27  0.31  0.18  0.37	GEN, TOTAL (MG/L AS N) 0.88 0.87 0.81 0.90 0.65 0.53 0.75	GEN, TOTAL (MG/L AS NO3) 3.9 3.6 4.0 2.9 2.3 3.3	PHORUS TOTAL (MG/L AS P) 0.030 0.030 0.030 0.030 0.030 0.030
APR 1987 22 MAY 15 JUN 15 JUL 29 SEP 25 NOV 02 DEC 11 APR 1988 01 12 28 MAY	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  40  33  48  56  48   43  24 14 40	TOTAL FIXED (MG/L)  53  92  65  90  108   55  82  76  89	GEN, NITRATE TOTAL (MG/L AS N) 0.500 0.620 0.420 0.620 0.340 0.350 0.380	GEN, NITRITE TOTAL (MG/L AS N)  0.010 0.050 0.010 0.010 0.00 0.00 0.00	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.510  0.670  0.430  0.340  0.350  0.380  0.560  0.630  0.390	GEN, AMMONIA TOTAL (MG/L AS N)  0.020 0.190 0.060 0.020 0.040 0.020 0.070 0.040 0.030 0.050	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.03  0.24  0.08  0.03  0.05  0.03  0.05  0.04  0.06	GEN, ORGANIC TOTAL (MG/L AS N) 0.35 0.01 0.32 0.25 0.27 0.16 0.30	GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N)  0.37  0.20  0.38  0.27  0.31  0.18  0.37  0.20	GEN, TOTAL (MG/L AS N) 0.88 0.87 0.81 0.90 0.65 0.53 0.75 0.88 0.87 0.79	GEN, TOTAL (MG/L AS NO3) 3.9 3.6 4.0 2.9 2.3 3.3 3.9 3.9 3.5	PHORUS TOTAL (MG/L AS P) 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030
APR 1987 22 MAY 15 JUN 15 JUL 29 SEP 25 NOV 02 DEC 11 APR 1988 01 12 28 MAY 09 26	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  40  33  48  56  48   43  24 14	TOTAL FIXED (MG/L) 53 92 65 90 108  55 82 76	GEN, NITRATE TOTAL (MG/L AS N) 0.500 0.620 0.420 0.340 0.350 0.380 0.550 0.630	GEN, NITRITE TOTAL (MG/L AS N) 0.010 0.050 0.010 0.00 0.00 0.00	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.510 0.670 0.430 0.630 0.340 0.350 0.380 0.560 0.630	GEN, AMMONIA TOTAL (MG/L AS N) 0.020 0.190 0.060 0.020 0.040 0.070	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.03  0.24  0.08  0.03  0.05  0.03	GEN, ORGANIC TOTAL (MG/L AS N) 0.35 0.01 0.32 0.25 0.27 0.16 0.30	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.37 0.20 0.38 0.27 0.31 0.18 0.37	GEN, TOTAL (MG/L AS N) 0.88 0.87 0.81 0.90 0.65 0.53 0.75	GEN, TOTAL (MG/L AS NO3) 3.9 3.6 4.0 2.9 2.3 3.3	PHORUS TOTAL (MG/L AS P) 0.030 0.030 0.030 0.030 0.030 0.030 0.030
APR 1987 22 MAY 15 JUN 15 SEP 25 NOV 02 DEC 11 APR 1988 01 12 28 MAY	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  40  33  48  56  48   43  24  14  40  53	TOTAL FIXED (MG/L)  53  92  65  90  108   55  82  76  89  63	GEN, NITRATE TOTAL (MG/L AS N) 0.500 0.620 0.420 0.350 0.380 0.550 0.630 0.380	GEN, NITRITE TOTAL (MG/L AS N)  0.010 0.050 0.010 0.000 0.000 0.000 0.000 0.010 0.010 0.010 0.010	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.510  0.670  0.430  0.340  0.350  0.380  0.560  0.630  0.390  0.360	GEN, AMMONIA TOTAL (MG/L AS N)  0.020 0.190 0.060 0.020 0.040 0.020 0.070 0.040 0.030 0.050	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.03  0.24  0.08  0.03  0.05  0.03  0.09  0.05  0.04  0.06	GEN, ORGANIC TOTAL (MG/L AS N) 0.35 0.01 0.32 0.25 0.27 0.16 0.30 0.28 0.21 0.35	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.37  0.20  0.38  0.27  0.31  0.18  0.37  0.32  0.24  0.40  0.32	GEN, TOTAL (MG/L AS N) 0.88 0.87 0.90 0.65 0.53 0.75 0.88 0.87 0.79	GEN, TOTAL (MG/L) AS NO3) 3.9 3.6 4.0 2.9 2.3 3.3 3.9 3.9 3.5	PHORUS TOTAL (MG/L AS P) 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030
APR 1987 22 MAY 15 JUN 15 JUL 29 SEP 25 NOV 02 DEC 11 APR 1988 01 12 28 MAY 09 JUN	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  40  33  48  56  48   43  24  14  40  53  31	TOTAL FIXED (MG/L)  53  92  65  90  108   55  82  76  89  63  83	GEN, NITRATE TOTAL (MG/L AS N) 0.500 0.620 0.420 0.350 0.350 0.380 0.350 0.370	GEN, NITRITE TOTAL (MG/L AS N)  0.010 0.050 0.010 0.000 0.000 0.000 0.000 0.010 0.010 0.010 0.010 0.010	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.510  0.670  0.430  0.340  0.350  0.380  0.560  0.630  0.390  0.360  0.380	GEN, AMMONIA TOTAL (MG/L AS N)  0.020 0.190 0.060 0.020 0.040 0.020 0.070 0.040 0.030 0.050	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.03  0.24  0.08  0.03  0.05  0.03  0.05  0.04  0.06	GEN, ORGANIC TOTAL (MG/L AS N) 0.35 0.01 0.32 0.25 0.27 0.16 0.30 0.28 0.21 0.35	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.37  0.20  0.38  0.27  0.31  0.18  0.37  0.32  0.24  0.40  0.32  0.42	GEN, TOTAL (MG/L AS N) 0.88 0.87 0.81 0.90 0.65 0.53 0.75 0.88 0.87 0.79	GEN, TOTAL (MG/L AS NO3) 3.9 3.6 4.0 2.9 2.3 3.3 3.9 3.5 3.0 3.5	PHORUS TOTAL (MG/L AS P) 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030
APR 1987 22 MAY 15 JUN 15 JUL 29 SEP 25 NOV 02 DEC 11 APR 1988 01 12 28 MAY 09 26 JUN 16 AUG 19 OCT	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  40 33 48 56 48 43 24 14 40 53 31 51	TOTAL FIXED (MG/L)  53  92  65  90  108   55  82  76  89  63  83  83  46	GEN, NITRATE TOTAL (MG/L AS N) 0.500 0.620 0.420 0.350 0.350 0.380 0.350 0.370 0.370	GEN, NITRITE TOTAL (MG/L AS N)  0.010 0.050 0.010 0.010 0.00 0.00 0.00	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.510  0.670  0.430  0.340  0.350  0.380  0.560  0.630  0.390  0.360  0.380  0.420  0.450	GEN, AMMONIA TOTAL (MG/L AS N)  0.020 0.190 0.060 0.020 0.040 0.020 0.070 0.040 0.050 0.030 0.050 0.010 0.030	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.03  0.24  0.08  0.03  0.05  0.03  0.05  0.04  0.06  0.06  0.04  0.06	GEN, ORGANIC TOTAL (MG/L AS N) 0.35 0.01 0.32 0.25 0.27 0.16 0.30 0.28 0.21 0.35 0.29 0.37	GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N)  0.37  0.20  0.38  0.27  0.31  0.18  0.37  0.32  0.24  0.40  0.32  0.42  0.38  0.51	GEN, TOTAL (MG/L AS N) 0.88 0.87 0.81 0.90 0.65 0.53 0.75 0.88 0.87 0.79 0.68 0.80	GEN, TOTAL (MG/L AS NO3) 3.9 3.6 4.0 2.9 2.3 3.3 3.9 3.5 3.5 3.5	PHORUS TOTAL (MG/L AS P) 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030
APR 1987 22 MAY 15 JUN 15 JUL 29 SEP 25 NOV 02 DEC 11 APR 1988 01 12 28 MAY 09 26 JUN 16 AUG 19	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  40  33  48  56  48   43  24  14  40  53  31  51	TOTAL FIXED (MG/L)  53  92  65  90  108   55  82  76  89  63  83  83	GEN, NITRATE TOTAL (MG/L AS N) 0.500 0.620 0.420 0.350 0.380 0.550 0.630 0.380 0.350 0.370	GEN, NITRITE TOTAL (MG/L AS N)  0.010 0.050 0.010 0.000 0.000 0.000 0.010 0.000 0.010 0.010 0.010 0.010 0.010 0.010	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.510  0.670  0.430  0.340  0.350  0.380  0.560  0.630  0.390  0.360  0.380  0.360  0.380  0.420	GEN, AMMONIA TOTAL (MG/L AS N)  0.020 0.190 0.060 0.020 0.040 0.020 0.070 0.040 0.030 0.050 0.030 0.050	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.03  0.24  0.08  0.03  0.05  0.03  0.09  0.05  0.04  0.06  0.04  0.06	GEN, ORGANIC TOTAL (MG/L AS N) 0.35 0.01 0.32 0.25 0.27 0.16 0.30 0.28 0.21 0.35	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.37  0.20  0.38  0.27  0.31  0.18  0.37  0.32  0.40  0.32  0.40  0.32  0.42	GEN, TOTAL (MG/L AS N) 0.88 0.87 0.90 0.65 0.53 0.75 0.88 0.87 0.79	GEN, TOTAL (MG/L AS NO3) 3.9 3.6 4.0 2.9 2.3 3.3 3.9 3.9 3.5	PHORUS TOTAL (MG/L AS P)  0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.050 0.030 0.030 0.040 0.040 0.040

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 01335770 HUDSON RIVER AT WATERFORD, NY - continued

DATE	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)
APR 1987												
22 MAY	0.00	0.0			<10		<10		370		<100	
15					<10		20		240		41	
JUN 15	0.010	0.03			<10		<10		260		13	
JUL 29	0.00	0.0			<10	<1.0	20	3	220		<b>&lt;</b> 5	<b>&lt;</b> 5
SEP 25	0.00	0.0			<1		6		380		<b>&lt;</b> 5	
NOV 02	0.00	0.0			<1	1.0	5	2	370		<b>&lt;</b> 5	<b>&lt;</b> 5
DEC	0.00	0.0			<1		7		320		<b>&lt;</b> 5	
APR 1988												
01 12	0.010 0.00	0.03 0.0	210 170	40	1 <1	<1.0	4	2	420 230	60 	<5 10	<b>&lt;</b> 5
28	0.00	0.0	190	40	2	<1.0	16	3	360	68	<b>&lt;</b> 5	<b>&lt;</b> 5
MAY												
09 26	0.00 0.00	0.0 0.0	140 280	30	1 2	 <1.0	5 13	1	260 530	 74	<5 6	 <b>&lt;</b> 5
JUN 16	ND		140		<1		7		300		<b>&lt;</b> 5	
AUG											<b>&lt;</b> 5	
19 ○○T	0.010	0.03	80		2		8		130			
06 NOV	0.00	0.0	150		<1		10		280		<b>&lt;</b> 5	
<b>0</b> 9	ND		370	50	<1	1.0	7	3	580	84	<b>&lt;</b> 5	<b>&lt;</b> 5
DATE	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL, RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)	PHENOL (C6H- 5OH) TOTAL (UG/L)	BROMO- FORM TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)
APR 1987	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL , RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L AS ZN)	(C6H- 5OH) TOTAL (UG/L)	FORM TOTAL (UG/L)	TETRA- CHLO- RIDE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	DI- BROMO- METHANE TOTAL (UG/L)
	NESE, TOTAL RECOV- ERABLE (UG/L	NESE, DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	TOTAL , RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	(C6H- 5OH) TOTAL	FORM TOTAL	TETRA- CHLO- RIDE TOTAL	BENZENE TOTAL	DI- BROMO- METHANE TOTAL
APR 1987 22	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL , RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L AS ZN)	(C6H- 5OH) TOTAL (UG/L)	FORM TOTAL (UG/L)	TETRA- CHLO- RIDE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	DI- BROMO- METHANE TOTAL (UG/L)
APR 1987 22 MAY 15	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL , RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L AS ZN)	(C6H- 5OH) TOTAL (UG/L)	FORM TOTAL (UG/L)	TETRA- CHLO- RIDE TOTAL (UG/L)	BENZENE TOTAL (UG/L) ND	DI- BROMO- METHANE TOTAL (UG/L)
APR 1987 22 MAY 15 JUN 15 JUL 29	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 40	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG) <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN) 20	DIS- SOLVED (UG/L AS ZN)	(C6H- 5OH) TOTAL (UG/L)	FORM TOTAL (UG/L) ND	TETRA- CHLO- RIDE TOTAL (UG/L) ND	BENZENE TOTAL (UG/L) ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND
APR 1987 22 MAY 15 JUN 15 JUL 29 SEP 25	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 40 40	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  20 20	DIS- SOLVED (UG/L AS ZN)	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L) ND ND ND	TETRA- CHLO- RIDE TOTAL (UG/L) ND ND	BENZENE TOTAL (UG/L) ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND
APR 1987 22 MAY 15 JUN 15 JUL 29 SEP 25 NOV 02	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 40 40 30	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 <0.10 <0.20	TOTAL , RECOV- ERABLE (UG/L AS NI) <100 <1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  20 20 20 <10	DIS- SOLVED (UG/L AS ZN)	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND  ND  ND	TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND	BENZENE TOTAL (UG/L) ND ND ND	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND
APR 1987 22 MAY 15 JUN 15 JUL 29 SEP 25 NOV 02 DEC 11	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 40 40 30 50 40 30	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 <0.10  <0.10  <0.10	TOTAL RECOV- RECOV- ERABLE (UG/L AS NI) <100 <1 <1 2 1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  20 20 20 <10 <10	DIS- SOLVED (UG/L AS ZN)	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND	TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND	BENZENE TOTAL (UG/L) ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND
APR 1987 22 MAY 15 JUN 15 JUL 29 SEP 25 NOV 02 DEC 11 APR 1988	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 40 40 30 50 40 30	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOVERABLE (UG/L AS HG)  <0.10  <0.10  <0.10  <0.10  <0.10  <0.10  <0.10	TOTAL , RECOV- RECOV- ERABLE (UG/L AS NI) <100 <1 <1 <1 <2 <1 <2 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS ZN)  20 20 20 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN) 10 <10	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND	BENZENE TOTAL (UG/L) ND ND ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 22 MAY 15 JUN 15 JUL 29 SEP 25 NOV 02 DEC 11	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 40 40 30 50 40 30	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 0.20 <0.10 0.10	TOTAL , RECOV-ERABLE (UG/L AS NI)  <100 <1 <1 2 1 <2	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  20 20 20 <10 <10 <10	DIS- SOLVED (UG/L AS ZN) 10 <10	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND	BENZENE TOTAL (UG/L) ND ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L)  ND ND ND ND ND ND ND
APR 1987 22 MAY 15 JUN 15 JUL 29 SEP 25 NOV 02 DEC 11 APR 1988 01 12 28	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 40 40 30 40 30 40	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL , RECOV- RECOV- ERABLE (UG/L AS NI) <100 <1 <1 <1 <2 1 <2 <1 <2 <1 2	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS ZN)  20 20 20 <10 <10 <10 10	DIS- SOLVED (UG/L AS ZN) 10 <10 <10	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND	BENZENE TOTAL (UG/L) ND ND ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 22 MAY 15 JUN 15 JUL 29 SEP 25 NOV 02 DEC 11 APR 1988 01 12 28 MAY	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 40 40 30 40 40 40 40 50	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10  <0.10  <0.10  <0.10 <0.10 <0.10 <0.10	TOTAL , RECOV- ERABLE (UG/L AS NI) <100 <1 <1 <1 2 1 <2 <1 26 7	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS ZN)  20 20 20 <10 <10 <10 <10 10 10 10	DIS- SOLVED (UG/L AS ZN)  10 <10 10	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 22 MAY 15 JUN 15 JUL 29 SEP 25 NOV 02 DEC 11 APR 1988 01 28 MAY 09 26	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 40 40 30 50 40 30 40 40	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10  <0.10  <0.10  <0.10  <0.10  <1.10 <0.10  <0.10 <1.10 <1.10 <1.10 <1.10 <1.10 <1.10 <1.10 <1.10 <1.10 <1.10 <1.10 <1.10 <1.10 <1.10 <1.10 <1.10 <1.10 <1.10	TOTAL RECOV- RECOV- ERABLE (UG/L AS NI)  <100 <1 <1 2 1 <2 <1 2 6	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS ZN)  20 20 20 <10 <10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)  10 <10 <10	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	BENZENE TOTAL (UG/L) ND ND ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L)  ND
APR 1987 22 MAY 15 JUN 15 JUL 29 SEP 25 NOV 02 DEC 11 APR 1988 01 12 28 MAY 09	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)  40  40  30  40  40  40  50  50	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL , RECOV- ERABLE (UG/L AS NI) <100 <1 <1 <2 1 <2 <1 2 66 7 33	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS ZN)  20 20 20 <10 <10 <10 10 <10 10 <10 10 <10 10 <10 10	DIS- SOLVED (UG/L AS ZN)  10 <10 10 10	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L)  ND
APR 1987 22 MAY 15 JUN 15 JUL 29 SEP 25 NOV 02 DEC 11 APR 1988 01 122 28 MAY 09 210 JUN	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 40 40 30 40 40 40 50 50 60	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 0.20 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV- RECOV- ERABLE (UG/L AS NI)  <100  <1  <1  <1  2  1  <2  <1  2  6  7  3  7	DIS- SOLVED (UG/L AS NI)  <1 2 3 1 <1	TOTAL RECOV-ERABLE (UG/L AS ZN)  20 20 20 <10 <10 <10 <10 <10 <10 10 <10 10	DIS- SOLVED (UG/L AS ZN)  10 <10 10 6	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 22 MAY 15 JUN 15 JUL 29 SEP 25 NOV 02 DEC 11 APR 1988 01 12 28 MAY 09 26 JUN 16 AUG 19 OCT	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 40 40 30 40 40 50 50 60 60	NESE, DIS- SOLVED (UG/L AS MN)  20 33 21	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL , RECOV- RECOV- ERABLE (UG/L AS NI) <100 <1 <1 <1 <2 1 <2 <1 <2 66 7 37 37 33 33 33	DIS- SOLVED (UG/L AS NI)  <1 2 1 <1 <1 <1 <1 <1	TOTAL RECOVERABLE (UG/L AS ZN)  20 20 20 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	DIS- SOLVED (UG/L AS ZN)  10 <10 10 6	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	DI- BROMO- METHANE TOTAL (UG/L)  ND
APR 1987 22 MAY 15 JUN 15 JUL 29 SEP 25 NOV 02 DEC 11 APR 1988 01 28 MAY 09 26 JUN 16 AUG 19	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)  40  40  30  40  40  30  50  60  60	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10  <0.10  <0.10  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL , RECOV- REABLE (UG/L AS NI)  <100 <1 <1 <2 <1 <2 <1 26 7 37 3	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS ZN)  20 20 20 <10 <10 <10 10 <10 10 <10 10 <10 10 <10 10	DIS- SOLVED (UG/L AS ZN)  10 <10 10 6	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	DI- BROMO- METHANE TOTAL (UG/L)  ND

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 01335770 HUDSON RIVER AT WATERFORD, NY - continued

DATE	CHLORO- ETHANE TOTAL (UG/L)	CHLORO- FORM TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)
APR 1987												
22	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MAY	110											
15 JUN	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
15	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
JUL												
29	ND	ИD	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SEP	***											
25 NOV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
02	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DEC												
11	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
APR 1988											_	
01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
12	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
28 MAY	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
09			ND									
26	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
JUN												
16	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
AUG												
19 ∝T	~ -											
06	~ =											
NOV												
09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

DATE	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)
APR 1987											
22	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MAY											
15	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
JUN							2.0			***	
15 JUL	ND	ND	ND	ND	ND	ND	3.0	ND	ND	ND	ND
29	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SEP		2	112	112	110	112	112	110	ND	142	110
25	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
NOV											
02	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DEC											
11	ND	ND	ND	ИD	ИD	ND	ND	ND	ND	ND	ND
APR 1988 01	ND	ND	ND	ND	ND	MD	MD	370	ND	ND.	ND
12	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND
28	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MAY							1.2			110	
09								ND	ND		ND
26	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
JUN											
16	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
AUG 19											
19 ⊙CT											
06											
NOV											
09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

01335770 HUDSON RIVER AT WATERFORD, NY - continued

### SUSPENDED SEDIMENT DISCHARGE

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)
APR 1987				
22	1000	9600	24	622
MAY 1988				
09	1000	5470	3	44
26 <i>.</i>	0930	7710	8	167
JUN				
16	1200	2730	6	44
AUG				
19	0845	2630	6	43
OCT				
06	1300	E3350	3	
NOV				
09	1000	12200	14	461

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

#### 01342602 MOHAWK RIVER NEAR UTICA, NY

LOCATION.--Lat 43 05'26", long 75 09'27", Herkimer County, Hydrologic Unit 02020004, at bridge on Upper Dyke Road, 2.0 mi east of city line of Utica.

DRAINAGE AREA. -- 553 mi 2 .

PERIOD OF RECORD.--Water years 1972-73, 1988 to current year.

CHEMICAL DATA: 1988 (b), 1989 (a).

MINOR ELEMENTS DATA: 1972-73, 1988 (b), 1989 (a).

PESTICIDE DATA: 1988 (b), 1989 (a).

ORGANIC DATA: 0C--1988 (b), 1989 (a).

NUTRIENT DATA: 1988 (b), 1989 (a).

BIOLOGICAL DATA:

Bacteria--1988 (b), 1989 (a).

REMARKS.--Water-discharge data obtained from a discharge rating developed for this site. During canal navigation season, water is received from Black River basin through Black River Canal flowing south. Water is diverted into (or may occasionally be received from) Oswego River basin through summit level of Erie (Barge) Canal between New London and Utica. Diurnal fluctuation caused by powerplants and locks and dams on Erie (Barge) Canal. Regulation by Delta Reservoir.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	FECAL COLI- FORM 24-HR MEM.FIL (COLS./ 100 ML)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
APR 1988 11 MAY	1115	1200	343	7.9	6.0	12	10.8			140	41	8.5
03 JUN	1000	1140	327	7.6	7.5	7.0	10.8	9600	900	140	40	8.7
01 AUG	0920	275	472	7.4	18.0	12	8.0	4800	500	190	53	13
04 OCT	0900	210	401	7.3	25.5	27	4.8	3400	500	150	44	10
06	0900	254	391	7.6	14.0	8.8	11.0	43000	5100	140	43	9.1
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, TOTAL (MG/L)	SOLIDS, VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	RESIDUE TOTAL FIXED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)
APR 1988 11	12	1.5	105	29	19	0.10	212	174	244	108	136	1.05
MAY												
03 JUN	12	1.4	99	30	19	0.30	180	171	188	72	116	0.940
01 <b>AU</b> G	21	2.2	131	49	32	0.40	284	249	500	92	408	1.36
04 OCT	21	2.2	104	41	28	0.50	256	209	384	124	260	1.57
06	18	1.9	107	31	23	0.10	224	191	252	68	184	1.54
DATE	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS NH4)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS NO3)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)
APR 1988								_				
11 MAY	0.010	1.06	0.220	0.28	0.32	0.54	1.6	7.1	0.070	0.020	0.06	360
03 JUN	0.020	0.960	0.140	0.18	0.23	0.37	1.3	5.9	0.100	0.020	0.06	350
01 AUG	0.110	1.47	0.660	0.85	0.34	1.0	2.5	11	0.250	0.070	0.21	350
04 OCT	0.030	1.60	0.200	0.26	0.45	0.65	2.3	10	0.190	0.030	0.09	1200
06	0.00	1.54	0.100	0.13	0.39	0.49	2.0	9.0	0.240	0.110	0.34	290

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

### 01342602 MOHAWK RIVER NEAR UTICA, NY - continued

DATE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOL (C6H- 5OH) TOTAL (UG/L)	BROMO- FORM TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)
APR 1988				_			_					
11 MAY	2	13	880	<b>&lt;</b> 5	70	<0.10	3	20	ND	ND	ND	ND
03	6	14	860	<b>&lt;</b> 5	80	0.10	5	30	ND	0	0	0.0
01 AUG	2	20	930	7	160	0.50	6	70				
04 OCT	1	21	2500	13	150	0.30	18	30	ND	ND	ND	ND
06	1	46	800	<5	110	<0.10	3	90	0.0	ND	ND	ND
DATE	CHLORO- DI - BROMO- METHANE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)	CHLORO- FORM TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)
APR 1988						ND	ND					ND
11	ND	ND	NID.	NII	ND			NI)	ND	NI)	NIII	
11 MAY	ND	ND	ND	ND	ND	ND		DИ	ND	ND	ND	
YAM 03 NUL	0	0	0	0	0	0	0	0	0	0	0	0
MAY 03 JUN 01 AUG	0	0	0	0	0	0	0	0	0	0	0	0
MAY 03 JUN 01	0	0	0	0	0	0	0	0  ND	0	0	0	0  ND
MAY 03 JUN 01 AUG 04	0	0	0	0	0	0	0	0	0	0	0	0
MAY 03 JUN 01 AUG 04	0  ND	0  ND	0 3.4	0  ND	0 0 . 4	0 	0  ND	0  ND	0  ND	0  ND	0  ND	0  ND
MAY 03 JUN 01 AUG 04 OCT 06	0 ND ND ND 1,1,2,2 TETRA-CHLORO-ETHANE TOTAL (UG/L)	0 ND ND 1,2-DI-CHLORO-BENZENE TOTAL (UG/L)	0 3.4 0.8 1,2-DI-CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)	0 ND ND ND 1,2-DI-CHLORO-PROPANE TOTAL (UG/L)	0 .4 ND 1,2-TRANSDI CHLORO-ETHENE TOTAL (UG/L)	0 ND ND 1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	0 ND ND 1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	0 ND 0.5 TETRA-CHLORO-ETHYL-ENE TOTAL (UG/L)	0 ND ND TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	0 ND ND TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	0 ND ND 2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	O ND ND VINYL CHLO-RIDE TOTAL (UG/L)
MAY 03 JUN 01 AUG 04 CCT 06 DATE  APR 1988	0 ND ND 1,1,2,2 TETRA-CHLORO-ETHANE TOTAL (UG/L) ND	0 ND ND 1,2-DI- CHLORO- BENZENE TOTAL (UG/L) ND	0 3.4 0.8  1,2-DI- CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	0 ND ND 1,2-DI- CHLORO- PROPANE TOTAL (UG/L) ND	0 .4 ND 1,2-TRANSDI CHLORO-ETHENE TOTAL (UG/L) ND	0 ND ND 1,3-DI- CHLORO- BENZENE TOTAL (UG/L) ND	0 ND ND 1,4-DI- CHLORO- BENZENE TOTAL (UG/L) ND	0 ND 0.5  TETRA-CHLORO-ETHYL-ENE TOTAL (UG/L)	O TRANS-1,3-DI-CHLORO-PROPENE TOTAL (UG/L)	0 ND ND TRI- CHLORO- ETHYL- ENE TOTAL (UG/L) 1.0	0 ND ND 2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND	O ND ND VINYL CHLO-RIDE TOTAL (UG/L)
MAY 03 JUN 01 AUG 04 OCT 06  DATE  APR 1988 11 MAY 03 JUN	0 ND ND ND 1,1,2,2 TETRA-CHLORO-ETHANE TOTAL (UG/L)	0 ND ND 1,2-DI-CHLORO-BENZENE TOTAL (UG/L)	0 3.4 0.8 1,2-DI-CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)	0 ND ND ND 1,2-DI-CHLORO-PROPANE TOTAL (UG/L)	0 0.4 ND 1,2-TRANSDI CHLORO-ETHENE TOTAL (UG/L)	0 ND ND ND 1,3-DICHLORO-BENZENE TOTAL (UG/L)	0 ND ND 1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	0 ND 0.5 TETRA-CHLORO-ETHYL-ENE TOTAL (UG/L)	0 ND ND ND TRANS-1,3-DICHLORO-PROPENE TOTAL (UG/L)	0 ND ND TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	0 ND ND 2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	O ND ND VINYL CHLO-RIDE TOTAL (UG/L)
MAY 03 JUN 01 AUG 04 OCT 06  DATE  APR 1988 11 MAY 03	0 ND ND 1,1,2,2 TETRA-CHLORO-ETHANE TOTAL (UG/L) ND	0 ND ND 1,2-DI- CHLORO- BENZENE TOTAL (UG/L) ND	0 3.4 0.8  1,2-DI- CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	0 ND ND 1,2-DI- CHLORO- PROPANE TOTAL (UG/L) ND	0 .4 ND 1,2-TRANSDI CHLORO-ETHENE TOTAL (UG/L) ND	0 ND ND 1,3-DI- CHLORO- BENZENE TOTAL (UG/L) ND	0 ND ND 1,4-DI- CHLORO- BENZENE TOTAL (UG/L) ND	0 ND 0.5  TETRA-CHLORO-ETHYL-ENE TOTAL (UG/L)	O TRANS-1,3-DI-CHLORO-PROPENE TOTAL (UG/L)	0 ND ND TRI- CHLORO- ETHYL- ENE TOTAL (UG/L) 1.0	0 ND ND 2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND	O ND ND VINYL CHLO-RIDE TOTAL (UG/L)
DATE  DATE  APR 1988 11 MAY 03 JUN 01  DATE	0 ND ND ND 1,1,2,2 TETRA-CHLORO-ETHANE TOTAL (UG/L) ND 0	0 ND ND 1,2-DI CHLORO- BENZENE TOTAL (UG/L) ND 0	0 3.4 0.8 1,2-DI- CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND 0.00	0  ND  ND  1,2-DI- CHLORO- PROPANE TOTAL (UG/L)  ND  0	0 0.4 ND 1,2-TRANSDI CHLORO-ETHENE TOTAL (UG/L) ND 0	0 ND ND 1,3-DI- CHLORO- BENZENE TOTAL (UG/L) ND 0	0 ND ND 1,4-DI- CHLORO- BENZENE TOTAL (UG/L) ND 0	0 ND 0.5 TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L) ND 0.0	0 ND ND TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND 0	0 ND ND TRI- CHLORO- ETHYL- ENE TOTAL (UG/L) 1.0	0 ND ND 2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND 0	O ND ND VINYL CHLO-RIDE TOTAL (UG/L) ND O

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

#### HUDSON RIVER BASIN

#### 01349530 MOHAWK RIVER AT FONDA, NY

LOCATION.--Lat 42 57'01", long 74 22'10", Montgomery County, Hydrologic Unit 02020004, at highway 30A bridge, at Fonda.

DRAINAGE AREA. -- 2,118 mi 2 .

PERIOD OF RECORD.--1988 to current year. CHEMICAL DATA: 1988 (a). MINOR ELEMENTS DATA: 1988 (a).

REMARKS.--Water-discharge data based on records obtained from 01347000 Mohawk River at Little Falls, 1348000 East
Canada Creek at East Creek, and 01349000 Otsquaga Creek at Fort Plain. During canal navigation season, water is received
from Black River basin through Black River Canal flowing south, and from Chenango River basin through Oriskany Creek
feeder. Water is diverted into (or may occasionally be received from) Oswego River basin through summit level of Erie
(Barge) Canal between New London and Utica. Diurnal fluctuation caused by powerplants and locks and dams on Erie (Barge)
Canal. Regulation by Delta and Hinckley Reservoirs.

DATE	TIME	DIS- CHARGE, IN CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
MAY 1988											
02	1145	4600	327	140	40	8.7	12	1.4	99	30	19
DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)
MAY 1988 02	0.30	171	350	6	14	860	<5	80	0.10	5	30

#### 01351500 SCHOHARIE CREEK AT BURTONSVILLE, NY

LOCATION.--Lat 42 48'00", long 74 15'48", Schenectady County, Hydrologic Unit 02020005, on right bank 0.4 mi south of Burtonsville, 2.7 mi north of Esperance, and 13.5 mi upstream from mouth.

DRAINAGE AREA. -- 883 mi 2 .

PERIOD OF RECORD.--Water years 1960, 1963-64, 1972, 1988 to current year.

CHEMICAL DATA: 1960 (e), 1963-64, 1972 (a), 1988 (b), 1989 (a).

MINOR ELEMENTS DATA: 1960 (e), 1963 (b), 1964, 1972 (a), 1988 (b), 1989 (a).

PESTICIDE DATA: 1988 (b), 1989 (a).

NUTRIENT DATA: 1960, 1963-64, 1972 (a), 1988 (b), 1989 (a).

SEDIMENT DATA: 1988-89 (a).

REMARKS.--Water-discharge data obtained form gage at this location. Regulation of flow by Blenheim-Gilboa Pumped Storage Project. Entire flow, runoff from 314 mi 2, except for periods of spill, diverted from Schoharie Reservoir through Shandaken Tunnel into Esopus Creek upstream from Ashokan Reservoir for water supply of City of New York.

DATE MAY 1988 02	TIME 1045	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)
17	1100	312	229	230	7.8	17.5	2.4		9.8		340
31	1030	1710	140	146	8.1	20.5	11	759	9.2	102	880
AUG											
08 ∝T	1100	28	269	260	8.3	26.0	2.5	762	8.3	102	>120
12	1000	29	306	317	8.2	10.0	1.1		11.0		
DATE	FECAL COLI- FORM 24-HR MEM.FIL (COLS./ 100 ML)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)
MAY 1988	100 1111)	CACOS	AB CA)	AD MG)	מאי מא	AS II)	CACOS	NO 504)	AS CB)	AD I'	(110) 11)
	16.0	86	29	2 2	6.0	1 1	72	15	9.5	2 1	101
02	16.0			3.3		1.1	73			3.1	121
17	40.0	96	32	3.8	6.4	1.2	80	16	9.1	0.20	160
31	92.0	60	20	2.4	4.4	0.90	51	12	6.1	0.30	91
AUG 08 OCT	8.00	100	33	4.9	11	2.2	82	24	15	<0.10	157
12		120	39	5.4	12	2.3	100	30	19	0.10	195
		120	3,5	J.4		2.3		• •		0.10	
DATE  MAY 1988  02 17 31 AUG 08 OCT 12	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 111 117 77 139	SOLIDS, RESIDUE AT 105 DEG. C, TOTAL (MG/L) 132 165 101 171	SOLIDS, VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 47 84 51 40	RESIDUE TOTAL FIXED (MG/L) 85 81 50 131	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITROGEN, NITRITE TOTAL (MG/L AS N) ND 0.00 ND ND	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) 0.290 0.280 0.350 0.090	NTTROGEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.010 0.010 0.010	NITROGEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.01 0.01 0.15	NITROGEN, ORGANIC TOTAL (MG/L AS N) 0.19 0.23 0.23 0.31	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.20 0.24 0.24 0.43
DATE  MAY 1988 02 17 31 AUG 08 OCT 12  DATE  MAY 1988 02 17 31 AUG	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 111 117 77	SOLIDS, RESIDUE AT 105 DEG. C, TOTAL (MG/L) 132 165 101	SOLIDS, VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 47 84 51	RESIDUE TOTAL FIXED (MG/L) 85 81 50	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITROGEN, NITRITE TOTAL (MG/L AS N)  ND 0.00 ND  ND  ND  ALUM-INUM, TOTAL RECOV-ERABLE (UG/L AS AL)  130 130 400	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) 0.290 0.280 0.350	NTTROGEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.010 0.120 0.030  COPPER, TOTAL RECOVERABLE (UG/L AS CU) 5 7	NITROGEN, AMMONIA TOTAL (MG/L AS NH4)  0.01 0.01 0.15 0.04  IRON, TOTAL RECOVERABLE (UG/L AS FE)  240 270 670	NITROGEN, ORGANIC TOTAL (MG/L AS N) 0.19 0.23 0.31 0.18  LEAD, TOTAL RECOVERABLE (UG/L AS PB) <55 <55	NITROGEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.20 0.24 0.43 0.21  MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)  20 40 40
DATE  MAY 1988 02 17 31 AUG 08 OCT 12  DATE  MAY 1988 02 17 31 AUG	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 111 117 77 139 168 NITRO- GEN, TOTAL (MG/L AS N) 0.49 0.52	SOLIDS, RESIDUE AT 105 DEG. C, TOTAL (MG/L) 132 165 101 171 197 NITRO- GEN, TOTAL (MG/L) AS NO3)	SOLIDS, VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 47 84 51 40 64 PHOS- PHORUS TOTAL (MG/L) AS P) 0.010 0.020	RESIDUE TOTAL FIXED (MG/L) 85 81 50 131 133 PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.00 0.00	NITROGEN, NITRATE TOTAL (MG/L AS N)  0.280 PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)  0.0	NITROGEN, NITRITE TOTAL (MG/L AS N)  ND 0.00 ND  ND  ND  ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)  130	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) 0.290 0.350 0.090 0.100  CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	NITROGEN, AMMONIA TOTAL (MG/L AS N)  0.010 0.010 0.010 0.030  COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	NITROGEN, AMMONIA TOTAL (MG/L AS NH4)  0.01 0.01 0.01 0.04  IRON, TOTAL RECOV- ERABLE (UG/L AS FE)  240 270	NITROGEN, ORGANIC TOTAL (MG/L AS N) 0.19 0.23 0.23 0.31 0.18  LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) <55	NITROGEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.20 0.24 0.24 0.43 0.21  MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)  20 40
DATE  MAY 1988 02 17 31 AUG 08 OCT 12  DATE  MAY 1988 02 17 31	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 111 117 77 139 168 NITRO- GEN, TOTAL (MG/L AS N) 0.49 0.52 0.59	SOLIDS, RESIDUE AT 105 DEG. C, TOTAL (MG/L) 132 165 101 171 197 NITRO- GEN, TOTAL (MG/L AS NO3) 2.2 2.3 2.6	SOLIDS, VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 47 84 51 40 64 PHOS- PHORUS TOTAL (MG/L AS P) 0.010 0.020 0.030	RESIDUE TOTAL FIXED (MG/L) 85 81 50 131 133 PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.00 0.00	NITROGEN, NITRATE TOTAL (MG/L AS N)  0.280 PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)  0.0	NITROGEN, NITRITE TOTAL (MG/L AS N)  ND 0.00 ND  ND  ND  ALUM-INUM, TOTAL RECOV-ERABLE (UG/L AS AL)  130 130 400	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) 0.290 0.350 0.090 0.100  CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	NTTROGEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.010 0.120 0.030  COPPER, TOTAL RECOVERABLE (UG/L AS CU) 5 7	NITROGEN, AMMONIA TOTAL (MG/L AS NH4)  0.01 0.01 0.15 0.04  IRON, TOTAL RECOVERABLE (UG/L AS FE)  240 270 670	NITROGEN, ORGANIC TOTAL (MG/L AS N) 0.19 0.23 0.31 0.18  LEAD, TOTAL RECOVERABLE (UG/L AS PB) <55 <55	NITROGEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.20 0.24 0.43 0.21  MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)  20 40 40

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 01351500 SCHOHARIE CREEK AT BURTONSVILLE, NY - continued

# WATER-QUALITY DATA (continued)

DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	BROMO- FORM TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)	CHLORO- FORM TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)
MAY 1988										
02	<0.10	6	<10	ND	ND	ND	ND	ND	ND	ND
17	<0.10	4	<10	ND	ND	ND	ND	ND	ND	ND
31 AUG	<0.10	4	<10	ND	ND	ND	ND	ND	ND	ND
08	<0.10	3	10	ND	ND	ND	ND	ND	0.1	ND
12	<0.10	2	<10	ND	ND	ND	ND	ND	ND	ND
DATE	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)
MAY 1988										
02	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
17	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
31 AUG	ИD	ND	ND	ND	ND	ND	ND	ND	ND	ND
08	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
OCT 12	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
									_	
	1,2-DI- CHLORO-		1,2-			TETRA-	TRANS-	TRI-	2- CHLORO-	
	ETHANE	1,2-DI-	TRANSDI	1,3-DI-	1,4-DI-	CHLORO-	1,3-DI-	CHLORO-	ETHYL-	VINYL
	WATER	CHLORO-	CHLORO-	CHLORO-	CHLORO-	ETHYL-	CHLORO-	ETHYL-	VINYL-	CHLO-
	WHOLE	PROPANE	ETHENE	BENZENE	BENZENE	ENE	PROPENE	ENE	ETHER	RIDE
DATE	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL
	(00/14)	(06/1)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)
MAY 1988										
02	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
17	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
31 AUG	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
08	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ОСТ 12	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

# SUSPENDED SEDIMENT DISCHARGE

		DIS-		SEDI-
		CHARGE,		MENT,
		INST.	SEDI-	DIS-
		CUBIC	MENT,	CHARGE,
		FEET	SUS-	SUS-
DATE	TIME	PER	PENDED	PENDED
		SECOND	(MG/L)	(T/DAY)
MAY 1988				
31	1030	1710	16	74
OCT				
12	1000	29	3	0.23

#### 01357500 MOHAWK RIVER AT COHOES, NY

LOCATION.--Lat 42 47'07", long 73 42'29", Albany County, Hydrologic Unit 02020004, on right bank at Niagara Mohawk Power Corp. School Street powerplant in Cohoes, and 2.0 mi upstream from mouth.

DRAINAGE AREA. -- 3,456 mi 2 .

PERIOD OF RECORD.--Water years 1951-52, 1955, 1955-59, 1963-64, 1970, 1976-79, June 1988 to current year. CHEMICAL DATA: 1951-52 (a), 1958-59 (b), 1963-64, 1970, 1976 (a), 1977 (c), 1979 (d), 1988-89 (a). MINOR ELEMENTS DATA: 1952, 1955 (a), 1958-59 (b), 1963-64, 1970, 1976 (a), 1977 (c), 1979 (d), 1988-89 (a). PESTICIDE DATA: 1988-89 (a). ORGANIC DATA: 1976 (a), 1977 (c), 1979 (d). OC-1988-89 (a). NUTRIENT DATA: 1951-52, 1955 (a), 1958-59 (b), 1963-64, 1970, 1976 (a), 1977 (c), 1979 (d), 1988-89 (a).

NUTRIENT DATA: 1951-52, 1955 (a), 1958-59 (b), 1963-64, 1970, 1976 (a), 1977 (c), 1979 (d), 1988-89 (a). BIOLOGICAL DATA:

Bacteria-- 1979 (d), 1988-89 (a).

SEDIMENT DATA: 1976-77 (e), 1978 (a), 1979 (e), 1988-89 (a).

REMARKS.--Water-discharge data obtained form gage at this location. During canal navigation season, water is received from Black River basin through Black River Canal flowing south, and from Chenango River basin through Oriskany Creek feeder. Water is diverted into (or may occasionally be received from) Oswego River basin through summit level of Erie (Barge) Canal between New London and Utica. Fluctuation caused by powerplants and locks and dams on Erie (Barge) Canal. Regulation and divertions for public water supply by Delta, Hinckley, and Schoharie Reservoirs.

#### WATER-QUALITY DATA SPE-DIS-ÞН RARO-OXYGEN. COLI-CHARGE. SPE-CIFIC METRIC WATER DIS-FORM. CIFIC INST. CON-WHOTE SOLVED TOTAL PRES-CUBIC CON-DUCT-FIELD TEMPER-TUR-SURE OXYGEN, (PER-IMMED. FEET DUCT-ANCE (STAND-ATURE BID-DIS-CENT (COLS. (MM) DATE OF TIME PER ANCE LAB ARD WATER TTY SOLVED SATUR-PER SECOND (US/CM) (US/CM) UNITS) (DEG C) (MG/L) ATION) 100 ML) (NTU) HG) THIN 1988 200 10 9.0 ND 01... 0930 2940 212 6.5 19.5 AUG 09... 0930 2110 317 318 7.6 27.0 4.0 7.4 ٥ OCT 11... 1100 1780 274 282 8.3 14.0 8.0 741 9.8 98 >60 FECAL SOLIDS. COLT-HARD-MAGNE-POTAS-ALKA-CHLO-FLUO-RESTRUE CALCIUM SODIUM, SULFATE FORM NESS SIUM, SIUM, LINITY RIDE. AT 180 RIDE. 24-HR TOTAL DIS-DIS-DIS-DIS-LAB DIS-DIS-DIS-DEG. C SOLVED SOLVED SOLVED SOLVED SOLVED SOLVED DIS-MEM.FIL (MG/L (MG/L SOLVED DATE (COLs./ (MG/L (MG/L (MG/L (MG/L AS (MG/L SOLVED AS (MG/L (MG/L 100 ML) CACO3) AS CA) AS MG) AS NA) AS K) CACO31 AS SO4) AS CL) AS F) (MG/L) JUN 1988 7.4 20.0 88 28 4.3 73 15 01... 1.2 10 0.30 114 AUG 09... ND 130 40 7.2 13 1.8 96 29 19 0.10 OCT 60.0 110 34 12 84 28 17 0.10 161 11... 6.1 1.4 SOLIDS. NITRO-SOLIDS. SUM OF SOLIDS. NITRO-NTTRO-NITRO-NITRO-NITRO-GEN.AM-VOLA-NITRO-CONSTT-RESTDUE TILE ON GEN. GEN. GEN. GEN. GEN. MONIA + GEN. TUENTS, IGNI-RESIDUE NITRATE NITRITE NO2+NO3 AMMONIA AMMONIA ORGANIC ORGANIC AT 105 DIS-DEG. C TION, TOTAL TOTAL TOTAL TOTAL. TOTAL TOTAL TOTAL TOTAL SOLVED TOTAL (MG/L DATE TOTAL FIXED (MG/L (MG/L (MG/L (MG/L (MG/L (MG/L (MG/L) (MG/L) (MG/L) (MG/L) AS N) AS N) AS N) AS N) AS NH4 AS N) AS N) JUN 1988 0.04 0.40 0.43 110 129 71 58 0.410 0.010 0.420 0.030 01... AUG 09... 194 48 0.370 0.020 0.390 0.040 0.05 0.62 0.66 168 146 OCT 0.390 0.010 0.400 0.070 0.09 0.76 0.83 149 192 72 120 MANGA--MILTA PHOS-PHOS-LEAD, NESE, INUM, CADMIUM COPPER, IRON, **PHORUS** PHATE, NITRO-NITRO-PHOS-ORTHO, ORTHO, TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL RECOV-GEN, GEN, PHORUS DIS-DIS-RECOV-RECOV-RECOV-RECOV-RECOV-SOLVED SOLVED ERABLE ERABLE ERABLE ERABLE TOTAL TOTAL TOTAL ERABLE ERABLE (UG/L (UG/L (UG/L (UG/L (UG/L DATE (MG/L (MG/L (MG/L (MG/L (MG/L (UG/L AS NO3) AS P) AS P) AS PO4) AS AL) AS CD) AS CU) AS FE) AS PB) AS MN) AS N) JUN 1988 60 8 760 <5 01... 0.060 0.00 0.0 440 0.85 3.8 1 AHG 110 390 <1 9 680 <5 09... 0.060 ND --1.0 4.6 OCT 0.010 0.03 510 <1 7 910 <5 90 11... 1.2 5.4 0.140

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 01357500 MOHAWK RIVER AT COHOES, NY - continued

# WATER-QUALITY DATA (continued)

DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOL (C6H- 5OH) TOTAL (UG/L)	BROMO FORM TOTA (UG/	RID L TOT	RA- O- CH E BE AL TO	LORO- NZENE TAL G/L)	CHLOR DI- BROM METHA TOTA (UG/	O- CHLO NE ETHA L TOI	ANE FO	ORO- ORM OTAL S/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)
JUN 1988 01	<0.10	4	10	1.0	ND	ND	;	ND	ND	NI	N C	ID	ND
AUG 09	<0.10	3	<10	2.0	ND	ND	!	ND	ND	NI	)	0.1	ND
ост 11	<0.10	1	<10	2.0	ND	ND	:	ND	ND	NI		0.1	ND
		01-				1,1,1-				1,1,2-	1,1,2,2		
D.	BF MET ATE TO	THANE BRO	METHYL- CHI DMIDE RII DTAL TOT	DE RI	DE	TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI CHLORO ETHANE TOTAL (UG/L)	- ETH' El	/L- NE FAL	TRI- CHLORO- ETHANE TOTAL (UG/L)	TETRA- CHLORO- ETHANE TOTAL (UG/L)	CHL BEN TO	-DI- ORO- ZENE TAL /L)
JUN 1				_	_								_
01. AUG		ID 1	ND NI	O N	ID	ND	ND	NI	)	ND	ND	N	D
09. ∝T	N	ID I	ID NI	) N	ID	ND	ND	NI	)	ND	ND	N	D
11.	N	ID 1	ID NI	и с	D	ND	ND	NI	)	ND	ND	N	D
	CHL ETH WA WH ATE TO	TER CHI	1, 2-DI- TRAN LORO- CHLC DEANE ETHE DTAL TOT G/L) (UG,	ORO- CHL ENE BEN TAL TO	ORO- ZENE TAL	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	TETRA- CHLORO ETHYL- ENE TOTAL (UG/L)	- 1,3- CHLO PROI	ORO- PENE FAL	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	VI CH RI TO	NYL LO- DE TAL G/L)
JUN 1.		ID I	ID NI	) N	D	ND	ND	NI	)	ND	ND	N	D
AUG 09.	N	ID N	ID NI	) N	D	ND	ND	NI		ND	ND	N	D
ОСТ 11.	N	ID N	ID NI	и с	D	ND	ND	NI	)	ND	ND	N	D

## SUSPENDED SEDIMENT DISCHARGE

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)
JUN 1988 01	0930	2940	17	135
AUG 09	0930	2110	14	80
11	1100	1780	23	111

#### 01359560 HUDSON RIVER AT GLENMONT, NY

LOCATION.--Lat 42 35'43", long 73 45'43", Albany County, Hydrologic Unit 02020006, at Niagara Mohawk Glenmont Power Station (intake), 0.2 mi downstream from lower mouth of Normans Kill, and 0.8 mi southeast of Glenmont.

DRAINAGE AREA. -- 8,476 mi 2 , revised.

PERIOD OF RECORD.--Water years 1969-79, 1988 to current year.

CHEMICAL DATA: 1969 (d), 1970-74 (e), 1975 (d), 1976-77 (c), 1978-79 (d), 1988 (b), 1989 (a).

MINOR ELEMENTS DATA: 1969 (d), 1970-74 (e), 1975 (d), 1976-77 (c), 1978-79 (d), 1988 (b), 1989 (a).

PESTICIDE DATA: 1988 (b), 1989 (a).

NUTRIENT DATA: 1969 (d), 1970-74 (e), 1975 (d), 1976-77 (c), 1978-79 (d), 1988 (b), 1989 (a).

BIOLOGICAL DATA:

Bacteria--1977 (c), 1978-79 (d), 1988 (b).
Phytoplankton--1974 (a), 1975 (b), 1976-77 (c), 1978-79 (d).
SEDIMENT DATA: 1988 (b), 1989 (a).

				WA	TER-QUALI	TY DATA					
DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	FECAL COLI- FORM 24-HR MEM.FIL (COLS./ 100 ML)
MAY 1988											
02	1245	171	183	6.5	10.5	4.3	766	11.6	104	4000	700
16	1300	229	229	7.1	17.0	5.4	758	8.0	83	7000	1300
31 AUG	1230	223	233	6.9	21.0	8.0	759	7.5	84	9000	1700
09	1100	251	244	6.7	29.5	1.4		5.4		>20000	9000
OCT				• • • • • • • • • • • • • • • • • • • •							
11	1300	240	243	6.9	14.5	4.7	741	9.2	92		
DATE MAY 1988	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)
02	66	20	4.0	8.3	0.90	49	21	13	0.10	114	97
16	80	24	4.8	11	1.0	60	18	16	0.20	172	111
31 AUG	88	27	4.9	11	1.2	65	32	17	0.30	143	132
09	88	27	4.9	12	1.2	56	25	21	0.10		125
OCT	00	-,	4.,	12	1.2	30			0.10		100
11	83	26	4.5	12	1.3	53	28	20	0.10	144	124
DATE	SOLIDS, RESIDUE AT 105 DEG. C, TOTAL	SOLIDS, VOLA- TILE ON IGNI- TION, TOTAL	RESIDUE TOTAL FIXED	NITRO- GEN, NITRATE TOTAL (MG/L	NITRO- GEN, NITRITE TOTAL (MG/L	NITRO- GEN, NO2+NO3 TOTAL (MG/L	NITRO- GEN, AMMONIA TOTAL (MG/L	NITRO- GEN, AMMONIA TOTAL (MG/L	NITRO- GEN, ORGANIC TOTAL (MG/L	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L	NITRO- GEN, TOTAL (MG/L
MAY 1988	(MG/L)	(MG/L)	(MG/L)	AS N)	AS N)	AS N)	As N)	AS NH4)	as N)	AS N)	AS N)
02	130	44	86	0.450	0.010	0.460	0.040	0.05	0.22	0.26	0.72
16	180	88	92	0.550	0.020	0.570	0.110	0.14	0.22	0.33	0.90
31	156	66	90	0.410	0.010	0.420	0.130	0.17	0.33	0.46	0.88
AUG											
09	167	50	117	0.520	0.030	0.550	0.070	0.09	0.46	0.53	1.1
OCT 11	169	57	112	0.610	0.030	0.640	0.120	0.15	0.43	0.55	1.2
DATE MAY 1988	NITRO- GEN, TOTAL (MG/L AS NO3)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS-PHORUS ORTHO, DIS-SOLVED (MG/L AS P)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)
02	3.2	0.050	0.00	0.0	330	1	9	740	<5	50	<0.10
16	4.0	0.080	0.020	0.06	200	1	4	420	<5	70	<0.10
31	3.9	0.070	0.020	0.06	210	1	8	4700	<5	70	<0.10
AUG 09	4.8	0.120	0.080	0.25	160	<1	7	290	<b>&lt;</b> 5	90	<0.10
OCT	5.3	D 140	0.040	0.10	400	.1	17	1400	<b>&lt;</b> 5	70	<0.10
11	3.3	0.140	0.040	0.12	490	<1	17	1400	<5	/0	<0.10

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

### 01359560 HUDSON RIVER AT GLENMONT, NY - continued

# WATER-QUALITY DATA (continued)

DATE	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOL (C6H- 5OH) TOTAL (UG/L)	BROMO- FORM TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)	CHLORO- FORM TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)
MAY 1988										
02	4	10		ND	ND	ND	ND	ND	2.0	ND
16	4	<10		ND	ND	ND	ND	ND	ND	ND
31 AUG	3	<10	2.0	ND	ND	ND	ND	ND	ND	ND
09 OCT	3	40	ND	ND	ND	ND	ND	ND	0.3	ND
11	2	20	2.0	ND	ND	ND	ND	ND	0.2	ND
	-		2.0							
DATE	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)
MAY 1988										
02	ND	ND	ND	ND	ND	ND	ND	ИD	ND	ND
16	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
31 AUG	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
OCT										
11	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	1 2 57								•	
	1,2-DI- CHLORO-		1,2-			TETRA-	TRANS-	TRI-	2- CHLORO-	
	ETHANE	1,2-DI-	TRANSDI	1,3-DI-	1,4-DI-	CHLORO-	1,3-DI-	CHLORO-	ETHYL-	VINYL
	WATER	CHLORO-	CHLORO-	CHLORO-	CHLORO-	ETHYL-	CHLORO-	ETHYL-	VINYL-	CHLO-
	WHOLE	PROPANE	ETHENE	BENZENE	BENZENE	ENE	PROPENE	ENE	ETHER	RIDE
DATE	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL
	(OG/L)	(06/1)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)
MAY 1988										
02	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
16	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
31	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
OCT							***		***	110
11	ND	<b>N</b> D	ND	ND	ND	ND	ND	ND	ND	ND

### SUSPENDED SEDIMENT DISCHARGE

DATE	TIME	SEDI- MENT, SUS- PENDED (MG/L)
MAY 1988		
16	1300	10
31	1230	8
AUG		
09	1100	4
OCT		
11	1300	6

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

#### 01367500 RONDOUT CREEK AT ROSENDALE, NY

LOCATION.--Lat 41 50'35", long 74 05'11", Ulster County, Hydrologic Unit 02020007, on left bank 30 ft upstream from bridge on James Street in Rosendale, and 3 mi upstream from Wallkill River.

DRAINAGE AREA. -- 383 mi 2 (see REMARKS below).

PERIOD OF RECORD.--Water years 1963-64, 1971-72, June 1988 to current year. CHEMICAL DATA: 1963 (c), 1964, 1971-72, 1988-89 (a).
MINOR ELEMENTS DATA: 1963 (c), 1964, 1988-89 (a).

PESTICIDE DATA: 1988-89 (a).

NUTRIENT DATA: 1963 (c), 1964, 1971-72 (a), 1988-89 (a).

SEDIMENT DATA: 1988-89 (a).

REMARKS.--Water-quality data represents natural flow from 288 mi2, together with spillage during high flow from Roundout

Water-discharge data obtained from gage at this location.

WATER-OUALITY D	ATA	
-----------------	-----	--

DATE	TIME	DIS- CHARGE INST. CUBIC FEET PER SECON	CI: CI: DU: AN:	FIC WA ON- WH CT- FI CE (ST AB A	'AND- ARD	TUR- BID- ITY NTU)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	FECAL COLI- FORM 24-HR MEM.FI (COLS. 100 ML	HAR NES TOT L (MG / AS	S CAL AL DI /L SO	CIUM : S- : LVED SO IG/L (1	AGNE- SIUM, DIS- DLVED MG/L S MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)
JUN 1988 13	1000	169		132	7.7	1.0	1700	10.0	ı	46 1	4	2.8	5.8	0.80
AUG 22	1030	56		149	8.1	2.0	200	20.0	ı	56 1	.7	3.4	7.0	1.0
OCT 18	0915	56		150		1.0	380	50.0	ı	57 1	.7	3.5	6.6	1.1
DATE	ALKA- LINITY LAB (MG/L AS CACO3)	SULFAT DIS- SOLVE (MG/I AS SO4	E RI DI ED SO	DE, RI S- I DLVED SO IG/L (N	JUO- REIDE, AT DIS- D DLVED MG/L S	DLIDS, CSIDUE 180 DEG. C DIS- COLVED MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS RESIDU AT 105 DEG. C TOTAL (MG/I	E TILE IGN TOT	A- NI ON G II- NIT ON, TO	SEN, CRATE NITAL TOTAL TOTAL (	ITRO- GEN, FRITE OTAL MG/L S N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)
JUN 1988 13	33	14		9.0	0.10		66	c	10	46 C	.310	0.00	0.310	0.00
AUG 22	43	15			<0.10	88	79	-	18	56		ND	ND	ND
OCT 18	42	15		9.8	<0.10	82	78	10	00	50		ND	0.240	0.00
JUN 1988 13 AUG 22 OCT 18	GI AMMC TO' (MC AS 1	EN, ONIA OF FAL T G/L	NITRO- GEN, RGANIC YOTAL (MG/L AS N) 0.24	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.24 0.23	NITROGEN, TOTAL (MG/L AS N) 0.55	GE TOT (MG AS N	N, PHOI PAL TO: I/L (MOO3) AS	PH DS- C RUS I TAL SC G/L (N	PHOS- HORUS RTHO, DIS- DLVED HG/L S P)  0.00  0.00	PHOS-PHATE, ORTHO, DIS-SOLVED (MG/L AS PO4)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL) 70 120	(UG AS	AL TOTO OV- REC BLE ERA /L (UC	
DATE	TO REG ER.	TAL TOON- HABLE H	LEAD, POTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	TOI REC ERA (UG	VAL TO COV- REGISE ER.	ABLE E	ROMO- FORM FOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	TOT	- MO- CHLO ANE ETHA	ANE FAL
JUN 1988 13	3	150	14	30	<0.10	)	8	10				-		
AUG 22		260	<5	80	0.20	)	6	<10	ND	ND	ND	ND	, NI	)
OCT 18		140	<5	20	<0.10	)	4	<10	ND	ND	ND	ND	NI	O

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 01367500 RONDOUT CREEK AT ROSENDALE, NY - continued

# WATER-QUALITY DATA (continued)

DATE	CHLORO- FORM TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)
JUN 1988											
13 AUG											
22	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ОСТ 18	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DATE	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)
JUN 1988	CHLORO- BENZENE TOTAL	CHLORO- ETHANE WATER WHOLE TOTAL	CHLORO- PROPANE TOTAL	TRANSDI CHLORO- ETHENE TOTAL	CHLORO- BENZENE TOTAL	CHLORO- BENZENE TOTAL	CHLORO- ETHYL- ENE TOTAL	1,3-DI- CHLORO- PROPENE TOTAL	CHLORO- ETHYL- ENE TOTAL	CHLORO- ETHYL- VINYL- ETHER TOTAL	CHLO- RIDE TOTAL
JUN 1988	CHLORO- BENZENE TOTAL	CHLORO- ETHANE WATER WHOLE TOTAL	CHLORO- PROPANE TOTAL	TRANSDI CHLORO- ETHENE TOTAL	CHLORO- BENZENE TOTAL	CHLORO- BENZENE TOTAL	CHLORO- ETHYL- ENE TOTAL	1,3-DI- CHLORO- PROPENE TOTAL	CHLORO- ETHYL- ENE TOTAL	CHLORO- ETHYL- VINYL- ETHER TOTAL	CHLO- RIDE TOTAL

### SUSPENDED SEDIMENT DISCHARGE

		DIS-
		CHARGE,
		INST.
		CUBIC
		FEET
DATE	TIME	PER
		SECOND
์ วับที่ 1988		
13	1000	169
AUG		
22	1030	56
OCT		
18	0915	56

#### 01372043 HUDSON RIVER NEAR POUGHKEEPSIE, NY

LOCATION.--Lat 41 43'18", long 73 56'28", Dutchess County, Hydrologic Unit 02020008, at city pumping station on east bank, adjacent (north) to Marist College, 0.5 mi north of Poughkeepsie, and 1.3 mi upstream from Mid-Hudson Bridge.

COLI-

DRAINAGE AREA. -- 11,700 mi 2 .

PERIOD OF RECORD.--Water years 1969-75, 1981, 1988 to current year.

CHEMICAL DATA: 1969 (c), 1970-71 (d), 1972 (b), 1973-75 (e), 1988-89 (a).

MINOR ELEMENTS DATA: 1969 (c), 1970-71 (d), 1972 (b), 1973-75 (d), 1988-89 (a).

RADIOCHEMICAL DATA: 1974 (a), 1975 (d).

ORGANIC DATA: 1975 (a), 1981 (b).

OC--1988-89 (a).

NUTRIENT DATA: 1969 (c), 1970-71 (d), 1972 (b), 1973-75 (d), 1988-89 (a).

BIOLOGICAL DATA: 1973-75 (d).

Bacteria--1988-89 (a).

SEDIMENT DATA: 1973 (a), 1974 (b), 1975 (a).

PH

SPE-

#### WATER-QUALITY DATA

FECAL

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TUR- BID- ITY (NTU)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	FECAL COLI- FORM 24-HR MEM.FIL (COLS./ 100 ML)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)
JUN 1988												
13 AUG	1200	223	7.6	28	250	100	79	24	4.7	9.7	0.80	64
22 OCT	1245	259	7.5	15	200	ND	95	29	5.6	14	1.5	65
18	1250	260		17	50	ND	94	28	5.8	14	1.8	66
DATE	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, RESIDUE AT 180 DEG. ( DIS- SOLVEE (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVED	SOLIDS, RESIDUE AT 105 DEG. C, TOTAL (MG/L)	SOLIDS, VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS NH4)
JUN 1988 13	19	15	0.10	110	112	220	78	0.450	0.010	0.460	0.060	0.08
AUG 22	25	22	0.10	160	136	200	70		ND	0.510	0.030	0.04
ОСТ 18	25	20	0.10	140	134	200	52	0.630	0.00	0.630	0.040	0.05
DATE	NIT GE ORGA TOT (MG AS	RO- GEN N, MON NIC ORGA AL TO /L (MO	ANIC G TAL TO G/L (M	EN, C TAL TO G/L (N	SEN, PHO TTAL TO IG/L (M		RUS PHA THO, ORT S- DI VED SOI /L (MC	ATE, INUTED TO TO TO THE TOTAL	M, CADM PAL TOT COV- REC BLE ERA	AL TOT OV- REC BLE ERA L (UG	AL TOT OV- REC BLE ERA /L (UG	'AL COV- BLE S/L
JUN 1988 13		.38	0.44	0.90	4.0 0	.170 0	.010	0.03 1	300	<1	11 2	100
AUG 22	0	.27	0.30	0.81	3.6 0	.090 0	.030	0.09 1	600	1	33 2	400
ОСТ 18	0	.32	0.36	0.99	4.4 0	.120 0	.020	0.06	720	<1	12 1	100
DATE	AS	D, NE: AL TO: OV- REG BLE ER: /L (UG	TAL TO COV- RE ABLE ER G/L (U	TAL TO COV- RE ABLE EF G/L (U	DTAL TO ECOV- RE RABLE ER JG/L (U	COV- (CO		MO- CHI RM RIC FAL TOI	'RA- O- CHLO DE BENZ	ene meth L tot	- MO- CHLC ANE ETHA AL TOI	NE 'AL
JUN 1988	•	5	160 <	0.10	7	20	2.0					
AUG 22		<b>&lt;</b> 5	220 <	0.10	5	20 ทา	וא ס	o NE	) ND	ND.	ND	)
OCT 18		<5	100 <	0.10	4	10 N	וא ס	D NE	) NE	) ND	ND	)

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

### 01372043 HUDSON RIVER NEAR POUGHKEEPSIE, NY - continued

DATE	CHLORO- FORM TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)
JUN 1988											
13 AUG											
22 OCT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
18	ND	ND	ND	ND	ND	ND	ИD	ND	ND	ND	ND
DATE	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)
JUN 1988 13											
AUG											
22 OCT	ND	ИД	ND	ND	ND	ND	ND	ND	ND	ND	ND

#### 01420500 BEAVER KILL AT COOKS FALLS, NY - continued

LOCATION.--Lat 41 56'47", long 74 58'48", Delaware County, Hydrologic Unit 02040102, on left bank 66 ft downstream from road bridge in Cooks Falls, and 5.5 mi downstream from Willowemoc Creek.

DRAINAGE AREA. -- 241 mi 2 .

PERIOD OF RECORD. --

RIOD OF RECORD.-CHEMICAL DATA: 1987 (b), 1988 (c), 1989 (a).
MINOR ELEMENT DATA: 1987 (b), 1988 (c), 1989 (a).
PESITCIDE DATA: 1987 (b), 1988 (c), 1989 (a).
NUTRIENT DATA: 1987 (b), 1988 (c), 1989 (a).
SEDIMENT DATA: 1988 (b), 1989 (a).

PERIOD OF DAILY RECORD . --

WATER TEMPERATURES: October 1987 to current year.

INSTRUMENTATION. -- Water-temperature satellite and telephone telemeter since June 1986, provides 15-minute-interval readings.

REMARKS .-- Water-discharge data obtained from stream-flow gage at this site.

EXTREMES FOR PERIOD OF DAILY RECORD .--

WATER TEMPERATURES: Minimum, 0.0 C on many days during winter period.

EXTREMES FOR CURRENT YEAR . --

WATER TEMPERATURES: Maximum recorded, 27.5 C, Aug. 6, but may have been higher during period of instrument malfunction; minimum, 0.0 C on many days during winter period.

D <b>ATE</b>	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
MAY 1987												
29	0930	185		108	7.4	19.5	0.60		9.5		22	7.1
JUN												
29	1525	132		101	8.6	28.5	0.50		9.8		22	6.8
AUG	1530	197			7.5	10.0	0.60		10.3		21	
31 OCT	1530	197			7.5	18.0	0.60		10.3		21	6.8
19	1515	354		64	7.2	11.5	0.50		12.4	~-	18	5.9
NOV	1010			•	,	12.5	••••		-2		10	0.0
09	1430	417			7.4	7.0	0.30		12.7		17	5.3
30	1630	1770			7.0	6.0	5.0		16.8		14	4.4
APR 1988												
04	1630	1320	58	58	6.5	10.0	1.5	757	11.4	101	15	4.8
20 JUN	1750	340	73	73	6.2	8.5	0.40	755	11.3	98	18	5.7
06	1600	290	73	71	7.2	19.5	0.50	748	9.1	101	19	6.0
22	1650	109	121	117	9.0	24.0	0.60	759	8.5	101	23	7.2
JUL					3.0	2110	0.00	, 33	0.5	141	23	,
18	1730	136	94	87	8.0	27.5	1.0	762	7.6	96	21	6.5
AUG												
31	1630	239	94	89	8.0	19.5	0.81	766	9.2	100	21	6.4
OCT	1500	60	124	120	۰.	15.5	0.60	7.00	10.	106	25	7.0
17 NOV	1500	60	134	128	8.5	15.5	0.60	768	10.6	106	25	7.8
14	1500	843	58	55	6.8	6.5	1.2	764	12.7	104	16	4.8
- *					*	• • •						

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 01420500 BEAVER KILL AT COOKS FALLS, NY - continued

DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, TOTAL (MG/L)	SOLIDS, VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	RESIDUE TOTAL FIXED (MG/L)
MAY 1987 29	1.1							49		78	26	52
JUN 29	1.1							28		74	20	51
AUG 31	1.0							<b>4</b> 6		47	20	30
⊙т 19	0.90							45		58	18	40
09	0.90							35		45	30	8
30 APR 1988	0.80							28		48	22	28
04 20 JUN	0.8 <b>4</b> 1.0	3.2 5.3	0.50 0.50	6.0 9.0	<b>8</b> .3 8.6	6.2 9.5	0.10 0.10	35 41	28 36	60 5 <b>4</b>	19 1 <b>4</b>	41 40
06 22	1.0	4.8 12	0.60 0.70	11 13	8.3 9.0	8.2 19	0.30 0.20	<b>43</b> 81	36 57	96 86	38 44	58 <b>4</b> 2
JUL 18	1.1	7.8	0.70	12	9.5	11	0.10	51	44	72	29	43
AUG 31 OCT	1.1	8.1	0.60	12	9.0	11	0.10	63	43	68	36	32
17	1.4	14	0.80	16	8.8	21	<0.10	63	63	64	8	56
14	0.87	2.8	0.50	7.0	9.5	5.1	<0.10	39	28	49	30	19
DATE	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS NH4)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS NO3)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)
MAY 1987	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS NO3)	PHORUS TOTAL (MG/L AS P)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHATE, ORTHO, DIS- SOLVED (MG/L
	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L	GEN, NO2+NO3 TOTAL (MG/L	GEN, AMMONIA TOTAL (MG/L	GEN, AMMONIA TOTAL (MG/L	GEN, ORGANIC TOTAL (MG/L	GEN, AM- MONIA + ORGANIC TOTAL (MG/L	GEN, TOTAL (MG/L	GEN, TOTAL (MG/L	PHORUS TOTAL (MG/L	PHORUS ORTHO, DIS- SOLVED (MG/L	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)
MAY 1987 29 JUN 29 AUG 31	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N) ND	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS NO3)	PHORUS TOTAL (MG/L AS P)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)
MAY 1987 29 JUN 29 AUG 31 OCT 19	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N) ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.220	GEN, AMMONIA TOTAL (MG/L AS N) 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01	GEN, ORGANIC TOTAL (MG/L AS N) 0.09	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.10	GEN, TOTAL (MG/L AS N) 0.32	GEN, TOTAL (MG/L AS NO3) 1.4	PHORUS TOTAL (MG/L AS P) 0.010	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)
MAY 1987 29 JUN 29 AUG 31 ⊙T	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N) ND ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.220 0.160	GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01	GEN, ORGANIC TOTAL (MG/L AS N) 0.09	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.10 0.12	GEN, TOTAL (MG/L AS N) 0.32 0.28	GEN, TOTAL (MG/L AS NO3) 1.4 1.2	PHORUS TOTAL (MG/L AS P) 0.010 0.010	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND 0.00	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)
MAY 1987 29 JUN 29 AUG 31 OCT 19 NOV 09 APR 1988 04	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)  ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.220 0.160 0.230 0.160 0.310 0.280 0.520	GEN, AMMONIA TOTAL (MG/L AS N)  0.010  0.010  ND  0.010  ND  0.010  0.010	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.01  0.01  0.01  0.01	GEN, ORGANIC TOTAL (MG/L AS N) 0.09 0.11  0.20  0.16 0.06	GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N)  0.10  0.12  0.11  0.21  0.07  0.17	GEN, TOTTAL (MG/L AS N) 0.32 0.28 0.34 0.37 0.38 0.45	GEN, TOTAL (MG/L AS NO3) 1.4 1.2 1.5 1.6 1.7 2.0	PHORUS TOTAL (MG/L AS P) 0.010 0.010 0.010 0.00 0.00 0.020 0.010	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND 0.00 ND ND 0.00	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)
MAY 1987 29 JUN 29 AUG 31 OCT 19 NOV 09 APR 1988 04 20 JUN	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)  ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.220 0.160 0.230 0.160 0.310 0.280 0.520 0.300	GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.010 ND 0.010 ND 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.01  0.01  0.01  0.01  0.01  0.01	GEN, ORGANIC TOTAL (MG/L AS N) 0.09 0.11  0.20  0.16 0.06 0.09	GEN, AM- MONIA + ORGANIC TYOTAL (MG/L AS N)  0.10  0.12  0.11  0.21  0.07 0.17  0.07	GEN, TOTAL (MG/L AS N) 0.32 0.28 0.34 0.37 0.38 0.45	GEN, TOTAL (MG/L) AS NO3) 1.4 1.2 1.5 1.6 1.7 2.0	PHORUS TOTAL (MG/L AS P) 0.010 0.010 0.010 0.00 0.020 0.010 0.010	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND 0.00 0.00 ND ND 0.00	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)
MAY 1987 29 JUN 29 AUG 31 OCT 19 NOV 09 APR 1988 04 20 JUN 06 22	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)  ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.220 0.160 0.230 0.160 0.310 0.280 0.520	GEN, AMMONIA TOTAL (MG/L AS N)  0.010  0.010  ND  0.010  ND  0.010  0.010	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.01  0.01  0.01  0.01	GEN, ORGANIC TOTAL (MG/L AS N) 0.09 0.11  0.20  0.16 0.06	GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N)  0.10  0.12  0.11  0.21  0.07  0.17	GEN, TOTTAL (MG/L AS N) 0.32 0.28 0.34 0.37 0.38 0.45	GEN, TOTAL (MG/L AS NO3) 1.4 1.2 1.5 1.6 1.7 2.0	PHORUS TOTAL (MG/L AS P) 0.010 0.010 0.010 0.00 0.00 0.020 0.010	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND 0.00 ND ND 0.00	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)
MAY 1987 29 JUN 29 AUG 31 OCT 19 NOV 09 30 APR 1988 04 20 JUN 06	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)  ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.220 0.160 0.230 0.160 0.310 0.280 0.520 0.300 0.170	GEN, AMMONIA TOTAL (MG/L AS N)  0.010  0.010  ND  0.010  ND  0.010  0.010  0.010  0.010  0.010	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.01  0.01  0.01  0.01  0.01  0.01  0.01 0.0	GEN, ORGANIC TOTAL (MG/L AS N) 0.09 0.11  0.20  0.16 0.06 0.09	GEN, AM- MONIA + ORGANIC TYOTAL (MG/L AS N)  0.10  0.12  0.11  0.21  0.07  0.17  0.07  0.09  0.14	GEN, TOTAL (MG/L AS N) 0.32 0.28 0.34 0.37 0.38 0.45 0.59 0.39	GEN, TOTAL (MG/L AS NO3) 1.4 1.2 1.5 1.6 1.7 2.0 2.6 1.7	PHORUS TOTAL (MG/L AS P) 0.010 0.010 0.010 0.00 0.020 0.010 0.010	PHORUS ORTHO, DIS-SOLVED (MG/L AS P)  ND  0.00  ND  ND  ND  0.00  ND  ND  0.00  ND  0.00  0.00  ND	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)
MAY 1987 29 JUN 29 AUG 31 OCT 19 NOV 09 APR 1988 04 20 JUN 06 JUL 18	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)  ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.220 0.160 0.230 0.160 0.310 0.280 0.520 0.300 0.170 0.170	GEN, AMMONIA TOTAL (MG/L AS N)  0.010  0.010  ND  0.010  ND  0.010  0.010  0.010  0.010  0.010	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.01  0.01  0.01  0.01  0.01  0.01  0.01 0.01	GEN, ORGANIC TOTAL (MG/L AS N) 0.09 0.11  0.20  0.16 0.06 0.09 0.13 0.11	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.10 0.12 0.11 0.21 0.07 0.17 0.07 0.07 0.10	GEN, TOTAL (MG/L AS N) 0.32 0.28 0.34 0.37 0.38 0.45 0.59 0.39	GEN, TOTAL (MG/L) AS NO3) 1.4 1.2 1.5 1.6 1.7 2.0 2.6 1.7	PHORUS TOTAL (MG/L AS P) 0.010 0.010 0.010 0.00 0.020 0.010 0.010 0.010 0.010	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)  ND  0.00  ND  ND  ND  0.00  ND  0.00  ND  0.00  ND	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)  0.0 0.0  0.0
MAY 1987 29 JUN 29 AUG 31 OCT 19 NOV 09 APR 1988 04 20 JUN 06 22 JUL 18 AUG 31	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)  ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.220 0.160 0.230 0.160 0.310 0.280 0.520 0.300 0.170 0.170 0.380	GEN, AMMONIA TOTAL (MG/L AS N)  0.010  0.010  ND  0.010  0.010  0.010  0.010  0.010  0.010  0.010  0.010	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.01  0.01  0.01  0.01  0.01  0.01  0.01  0.01  0.01	GEN, ORGANIC TOTAL (MG/L AS N) 0.09 0.11  0.20  0.16 0.06 0.09 0.13 0.11	GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N)  0.10  0.12  0.11  0.21  0.07  0.17  0.07  0.09  0.14  0.12  0.13	GEN, TOTAL (MG/L AS N) 0.32 0.28 0.34 0.37 0.38 0.45 0.59 0.39	GEN, TOTAL (MG/L AS NO3) 1.4 1.2 1.5 1.6 1.7 2.0 2.6 1.7	PHORUS TOTAL (MG/L AS P) 0.010 0.010 0.010 0.00 0.020 0.010 0.010 0.370 0.040	PHORUS ORTHO, DIS-SOLVED (MG/L AS P)  ND  0.00  ND  ND  0.00  ND  0.00	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)  0.0 0.0 0.0 0.0 0.0 0.0

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 01420500 BEAVER KILL AT COOKS FALLS, NY - continued

DATE	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)
MAY 1987											
29 JUN			<10		<10		60		<b>&lt;</b> 5		20
29 AUG			<10		<10		20		<5		<10
31 OCT			<10		20		60		<5		20
19			<1		7		20		<5		<10
09			<1		5		50		<b>&lt;</b> 5		10
30 APR 1988			<1	1.0	6	2	240		7	5	40
04	 10	20	<1 2	<1.0	4 2	2	80 30	12	<5 <5	<5 	20 <10
JUN			_		_						
06 22	50 50	20 	2 <1	<1.0 	7 <b>4</b>	2	50 50		<5 <5	<5 	20 20
JUL 18	80		<1		5		180		<5		50
AUG 31	70		<1		3		120		<b>&lt;</b> 5		20
OCT 17	40	10	<1	<1.0	3	2	80	9	<5	<5	<10
NOV 14	70		<1		4		100		<5		20
DATE	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)	BROMO- FORM TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)
MAY 1987	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)	TETRA- CHLO- RIDE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	DI- BROMO- METHANE TOTAL (UG/L)	ETHANE TOTAL (UG/L)
	NESE, DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	FORM TOTAL	TETRA- CHLO- RIDE TOTAL	BENZENE TOTAL	DI- BROMO- METHANE TOTAL	ETHANE TOTAL
MAY 1987 29 JUN 29	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)	TETRA- CHLO- RIDE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	DI- BROMO- METHANE TOTAL (UG/L)	ETHANE TOTAL (UG/L)
MAY 1987 29 JUN 29 AUG 31	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)	TETRA- CHLO- RIDE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	DI- BROMO- METHANE TOTAL (UG/L)	ETHANE TOTAL (UG/L) ND
MAY 1987 29 JUN 29 AUG 31 OCT 19	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG) <0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L) ND	TETRA- CHLO- RIDE TOTAL (UG/L) ND	BENZENE TOTAL (UG/L) ND	DI - BROMO- METHANE TOTAL (UG/L) ND	ETHANE TOTAL (UG/L) ND
MAY 1987 29 JUN 29 AUG 31 OCT 19	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <1 4 5	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND  ND	TETRA- CHLO- RIDE TOTAL (UG/L) ND ND ND ND	BENZENE TOTAL (UG/L) ND ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND	ETHANE TOTAL (UG/L)  ND  ND  ND
MAY 1987 29 JUN 29 AUG 31 OCT 19 NOV 09	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <1 4	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND	TETRA- CHLO- RIDE TOTAL (UG/L) ND ND	BENZENE TOTAL (UG/L) ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND	TOTAL (UG/L)  ND  ND  ND
MAY 1987 29 JUN 29 AUG 31 OCT 19 NOV 09 30 APR 1988	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <1 4 5 4 <1 <1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND	TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND ND ND ND ND ND	BENZENE TOTAL (UG/L) ND ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND
MAY 1987 29 JUN 29 AUG 31 OCT 19 NOV 09 APR 1988 04	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <1 4 5 4 <1 <1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND	BENZENE TOTAL (UG/L) ND ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
MAY 1987 29 JUN 29 AUG 31 OCT 19 NOV 09 30 APR 1988	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <1 4 5 4 <1 <1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND	TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND ND ND ND ND ND	BENZENE TOTAL (UG/L) ND ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND
MAY 1987 29 JUN 29 AUG 31 OCT 19 NOV 09 30 APR 1988 04 20 JUN 06	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)  <1 4 5 4 <1 <1 <1 6 3	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
MAY 1987 29 JUN 29 AUG 31 OCT 19 NOV 09 30 APR 1988 04 20 JUN 06 22	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <1 4 5 4 <1 <1 <1 6	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA- CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
MAY 1987 29 JUN 29 AUG 31 OCT 19 NOV 09 30 APR 1988 04 20 JUN 06 22 JUL 18	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)  <1 4 5 4 <1 <1 <1 6 3	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
MAY 1987 29 JUN 29 AUG 31 OCT 19 NOV 09 30 APR 1988 04 20 JUN 06 22 JUL 18 AUG 31	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <1 4 5 4 <1 <1 6 3 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA- CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
MAY 1987 29 JUN 29 AUG 31 OCT 19 NOV 09 APR 1988 04 20 JUN 06 22 JUL 18 AUG	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)  <1 4 5 4 <1 <1 <1 6 3 <1 1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 01420500 BEAVER KILL AT COOKS FALLS, NY - continued

DATE	CHLORO- FORM TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)
MAY 1987 29 JUN	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
29 AUG	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
31 OCT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
19 NoV	ND	ND	ND	ИD	ND	ND	ND	ИD	ND	ND	ND
09 30 APR 1988	ND ND	ND ND	ND ND	<b>N</b> D	ND ND	<b>и</b> D	ND ND	ND ND	ND ND	ND ND	ND ND
04	ND ND	ND ND	ND ND	ND ND	<b>N</b> D	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
JUN 06	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
22 JUL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
18 AUG	ND	ND	ND	ИD	ND	ИД	ИД	ИД	ИD	ND	ND
31 OCT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
17 NOV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
14	ND	ND	ND	ND	ND	ИD	ND	ND	ND	ND	ND
DATE	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)
MAY 1987 29	CHLORO- BENZENE TOTAL	CHLORO- ETHANE WATER WHOLE TOTAL	CHLORO- PROPANE TOTAL	TRANSDI CHLORO- ETHENE TOTAL	CHLORO- BENZENE TOTAL	CHLORO- BENZENE TOTAL	CHLORO- ETHYL - ENE TOTAL	1,3-DI- CHLORO- PROPENE TOTAL	CHLORO- ETHYL- ENE TOTAL	CHLORO- ETHYL- VINYL- ETHER TOTAL	CHLO- RIDE TOTAL
MAY 1987 29 JUN 29	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
MAY 1987 29 JUN 29 AUG 31	CHLORO- BENZENE TOTAL (UG/L) ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
MAY 1987 29 JUN 29 AUG	CHLORO- BENZENE TOTAL (UG/L) ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND	CHLORO- PROPANE TOTAL (UG/L) ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND	CHLORO- BENZENE TOTAL (UG/L) ND	CHLORO- BENZENE TOTAL (UG/L) ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND	CHLO- RIDE TOTAL (UG/L) ND
MAY 1987 29 JUN 29 AUG 31 OCT 19	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND	CHLO- RIDE TOTAL (UG/L) ND ND
MAY 1987 29 JUN 29 AUG 31 OCT 19 NOV 09 30 APR 1988 04 20	CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND	CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND	CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L) ND ND ND ND ND ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L) ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND ND
MAY 1987 29 JUN 29 AUG 31 OCT 19 NOV 09 30 APR 1988 04	CHLORO-BENZENE TOTAL (UG/L) ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND	CHLORO- PROPANE TOTAL (UG/L) ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L) ND	CHLORO-BENZENE TOTAL (UG/L) ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND	1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND	CHLORO-ETHYL-ENE TOTAL (UG/L) ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND  ND  ND  ND  ND  ND	CHLO-RIDE TOTAL (UG/L) ND
MAY 1987 29 JUN 29 AUG 31 OCT 19 NOV 09 30 APR 1988 04 20 JUN 066 22	CHLORO-BENZENE TOTAL (UG/L) ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L) ND	CHLORO-BENZENE TOTAL (UG/L) ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLO-RIDE TOTAL (UG/L) ND
MAY 1987 29 JUN 29 AUG 31 OCT 19 NOV 09 30 APR 1988 04 20 JUN 06 22 JUL 18	CHLORO- BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND	CHLORO-BENZENE TOTAL (UG/L) ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE TOTAL (UG/L) ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLO-RIDE TOTAL (UG/L) ND
MAY 1987 29 JUN 29 AUG 31 OCT 19 NOV 09 30 APR 1988 04 20 JUN 06 22 JUL 18 AUG 31	CHLORO-BENZENE TOTAL (UG/L) ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND	CHLORO-PROPANE TOTAL (UG/L) ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND	CHLORO-BENZENE TOTAL (UG/L) ND	CHLORO-BENZENE TOTAL (UG/L) ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L) ND	CHLORO-ETHYL-ENE TOTAL (UG/L) ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLO-RIDE TOTAL (UG/L) ND

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

01420500 BEAVER KILL AT COOKS FALLS, NY - continued

# SUSPENDED SEDIMENT DISCHARGE

		DIS- CHARGE,		SEDI- MENT,
		INST.	SEDI-	DIS-
		CUBIC FEET	MENT, SUS-	CHARGE, SUS-
DATE	TIME	PER SECOND	PENDED (MG/L)	PENDED (T/DAY)
JUN 1988		SECOND	(MG/L)	(I)DAI)
06	1600	290	2	1.6
22	1650	109	3	0.88
JUL				
18	1730	136	5	1.8
AUG				
31	1630	239	4	2.6
OCT				
17	1500	60	<1	
NOV				
14	1500	843	2	4.6

### BED MATERIAL ANALYSES

DATE	TIME T	VOLA- F LE IN FM OTTOM TO MA- T TERIAL (	RECOV. M BOT- R M MA- FM PERIAL TO UG/G I	IUM, ECOV. F BOT- T M MA- ERIAL				MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
OCT 1987	1515	0200		.10	5	4800	5.0	100
19	1515	9200	<1	<10	5	4800	50	190
DATE	MERCURY RECOV. FM BOT- TOM MA- TERIAI (UG/G AS HG)	RECOV FM BOT TOM MA TERIAL (UG/G	RECOV FM BOT TOM MA TERIAL (UG/G	FALL DIAM. % FINE THAN	SIEV DIAM R % FIN I THA	. MAT. E SIEVI . DIAM. ER % FINI N THAN	E SIEV . DIAM ER % FIN N THA	re !. !er wn
ОСТ 1987 19	<0.10	) 10	) 30		0	0	1	97
19	₹0.10	, 10	, 30	,	U	v	1	21

#### 01421000 EAST BRANCH DELAWARE RIVER AT FISHS EDDY, NY

LOCATION.--Lat 41 58'23", long 75 10'28", Delaware County, Hydrologic Unit 02040102, on left bank 3,000 ft upstream from bridge on County Highway 28 at Fishs Eddy, 0.6 mi upstream from Fish Creek, 4.2 mi downstream from Beaver Kill, and 11 mi upstream from the confluence of East and West Branches near Hancock. Water-quality sampling site at discharge station.

DRAINAGE AREA. -- 784 mi 2 .

PERIOD OF RECORD.--Water years 1958-59, 1968 to current year.

CHEMICAL DATA: 1958-59 (d), 1970 (b), 1971-74 (d), 1975 (c), 1988 (b).

MINOR ELEMENTS DATA: 1971-74 (a), 1988 (b).

PESTICIDE DATA: 1988 (b).

ORGANIC DATA: CC--1974 (a), 1975 (c).

NUTRIENT DATA: 1971-75 (d), 1988 (b).

BIOLOGICAL DATA:

Bacteria--1971 (c), 1973-75 (c).

SEDIMENT DATA: 1988 (b).

PERIOD OF DAILY RECORD. --

WATER TEMPERATURES: November 1967 to current year.

INSTRUMENTATION.--Water-temperature digital recorder since October 1975, provides one-hour-interval punches. Prior to October 1975, water-temperature recorder provided continuous recordings.

REMARKS.--Water-discharge data obtained from stream-flow gage at this site.

EXTREMES FOR PERIOD OF DAILY RECORD .--

WATER TEMPERATURES: Maximum (water years 1968-75, 1978, 1980-82, 1984, 1986-89), 31.5 C, Aug. 2, 1975; minimum (water years 1968-76, 1978-79, 1981-89), 0.0 C on many days during winter periods, except 1978.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
APR 1988 04 JUN	1500	2270	61	60	6.6	10.0	6.0	757	11.4	102	17	5.1
06 22 JUL	1450 1530	509 25 <b>4</b>	72 92	88 68	8.3 8.7	20.5 27.5	0.70 1.0	748 759	10.0 9.5	113 120	20 24	6.2 7.3
18	1600	537	118	114	8.8	28.0	0.70	762	9.3	119	24	7.2
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, TOTAL (MG/L)	SOLIDS, VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	RESIDUE TOTAL FIXED (MG/L)
APR 1988 04	1.0	3.0	0.50	7.0	8.9	5.8	0.10	44	29	52	22	30
JUN 06	1.2	3.8	0.50	12	9.1	6.7	0.20	44	35	47	29	18
22	1.4	6.6	1.0	14	9.4	10	0.20		44	43	35	8
JUL 18	1.5	11	0.80	14	9.7	17	0.10	77	56	80	32	48
DATE	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS NH4)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS NO3)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)
APR 1988 04		ND	0.290	0.010	0.01	0.09	0.10	0.39	1.7	0.010	0.00	0.0
JUN 06												
22		ND ND	0.140	ND 0 010	0.01	0 21	0.17	0.31 0.39	1.4 1.7	0.010 0.320	ND	
JUL		ND	0.170	0.010	0.01	0.21	0.22	0.39	1./	0.320	ND	

### 01421000 EAST BRANCH DELAWARE RIVER AT FISHS EDDY, NY - continued

### WATER-QUALITY DATA (continued)

DATE	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)
04 JUN		10	<1	<1.0	3	1	380	14	<5	<5	30
06 22 JUL	30 40	30	1 <1	1.0	8 4	 5	70 80	17 	<5 <5	<5 	20 30
18	30		<1		4		80		<5		40
DATE	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)	BROMO- FORM TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)
APR 1988 04	10	<0.10	9	3	<10	4	ND	ND	ND	ND	ND
JUN 06 22	14	<0.10 <0.10	4 <1	4	<10 <10	16 	ND ND	ND ND	ND ND	ND ND	ND ND
JUL 18		<0.10	2		<10		ND	ND	ND	ND	ND
DATE	CHLORO- FORM TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)
APR 1988 04	FORM TOTAL	1,3-DI- CHLORO- PROPENE TOTAL	CHLORO- BROMO- METHANE TOTAL	BROMIDE TOTAL	CHLO- RIDE <b>TOTA</b> L	ENE CHLO- RIDE TOTAL	TRI- CHLORO- ETHANE TOTAL	CHLORO- ETHANE TOTAL	CHLORO- ETHYL- ENE TOTAL	TRI- CHLORO- ETHANE TOTAL	TETRA- CHLORO- ETHANE TOTAL
APR 1988 04 JUN 06 22	FORM TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- BROMO- METHANE TOTAL (UG/L)	BROMIDE TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)	ENE CHLO- RIDE TOTAL (UG/L)	TRI - CHLORO- ETHANE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	TRI - CHLORO- ETHANE TOTAL (UG/L)	TETRA- CHLORO- ETHANE TOTAL (UG/L)
APR 1988 04 JUN 06	FORM TOTAL (UG/L) ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND	CHLORO- BROMO- METHANE TOTAL (UG/L) ND	BROMIDE TOTAL (UG/L) ND	CHLO- RIDE TOTAL (UG/L) ND	ENE CHLO- RIDE TOTAL (UG/L)	TRI-CHLORO-ETHANE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L) ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	TRI- CHLORO- ETHANE TOTAL (UG/L) ND	TETRA- CHLORO- ETHANE TOTAL (UG/L)
APR 1988 04 JUN 06 22 JUL 18	FORM TOTAL (UG/L)  ND ND ND ND ND TOTAL (UG/L)	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND ND ND ND 1,2-DI-CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO-BROMO-METHANE TOTAL (UG/L)  ND ND ND ND CHLORO-PROPANE TOTAL (UG/L)	ND ND ND ND TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLO-RIDE TOTAL (UG/L)  ND ND ND ND CHLORO-BENZENE TOTAL (UG/L)	ENE CHLO- RIDE TOTAL (UG/L)  0.5  ND ND ND  1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	TRI- CHLORO- ETHANE TOTAL (UG/L)  ND  1.0  ND  ND  TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO-ETHANE TOTAL (UG/L)  ND ND ND ND TRANS- 1,3-DI- CHLORO-PROPENE TOTAL (UG/L)	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND ND ND ND TRI-CHLORO-ETHYL-ENE TOTAL (UG/L)	TRI- CHLORO- ETHANE TOTAL (UG/L)  ND  ND  ND  ND  CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	TETRA- CHLORO- ETHANE TOTAL (UG/L)  ND  ND  ND  ND  VINYL CHLO- RIDE TOTAL (UG/L)
APR 1988 04 JUN 06 22 JUL 18 DATE APR 1988 04 JUN	FORM TOTAL (UG/L)  ND  ND  ND  ND  L1,2-DI- CHLORO- BENZENE TOTAL	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND  ND  ND  ND  1,2-DI-CHLORO-ETHANE WATER WHOLE TOTAL	CHLORO-BROMO-METHANE TOTAL (UG/L)  ND  ND  ND  ND  CHLORO-PROPANE TOTAL	ND ND ND ND T-TRANSDI CHLORO-ETHENE TOTAL	CHLO-RIDE TOTAL (UG/L)  ND ND ND ND ND END ND ND ND TOTAL TOTAL TOTAL	ENE CHLO- RIDE TOTAL (UG/L)  0.5  ND ND ND  1,4-DI- CHLORO- BENZENE TOTAL	TRI- CHLORO- ETHANE TOTAL (UG/L)  ND  1.0  ND  TETRA- CHLORO- ETHYL- ENE TOTAL	CHLORO-ETHANE TOTAL (UG/L)  ND ND ND ND TRANS-1,3-DI-CHLORO-PROPENE TOTAL	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND  ND  ND  ND  TRI-CHLORO-ETHYL-ENE ENE TOTAL	TRI- CHLORO- ETHANE TOTAL (UG/L)  ND ND ND ND ND CHLORO- ETHYL- VINYL- ETHER TOTAL	TETRA- CHLORO- ETHANE TOTAL (UG/L)  ND  ND  ND  ND  VINYL CHLO- RIDE TOTAL
APR 1988 04 JUN 06 22 JUL 18 DATE APR 1988 04	FORM TOTAL (UG/L)  ND  ND  ND  ND  1,2-DI- CHLORO- BENZENE TOTAL (UG/L)  ND	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND  ND  ND  ND  1,2-DI-CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-BROMO-METHANE TOTAL (UG/L)  ND  ND  ND  ND  1,2-DI-CHLORO-PROPANE TOTAL (UG/L)  ND	ND	CHLO-RIDE TOTAL (UG/L)  ND ND ND ND TOTAL (UG/L)  ND	ENE CHLO- RIDE TOTAL (UG/L)  0.5  ND ND  ND  1,4-DI- CHLORO- BENZENE TOTAL (UG/L)  ND	TRI-CHLORO-ETHANE TOTAL (UG/L)  ND  1.0  ND  TETRA-CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND	CHLORO-ETHANE TOTAL (UG/L)  ND  ND  ND  TRANS- 1,3-DI- CHLORO-PROPENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND  ND  ND  ND  TRI-CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	TRI- CHLORO- ETHANE TOTAL (UG/L)  ND ND ND ND CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	TETRA- CHLORO- ETHANE TOTAL (UG/L)  ND  ND  ND  ND  VINYL CHLO- RIDE TOTAL (UG/L)  ND

### SUSPENDED SEDIMENT DISCHARGE

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)
JUN 1988				
06	1450	509	2	2.7
22	1530	254	2	1.4
JUL				
18	1600	537	2	2.9

#### 01421500 EAST BRANCH DELAWARE RIVER AT HANCOCK, NY

LOCATION.--Lat 41 57'08", long 75 16'37", Delaware Coutny, Hydrologic Unit 02040102, at bridge on State Highway 97 in Hancock and 1.2 mi (1.9 km) upstream from confluence with West Branch. Gaging Station 1906-1912.

DRAINAGE AREA. -- 839 mi2.

PERIOD OF RECORD.--May to November 1987 (discontinued).
CHEMICAL DATA: 1987-88 (b).
MINOR ELEMENT DATA: 1987-88 (b).
PESTICIDE DATA: 1987-88 (b).
NUTRIENT DATA: 1987-88 (b).

REMARKS.--Water-discharge data based on records from stream-flow gage 01421000 East Branch Delaware River at Fish Eddy. Sampling

site moved to 01421000 East Branch Delaware River at Fish Eddy in 1988.

DATE	TIME	DIS- CHARGE, IN CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)
MAY 1987											
08 29	0930 1100	563 361	81 86	7.2 7.7	9.5 22.5	0.60 0.50	10.7 9.8	22 23	6.9 7.2	1.2 1.3	52 36
JUN			2.5				40.0				
29 AUG	1420	393	85	8.6	25.0	0.90	10.2	23	7.0	1.3	53
31 OCT	1345	444		7.4	19.0	0.70	10.1	22	6.8	1.2	40
19	1415	650	66	7.4	12.0	1.1	12.3	22	6.7	1.2	49
NOV 09	1245	723		7.4	6.5	0.50	13.3	18	5.4	1.2	47
30	1500	1830		7.2	6.0	4.0	M16.4	19	5.8	1.2	40
DATE	SOLIDS, RESIDUE AT 105 DEG. C, TOTAL (MG/L)	SOLIDS, VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	RESIDUE TOTAL FIXED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS NH4)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS NO3)
MAY 1987		1.0	40		0 170			0.00	0.07	0.04	
08 29	5 <b>8</b> 65	16 2 <b>4</b>	42 41	ND ND	0.170 0.270	0.010 0.020	0.01	0.06 0.07	0.07 0.09	0.24 0.36	1.1 1.6
JUN 29	53	20	28	ND	0.190	0.010	0.01	0.12	0.13	0.32	1.4
AUG							0.01				
31 OCT	-54	20	34	ND	0.260	ND			0.13	0.39	1.7
19 NOV	52	18	34	ND	0.150	0.010	0.01	0.16	0.17	0.32	1.4
09	50	28	28	ND	0.300	ND			0.16	0.46	2.0
30	54	23	34	ND	0.360	ND			0.17	0.53	2.3
DATE	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)
MAY 1987						4.5		•	-		
08 29	0.00 0.010	0.00 ИD	0.0	<10 <10	1.0	<10 <10	<1	20 60	<5 <5	- <i>-</i> <5	20 20
JUN 29	0.010	ND		<10		<10		60	<5		<10
AUG 31	0.00	ND		<10		30		70	<5		10
OCT											
19 NOV	ND	ИD		<1		5		20	<5		<10
09 30	0.00 0.010	0.00 ND	0.0	<1 <1	1.0	<b>4</b> 6	4	40 290	<5 <5	 <5	10 50

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 01421500 EAST BRANCH DELAWARE RIVER AT HANCOCK, NY - continued

									,-		,				
		MERCUR TOTAL RECOV ERABL	TOTA	L NICK	- REC	IC, PAL COV- ABLE	ZINC, DIS- SOLVE	- BROM	0-	CARBON TETRA CHLO- RIDE	<b>\-</b>	D O- BR	ORO- I- OMO- HANE	CHLORO- ETHANE	- CHLORC
I	DATE	(UG/L AS HO	. (UG/			3/L ZN)	(UG/I AS ZN			TOTAL (UG/L		TO	TAL G/L)	TOTAL (UG/L)	TOTAL (UG/L)
MAY 1	1987														
	• • •	<0.1		<1 -		<10		ND ND		ND	ND	N	-	ND	ND ND
29. JUN	• • •	<0.1	.0	<1	<1	10	<1	lo ND		ND	ND	N	υ	ND	NU
29	• • •	<0.1	.0	1 -	-	<10		ND	)	ND	ND	N	D	ND	ND
AUG 31		<0.1	10	2 -	_	<10		ND	)	ND	ND	N	D	ND	ND
OCT													_		
NOV		<0.1		<1 -	-	20		ND		ND	ND	N		ND	ND
	• • •	<0.1 <0.1		<1 -	- <1	<10 10		ND 10 ND		ND ND	ND ND	N N		ND ND	ND ND
30	• • •	<∪.	10	<b>&lt;</b> 1	<b>&lt;</b> 1	10		IU NL	,	ND	ND	N	D	ND	NU
		CIS	DI-		Mem	HYL-	METHYI ENE	L- 1,1, TRI		1 1 n1	1,1-i - CHLOI			1,1,2,	
		1,3-D1 CHLORG				LO-	CHLO-			1,1-D1 CHLORG			ORO-	TETRA- CHLORO	1,2-DI - CHLORC
		PROPE		ANE BROM	IDE RI	DΕ	RIDE	ETHA	NE	ETHANE	E EN	E ETH	ANE	ETHANE	BENZEN
1	DATE	TOTAL				ral.	TOTAL	TOTA		TOTAL			TAL	TOTAL	TOTAL
MAY	1987	(UG/L)	) (UG,	/L) (UG/	L) (UG	/L)	(UG/L	) (UG/	ъ)	(UG/L)	(UG/I	7) (ng	/L)	(UG/L)	(UG/L)
08		ND	ND	NE			ND	NE		ND	ND	N		ND	ND
	• • •	ND	ND	ND	N	D	ND	NE	)	ND	ND	N	D	ND	ND
	• • •	ND	ND	NE	, N	D	ND	NE	)	ND	ND	N	D	ND	ND
		ND	ND	NE	) N	D	ИD	NI	)	ND	ND	N	D	ND	ND
OCT 19		ND	ND	NE	) N	D	ND	NE	)	ND	ND	N	D	ND	ND
NOV							_								
		ND ND	ND ND	NC NC			ND ND	NI NI		ND ND	ND ND	-	D D	ND ND	ND ND
30	•••				••							•	-		
			1,2-D1- CHLORO-		1,2-				TETR	RA-	TRANS-	TRI-		:- Loro-	
			ETHANE	1,2-DI-	TRANSDI			1,4-DI-	CHLC	DRO-	1,3-DI-	CHLORO-	ET	IYL-	VINYL
			WATER	CHLORO-	CHLORO-			CHLORO-	ETHY		CHLORO-	ETHYL-			CHLO-
	n:	ATE	WHOLE TOTAL	PROPANE	ETHENE TOTAL		ZENE :	BENZENE TOTAL	ENE TOI		PROPENE TOTAL	ENE TOTAL			RIDE TOTAL
	ν.		(UG/L)	(UG/L)	(UG/L)			(UG/L)	(UG/		(UG/L)	(UG/L)			(UG/L)
	MAY 1									_					
	08. 29.		ND ND	ND ND	ND ND		ID ID	ND ND	NE NE		ND ND	ND ND		1D 1D	ND ND
	JUN														
	29. AUG	• •	ND	ND	ND	N	ID.	ND	N	)	ND	ND	1	ND	ND
	31. OCT	••	ND	ND	ND	N	1D	ND	N	)	ND	ND	ı	4D	ND
	19.	• •	ND	ND	ND	N	1D	ND	И	)	ND	ND	t	1D	ND
	NOV 09.		ND	ND	ND	N	1D	ND	NI	)	ND	ND	1	ND	ND
	30.		ND	ND	ND		1D	ND	NI		ND	ND	1	ND	ND

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

01421500 EAST BRANCH DELAWARE RIVER AT HANCOCK, NY - continued

### BED MATERIAL ANALYSES

DATE	V TI BO	OLA- I LE IN FI TTOM TO MA- ' ERIAL	RECOV. M M BOT- R OM MA- FM TERIAL TO (UG/G T	IUM, R ECOV. FM BOT- TO M MA- T ERIAL (	RECOV. R BOT-FM M MA-TO ERIAL T UG/G (	ECOV. RE BOT- FM M MA- TOM ERIAL TE UG/G (U	ECOV. NI BOT- RI MA- FM ERIAL TOI JG/G TI	ANGA- ESE, ECOV. BOT- M MA- ERIAL UG/G)
OCT 1987								
19	1415	17300	<1	<10	10	5700	30	680
	MERCURY	NICKEL	, ZINC,	BED	BED	BED	BED	
	RECOV.	RECOV	. RECOV.	MAT.	MAT.	MAT.	MAT.	
	FM BOT-	FM BOT	- FM BOT-	FALL	SIEVE	SIEVE	SIEVE	
	TOM MA-	TOM MA-	- TOM MA-	DIAM.	DIAM.	DIAM.	DIAM.	
	TERIAL	TERIA	L TERIAL	% FINER	% FINER	<pre>% FINER</pre>	<pre>% FINER</pre>	
DATE	(UG/G	(UG/G	(UG/G	THAN	THAN	THAN	THAN	
	AS HG)	AS NI	) AS ZN)	.004 MM	.062 MM	.125 MM	2.00 MM	
OCT 1987								
19	<0.10	10	50	1	. 6	12	99	

### 01422642 WEST BRANCH DELAWARE RIVER AT DE LANCEY, NY

LOCATION.--Lat 42 12'29", long 74 58'35", Delaware County, Hydrologic Unit 02040101, at bridge on Bagley Brook Road at De Lancey.

PH

WATER

DRAINAGE AREA. -- 241 mi2.

PERIOD OF RECORD.--Water years 1987 to 1989.

CHEMICAL DATA: 1987 (b), 1988 (c), 1989 (a).

MINOR ELEMENT DATA: 1987 (b), 1988 (c), 1989 (a).

PESTICIDE DATA: 1987 (b), 1988 (c), 1989 (a).

NUTRIENT DATA: 1987 (b), 1988 (c), 1989 (a).

BIOLOGICAL DATA:

Bacteria-- 1987-88 (a).

SEDIMENT DATA: 1988 (b), 1989 (a).

DIS-

CHARGE,

REMARKS. -- Water-discharge data obtained from a discharge rating developed for this site.

SPE-

SPE-

CIFIC

#### WATER-QUALITY DATA

BARO-

METRIC

OXYGEN,

DIS-

COLI-

FORM,

FECAL

COLI-

DATE	TIME	INST. CUBIC FEET PER	CIFIC CON- DUCT- ANCE	CON- DUCT- ANCE LAB	WHOLE FIELD (STAND- ARD	TEMPER- ATURE WATER	TUR- BID- ITY	PRES- SURE (MM OF	OXYGEN, DIS- SOLVED	SOLVED (PER- CENT SATUR-	TOTAL, IMMED. (COLS. PER	FORM 24-HR MEM.FIL (COLS./
MAY 1987		SECOND	(US/CM)	(US/CM)	Units)	(DEG C)	(NTU)	HG)	(MG/L)	ATION)	100 ML)	100 ML)
08	1215			99	8.6	13.5	0.70		14.6		>60	ND
29	1300			113	8.0	25.0	1.0		11.7			
JUN 29	1150			112	7.4	25.0	2.2		9.2			
AUG 31	1100				7.4	17.0	1.3		10.1			
OCT	1200			95	7.4		1.9		12.5			
19 NOV				95		11.0						
09	1030				7.2	8.0	1.0		12.3			
30 APR 1988	1200				7.2	7.0			15.8			
04	1130	706	83	85	7.8	10.5	4.4	757	10.9	98		
21	1100	235	92	91	6.1	6.0	1.0	755	12.8	103	340	14.0
JUN												
06	1100	184	99	96	7.8	15.5	1.5	748	10.5	107		
22 JUL	1200	75	131	130	7.8	20.0	1.6	759	9.2	102		
18	1200		146	142	7.9	23.5	6.5	762	9.0	106		
AUG 31	1145	141	127	123	7.6	17.5	1.4	766	9.7	101		
OCT	4000			450								
17	1200		150	150	7.6	13.0	0.80	768	11.4	108		
14	1200	603	89	85	7.5	6.0	5.9	764	13.2	106		
										SOLIDS,	SOLIDS,	
	HARD-		MAGNE-		POTAS-	ALKA-		CHLO-	FLUO-	RESIDUE	SUM OF	SOLIDS,
	NESS	CALCIUM	SIUM,	SODIUM,	SIUM,	LINITY	SULFATE	RIDE,	RIDE,	AT 180	CONSTI-	RESIDUE
	TOTAL	DIG	DIS-	DIS-	DIS-	LAB	DIS-	DIS-	DIS-	DEG. C	TUENTS,	AT 105
	TOTAL	DIS-	013-									
	(MG/L	SOLVED	SOLVED	SOLVED	SOLVED	(MG/L	SOLVED	SOLVED	SOLVED	DIS-	DIS-	DEG. C,
DATE	(MG/L AS	SOLVED (MG/L	SOLVED (MG/L	SOLVED (MG/L	(MG/L	AS	(MG/L	(MG/L	(MG/L	SOLVED	DIS- SOLVED	TOTAL
	(MG/L	SOLVED	SOLVED	SOLVED							DIS-	
MAY 1987	(MG/L AS CACO3)	SOLVED (MG/L AS CA)	SOLVED (MG/L AS MG)	SOLVED (MG/L AS NA)	(MG/L AS K)	AS CACO3)	(MG/L AS SO4)	(MG/L AS CL)	(MG/L AS F)	SOLVED (MG/L)	DIS- SOLVED (MG/L)	TOTAL (MG/L)
MAY 1987 08	(MG/L AS CACO3)	SOLVED (MG/L AS CA)	SOLVED (MG/L AS MG)	SOLVED (MG/L	(MG/L	AS	(MG/L	(MG/L	(MG/L	SOLVED	DIS- SOLVED	TOTAL
MAY 1987 08 29 JUN	(MG/L AS CACO3) 32 34	SOLVED (MG/L AS CA) 9.4 10	SOLVED (MG/L AS MG) 2.0 2.2	SOLVED (MG/L AS NA)	(MG/L AS K)	AS CACO3)	(MG/L AS SO4)	(MG/L AS CL) 	(MG/L AS F)	SOLVED (MG/L) 57 60	DIS- SOLVED (MG/L)	TOTAL (MG/L) 75 77
MAY 1987 08 29	(MG/L AS CACO3)	SOLVED (MG/L AS CA)	SOLVED (MG/L AS MG)	SOLVED (MG/L AS NA)	(MG/L AS K)	AS CACO3)	(MG/L AS SO4)	(MG/L AS CL)	(MG/L AS F)	SOLVED (MG/L)	DIS- SOLVED (MG/L)	TOTAL (MG/L) 75
MAY 1987 08 29 JUN 29 AUG 31	(MG/L AS CACO3) 32 34	SOLVED (MG/L AS CA) 9.4 10	SOLVED (MG/L AS MG) 2.0 2.2	SOLVED (MG/L AS NA)	(MG/L AS K)	AS CACO3)	(MG/L AS SO4)	(MG/L AS CL) 	(MG/L AS F)	SOLVED (MG/L) 57 60	DIS- SOLVED (MG/L)	TOTAL (MG/L) 75 77
MAY 1987 08 29 JUN 29 AUG 31 OCT 19	(MG/L AS CACO3) 32 34	SOLVED (MG/L AS CA) 9.4 10	SOLVED (MG/L AS MG) 2.0 2.2 2.5	SOLVED (MG/L AS NA)	(MG/L AS K)  	AS CACO3)	(MG/L AS SO4)  	(MG/L AS CL)  	(MG/L AS F)  	SOLVED (MG/L) 57 60	DIS- SOLVED (MG/L)	TOTAL (MG/L) 75 77
MAY 1987 08 29 JUN 29 AUG 31 OCT 19 NOV	(MG/L AS CACO3) 32 34 40 41	SOLVED (MG/L AS CA)  9.4 10 12 12	SOLVED (MG/L AS MG) 2.0 2.2 2.5 2.6	SOLVED (MG/L AS NA)	(MG/L AS K)   	AS CACO3)   	(MG/L AS SO4)   	(MG/L AS CL)   	(MG/L AS F)   	SOLVED (MG/L) 57 60 37 64	DIS- SOLVED (MG/L)	75 77 91 84
MAY 1987 08 29 JUN 29 AUG 31 OCT 19 NOV 09	(MG/L AS CACO3) 32 34 40 41 36	SOLVED (MG/L AS CA)  9.4 10 12 11 5.4	SOLVED (MG/L AS MG)  2.0 2.2 2.5 2.6 2.0	SOLVED (MG/L AS NA)	(MG/L AS K)   	AS CACO3)	(MG/L AS SO4)   	(MG/L AS CL)   	(MG/L AS F)   	SOLVED (MG/L) 57 60 37 64 57	DIS- SOLVED (MG/L)	TOTAL (MG/L)  75 77  91  84  70  68
MAY 1987 08 29 JUN 29 AUG 31 OCT 19 NOV 09 30	(MG/L AS CACO3) 32 34 40 41	SOLVED (MG/L AS CA)  9.4 10 12 12	SOLVED (MG/L AS MG) 2.0 2.2 2.5 2.6	SOLVED (MG/L AS NA)	(MG/L AS K)   	AS CACO3)   	(MG/L AS SO4)   	(MG/L AS CL)   	(MG/L AS F)   	SOLVED (MG/L) 57 60 37 64	DIS- SOLVED (MG/L)	75 77 91 84
MAY 1987 08 29 JUN 29 AUG 31 OCT 19 NOV 09	(MG/L AS CACO3) 32 34 40 41 36	SOLVED (MG/L AS CA)  9.4 10 12 11 5.4	SOLVED (MG/L AS MG)  2.0 2.2 2.5 2.6 2.0	SOLVED (MG/L AS NA)	(MG/L AS K)   	AS CACO3)	(MG/L AS SO4)   	(MG/L AS CL)   	(MG/L AS F)   	SOLVED (MG/L) 57 60 37 64 57	DIS- SOLVED (MG/L)	TOTAL (MG/L)  75 77  91  84  70  68
MAY 1987 08 29 JUN 29 AUG 31 OCT 19 NOV 09 30 APR 1988 04 21	(MG/L AS CACO3) 32 34 40 41 36 18 27	SOLVED (MG/L AS CA)  9.4 10 12 12 11 5.4 7.7	SOLVED (MG/L AS MG)  2.0 2.2 2.5 2.6 2.0 1.2 1.9	SOLVED (MG/L AS NA)	(MG/L AS K)    	AS CACO3)	(MG/L AS SO4)	(MG/L AS CL)	(MG/L AS F)    	SOLVED (MG/L) 57 60 37 64 57 54	DIS- SOLVED (MG/L)	TOTAL (MG/L)  75 77  91  84  70  68 85
MAY 1987 08 29 JUN 29 AUG 31 OCT 19 NOV 09 30 APR 1988 04 21 JUN	(MG/L AS CACO3) 32 34 40 41 36 18 27 22 30	SOLVED (MG/L AS CA)  9.4 10  12 12 11 5.4 7.7 6.3 8.8	SOLVED (MG/L AS MG)  2.0 2.2 2.5 2.6 2.0 1.2 1.9	SOLVED (MG/L AS NA)	(MG/L AS K) 1.0 0.90	AS CACO3)	(MG/L AS SO4)      8.7	(MG/L AS CL)      6.2 7.4	(MG/L AS F)      0.10 0.10	SOLVED (MG/L)  57 60  37 64 57 54 48 56 62	DIS- SOLVED (MG/L)     35	TOTAL (MG/L)  75 77  91  84  70  68  85  70  80
MAY 1987 08 29 JUN 29 AUG 31 OCT 19 NOV 09 30 APR 1988 04 21 JUN 06	(MG/L AS CACO3) 32 34 40 41 36 18 27 22 30	SOLVED (MG/L AS CA)  9.4 10 12 12 11 5.4 7.7 6.3 8.8 9.6	SOLVED (MG/L AS MG)  2.0 2.2 2.5 2.6 2.0 1.2 1.9 1.5 1.9 2.2	SOLVED (MG/L AS NA)	(MG/L AS K) 1.0 0.90	AS CACO3)	(MG/L AS SO4)      8.7 11	(MG/L AS CL)      6.2 7.4	(MG/L AS F)     0.10 0.10	SOLVED (MG/L) 57 60 37 64 57 54 48 56 62 58	DIS- SOLVED (MG/L)    35 46	TOTAL (MG/L)  75 77  91  84  70  68  85  70  80  63
MAY 1987 08 29 JUN 29 AUG 31 OCT 19 NOV 09 30 APR 1988 04 21 JUN 06 22	(MG/L AS CACO3) 32 34 40 41 36 18 27 22 30	SOLVED (MG/L AS CA)  9.4 10  12 12 11 5.4 7.7 6.3 8.8	SOLVED (MG/L AS MG)  2.0 2.2 2.5 2.6 2.0 1.2 1.9	SOLVED (MG/L AS NA)	(MG/L AS K) 1.0 0.90	AS CACO3)	(MG/L AS SO4)      8.7	(MG/L AS CL)      6.2 7.4	(MG/L AS F)      0.10 0.10	SOLVED (MG/L)  57 60  37 64 57 54 48 56 62	DIS- SOLVED (MG/L)     35	TOTAL (MG/L)  75 77  91  84  70  68  85  70  80
MAY 1987 08 29 JUN 29 AUG 31 OCT 19 NOV 09 30 APR 1988 04 21 JUN 06 22 JUL 18	(MG/L AS CACO3) 32 34 40 41 36 18 27 22 30	SOLVED (MG/L AS CA)  9.4 10 12 12 11 5.4 7.7 6.3 8.8 9.6	SOLVED (MG/L AS MG)  2.0 2.2 2.5 2.6 2.0 1.2 1.9 1.5 1.9 2.2	SOLVED (MG/L AS NA)	(MG/L AS K) 1.0 0.90	AS CACO3)	(MG/L AS SO4)      8.7 11	(MG/L AS CL)      6.2 7.4	(MG/L AS F)     0.10 0.10	SOLVED (MG/L) 57 60 37 64 57 54 48 56 62 58	DIS- SOLVED (MG/L)    35 46	TOTAL (MG/L)  75 77  91  84  70  68  85  70  80  63
MAY 1987  08 29 JUN 29 AUG 31 OCT 19 NOV 09 APR 1988 04 21 JUN 06 22 JUL 18 AUG	(MG/L AS CACO3) 32 34 40 41 36 18 27 22 30 33 42	SOLVED (MG/L AS CA)  9.4 10 12 11 5.4 7.7 6.3 8.8 9.6 12	SOLVED (MG/L AS MG)  2.0 2.2 2.5 2.6 2.0 1.2 1.9 1.5 1.9 2.2 2.9	SOLVED (MG/L AS NA)	(MG/L AS K) 1.0 0.90 1.0	AS CACO3)	(MG/L AS SO4)      8.7 11 10	(MG/L AS CL) 6.2 7.4 7.1	(MG/L AS F) 0.10 0.10 0.20 0.20	SOLVED (MG/L) 57 60 37 64 57 54 48 56 62 58	DIS- SOLVED (MG/L) 35 46 49 64	TOTAL (MG/L)  75 77  91  84  70  68  85  70  80  63 101
MAY 1987 08 29 JUN 29 AUG 31 OCT 19 NOV 09 30 APR 1988 04 21 JUN 06 22 JUL 18 AUG 31 OCT	(MG/L AS CACO3) 32 34 40 41 36 18 27 22 30 33 42 42	SOLVED (MG/L AS CA)  9.4 10  12 11 5.4 7.7 6.3 8.8 9.6 12 12	SOLVED (MG/L AS MG)  2.0 2.2 2.5 2.6 2.0 1.2 1.9 2.2 2.9 2.9	SOLVED (MG/L AS NA)	(MG/L AS K) 1.0 0.90 1.3 1.4 2.0	AS CACO3)	(MG/L AS SO4) 8.7 11 10 12 12	(MG/L AS CL) 6.2 7.4 7.1 11 14	(MG/L AS F)  0.10 0.10 0.20 0.20 0.10	SOLVED (MG/L) 57 60 37 64 57 54 48 56 62 58 73	DIS- SOLVED (MG/L)    35 46 49 64	TOTAL (MG/L)  75 77  91  84  70  68  85  70  80  63 101
MAY 1987  08 29 JUN 29 AUG 31 OCT 19 NOV 09 APR 1988 04 21 JUN 06 22 JUL 18 AUG 31 OCT 17 NOV	(MG/L AS CACO3) 32 34 40 41 36 18 27 22 30 33 42 42 42	SOLVED (MG/L AS CA)  9.4 10 12 12 11 5.4 7.7 6.3 8.8 9.6 12 12 14	SOLVED (MG/L AS MG)  2.0 2.2 2.5 2.6 2.0 1.2 1.9 2.2 2.9 2.8 3.4	SOLVED (MG/L AS NA)	(MG/L AS K) 1.0 0.90 1.3 1.4 2.0 1.7	AS CACO3)	(MG/L AS SO4)	(MG/L AS CL) 6.2 7.4 7.1 11 14	(MG/L AS F)  0.10 0.10 0.20 0.20 0.10 0.10 <-0.10	50LVED (MG/L) 57 60 37 64 57 54 48 56 62 58 73 82 101	DIS- SOLVED (MG/L) 35 46 49 64 68 62	TOTAL (MG/L)  75 77  91  84  70  68  85  70  80  63 101  101  90  109
MAY 1987 08 29 JUN 29 AUG 31 OCT 19 NOV 09 30 APR 1988 04 JUN 06 21 JUN 06 22 JUL 18 AUG 31 OCT	(MG/L AS CACO3) 32 34 40 41 36 18 27 22 30 33 42 42	SOLVED (MG/L AS CA)  9.4 10  12 11 5.4 7.7 6.3 8.8 9.6 12 12	SOLVED (MG/L AS MG)  2.0 2.2 2.5 2.6 2.0 1.2 1.9 2.2 2.9 2.9	SOLVED (MG/L AS NA)	(MG/L AS K) 1.0 0.90 1.3 1.4 2.0	AS CACO3)	(MG/L AS SO4) 8.7 11 10 12 12	(MG/L AS CL) 6.2 7.4 7.1 11 14	(MG/L AS F)  0.10 0.10 0.20 0.20 0.10	SOLVED (MG/L)  57 60  37 64 57 54 48 56 62 58 73 82	DIS- SOLVED (MG/L) 35 46 49 64 68	TOTAL (MG/L)  75 77  91  84  70  68  85  70  80  63 101  101  90

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 01422642 WEST BRANCH DELAWARE RIVER AT DE LANCEY, NY - continued

					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
DATE	SOLIDS, VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	RESIDUE TOTAL FIXED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS NH4)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS NO3)	PHOS- PHORUS TOTAL (MG/L AS P)
MAY 1987												
08	20	55	0.660	0.00	0.660	0.010	0.01	0.11	0.12	0.78	3.5	0.010
29	28	52	0.830	0.010	0.840	0.070	0.09	0.13	0.20	1.0	4.6	0.030
JUN	20	32	0.030	0.010	0.040	0.070	0.05	0.13	0.20	1.0	4.0	0.030
29	39	52	0.970	0.00	0.970	0.020	0.03	0.19	0.21	1.2	5.2	0.040
AUG	•	<b>J2</b>	0.00	0.00	0.5.0	0.020	0.00	0.15	0.22		3.2	0.010
31	30	54		ND	0.900	ND			0.13	1.0	4.6	0.030
OCT	30	31			0.500				0.13	2.0	1.0	0.050
19	23	47		ND	0.840	0.010	0.01	0.14	0.15	0.99	4.4	0.020
NOV	23	• /		ND	0.040	0.010	0.01	0.14	0.15	0.33	4.4	0.020
09	37	31		ND	1.02	0.010	0.01	0.08	0.09	1.1	4.9	0.020
												0.080
30	37	58		ND	0.750	0.010	0.01	0.32	0.33	1.1	4.8	0.080
APR 1988					0.010				0.16	0.07		0.000
04	26	44		ND	0.810	0.010	0.01	0.15	0.16	0.97	4.3	0.030
21	36	44		ND	0.770	0.00	0.0	0.12	0.12	0.89	3.9	0.010
JUN												
06	42	21		ND	0.700	0.00	0.0	0.13	0.13	0.83	3.7	0.020
22	83	18	0.570	0.010	0.580	0.030	0.04	0.16	0.19	0.77	3.4	0.320
JUL												
18	34	67	1.09	0.010	1.10	0.030	0.04	0.12	0.15	1.2	<b>5.</b> 5	0.090
AUG												
31	39	51	0.990	0.00	0.990	0.010	0.01	0.23	0.24	1.2	5.4	0.060
OCT												
17	34	75	1.15	0.020	1.17	0.020	0.03	0.14	0.16	1.3	5.9	0.060
NOV												
14	32	37		ND	1.09	0.00	0.0	0.24	0.24	1.3	5.9	0.060
DATE	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)
	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHATE, ORTHO, DIS- SOLVED (MG/L	INUM, TOTAL RECOV- ERABLE (UG/L	INUM, DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L
MAY 1987	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	INUM, DIS- SOLVED (UG/L AS AL)	TOTAL RECOV- ERABLE (UG/L AS CD)	DIS- SOLVED (UG/L AS CD)	TOTAL RECOV- ERABLE (UG/L AS CU)	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L AS FE)	DIS- SOLVED (UG/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PB)	DIS- SOLVED (UG/L
MAY 1987 08	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	INUM, DIS- SOLVED (UG/L AS AL)	TOTAL RECOV- ERABLE (UG/L AS CD)	DIS- SOLVED (UG/L AS CD)	TOTAL RECOV- ERABLE (UG/L AS CU)	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV- ERABLE (UG/L AS FE)	DIS- SOLVED (UG/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PB)	DIS- SOLVED (UG/L AS PB)
MAY 1987 08 29	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	INUM, DIS- SOLVED (UG/L AS AL)	TOTAL RECOV- ERABLE (UG/L AS CD)	DIS- SOLVED (UG/L AS CD)	TOTAL RECOV- ERABLE (UG/L AS CU)	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L AS FE)	DIS- SOLVED (UG/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PB)	DIS- SOLVED (UG/L
MAY 1987 08 29 JUN	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.00 0.020	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	INUM, DIS- SOLVED (UG/L AS AL)	TOTAL RECOV- ERABLE (UG/L AS CD)  <10 <10	DIS- SOLVED (UG/L AS CD)	TOTAL RECOV- ERABLE (UG/L AS CU) <10 <10	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV- ERABLE (UG/L AS FE) 120 80	DIS- SOLVED (UG/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PB)	DIS- SOLVED (UG/L AS PB)
MAY 1987 08 29 JUN 29	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	INUM, DIS- SOLVED (UG/L AS AL)	TOTAL RECOV- ERABLE (UG/L AS CD)	DIS- SOLVED (UG/L AS CD)	TOTAL RECOV- ERABLE (UG/L AS CU)	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV- ERABLE (UG/L AS FE)	DIS- SOLVED (UG/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PB)	DIS- SOLVED (UG/L AS PB)
MAY 1987 08 29 JUN 29	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.00 0.020	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) 0.0 0.06	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	INUM, DIS- SOLVED (UG/L AS AL)	TOTAL RECOV- ERABLE (UG/L AS CD) <10 <10	DIS- SOLVED (UG/L AS CD)	TOTAL RECOV- ERABLE (UG/L AS CU) <10 <10 <10	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV- ERABLE (UG/L AS FE) 120 80	DIS- SOLVED (UG/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PB)	DIS- SOLVED (UG/L AS PB)
MAY 1987 08 29 JUN 29 AUG 31	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.00 0.020	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	INUM, DIS- SOLVED (UG/L AS AL)	TOTAL RECOV- ERABLE (UG/L AS CD)  <10 <10	DIS- SOLVED (UG/L AS CD)	TOTAL RECOV- ERABLE (UG/L AS CU) <10 <10	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV- ERABLE (UG/L AS FE) 120 80	DIS- SOLVED (UG/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PB)	DIS- SOLVED (UG/L AS PB)
MAY 1987 08 29 JUN 29 AUG 31	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.00 0.020 0.020	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) 0.0 0.06	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	INUM, DIS- SOLVED (UG/L AS AL)	TOTAL RECOV- ERABLE (UG/L AS CD) <10 <10 <10 <10	DIS- SOLVED (UG/L AS CD)	TOTAL RECOV- ERABLE (UG/L AS CU) <10 <10 <10	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV- ERABLE (UG/L AS FE)  120 80 130	DIS- SOLVED (UG/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PB) 5 <5	DIS- SOLVED (UG/L AS PB)
MAY 1987 08 29 JUN 29 AUG 31 OCT 19	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.00 0.020	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) 0.0 0.06	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	INUM, DIS- SOLVED (UG/L AS AL)	TOTAL RECOV- ERABLE (UG/L AS CD) <10 <10	DIS- SOLVED (UG/L AS CD)	TOTAL RECOV- ERABLE (UG/L AS CU) <10 <10 <10	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV- ERABLE (UG/L AS FE) 120 80	DIS- SOLVED (UG/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PB)	DIS- SOLVED (UG/L AS PB)
MAY 1987 08 29 JUN 29 AUG 31 OCT 19 NOV	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.00 0.020 0.020 0.020	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) 0.0 0.06 0.06 0.06	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	INUM, DIS- SOLVED (UG/L AS AL)	TOTAL RECOV- ERABLE (UG/L AS CD)  <10 <10 <10 <10 <10 <11	DIS- SOLVED (UG/L AS CD)	TOTAL RECOV- ERABLE (UG/L AS CU)  <10 <10 <10 10	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV- ERABLE (UG/L AS FE)  120 80  130 80 40	DIS- SOLVED (UG/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PB)  5 <5 6 13 <5	DIS- SOLVED (UG/L AS PB)
MAY 1987 08 29 JUN 29 AUG 31 CCT 19 NOV 09	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.00 0.020 0.020 0.020 0.010	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) 0.06 0.06 0.06	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	INUM, DIS- SOLVED (UG/L AS AL)	TOTAL RECOV- ERABLE (UG/L AS CD)  <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	DIS- SOLVED (UG/L AS CD)	TOTAL RECOV- ERABLE (UG/L AS CU)  <10 <10 <10 21 10	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV- ERABLE (UG/L AS FE)  120 80 130 80 40 60	DIS- SOLVED (UG/L AS FE)	TOTAL RECOV-ERABLE (UG/L AS PB)  5 <5 6 13 <5 <5	DIS- SOLVED (UG/L AS PB)
MAY 1987 08 29 JUN 29 AUG 31 OCT 19 NOV 09 30	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.00 0.020 0.020 0.020 0.010 0.010 0.020	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) 0.0 0.06 0.06 0.06	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	INUM, DIS- SOLVED (UG/L AS AL)	TOTAL RECOV- ERABLE (UG/L AS CD)  <10 <10 <10 <10 <10 <11	DIS- SOLVED (UG/L AS CD)	TOTAL RECOV- ERABLE (UG/L AS CU)  <10 <10 <10 10	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV- ERABLE (UG/L AS FE)  120 80  130 80 40	DIS- SOLVED (UG/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PB)  5 <5 6 13 <5	DIS- SOLVED (UG/L AS PB)
MAY 1987 08 29 JUN 29 AUG 31 OCT 19 NOV 09 APR 1988	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.00 0.020 0.020 0.020 0.010 0.010	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) 0.06 0.06 0.06 0.06	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	INUM, DIS- SOLVED (UG/L AS AL)	TOTAL RECOV- ERABLE (UG/L AS CD)  <10 <10 <10 <11 <11 <11 <11	DIS- SOLVED (UG/L AS CD)  <1.0    <1.0	TOTAL RECOV- ERABLE (UG/L AS CU)  <10 <10 <10  10  2  10 8	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV-ERABLE (UG/L AS FE)  120 80 130 80 40 60	DIS- SOLVED (UG/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PB)  5 <5 6 13 <5 <5 <5	DIS- SOLVED (UG/L AS PB)
MAY 1987 08 29 JUN 29 AUG 31 OCT 19 NOV 09 APR 1988 04	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.00 0.020 0.020 0.020 0.010 0.010 0.020	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) 0.06 0.06 0.06 0.03 0.03 0.06	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	INUM, DIS- SOLVED (UG/L AS AL)	TOTAL RECOVERABLE (UG/L AS CD) <10 <10 <10 <11 <11 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	DIS- SOLVED (UG/L AS CD)	TOTAL RECOVERABLE (UG/L AS CU) <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV-ERABLE (UG/L AS FE)  120 80 130 80 40 60 580	DIS- SOLVED (UG/L AS FE)	TOTAL RECOVERABLE (UG/L AS PB)  5 <5 6 13 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	DIS- SOLVED (UG/L AS PB)
MAY 1987 08 29 JUN 29 AUG 31 OCT 19 NOV 09 APR 1988 04 21	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.00 0.020 0.020 0.020 0.010 0.010	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) 0.06 0.06 0.06 0.06	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	INUM, DIS- SOLVED (UG/L AS AL)	TOTAL RECOV- ERABLE (UG/L AS CD)  <10 <10 <10 <11 <11 <11 <11	DIS- SOLVED (UG/L AS CD)  <1.0    <1.0	TOTAL RECOV- ERABLE (UG/L AS CU)  <10 <10 <10  10  2  10 8	DIS- SOLVED (UG/L AS CU)	TOTAL RECOV-ERABLE (UG/L AS FE)  120 80 130 80 40 60	DIS- SOLVED (UG/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PB)  5 <5 6 13 <5 <5 <55 <55	DIS- SOLVED (UG/L AS PB)
MAY 1987 08 29 JUN 29 AUG 31 OCT 19 NOV 09 30 APR 1988 04 JUN	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.00 0.020 0.020 0.010 0.010 0.020 0.010 ND	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) 0.06 0.06 0.06 0.03 0.03	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	INUM, DIS- SOLVED (UG/L AS AL)	TOTAL RECOV-ERABLE (UG/L AS CD) <10 <10 <10 <11 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	DIS- SOLVED (UG/L AS CD)  <1.0  <1.0 7.0	TOTAL RECOV- ERABLE (UG/L AS CU)  <10 <10  10  2  10  8  5 6	DIS- SOLVED (UG/L AS CU)  3 3 2	TOTAL RECOV-ERABLE (UG/L AS FE)  120 80 130 80 40 60 580 230 70	DIS- SOLVED (UG/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PB)  5 <5 6 13 <5 <5 <5 <5 <5	DIS- SOLVED (UG/L AS PB)  <5   <5 <5
MAY 1987 08 29 JUN 29 AUG 31 OCT 19 NOV 09 APR 1988 04 21 JUN 06	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.00 0.020 0.020 0.010 0.010 0.020 0.010 ND	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) 0.06 0.06 0.06 0.03 0.03 0.06	INUM, TOTAL RECOV- BRABLE (UG/L AS AL)  60 50	INUM, DIS- SOLVED (UG/L AS AL)	TOTAL RECOV-ERABLE (UG/L AS CD)  <10 <10 <10 <11 <1	DIS- SOLVED (UG/L AS CD)  <1.0   <1.0 7.0	TOTAL RECOV- ERABLE (UG/L AS CU)  <10 <10 <10  10  2  10 8  5 6 5	DIS- SOLVED (UG/L AS CU)  3 3 2 5	TOTAL RECOV-ERABLE (UG/L AS FE)  120 80  130  80  40  60 580 230 70	DIS- SOLVED (UG/L AS FE)	TOTAL RECOV-ERABLE (UG/L AS PB)  5 <5 6 13 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	DIS- SOLVED (UG/L AS PB)
MAY 1987 08 29 JUN 29 AUG 31 OCT 19 NOV 09 APR 1988 04 21 JUN 06 22	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.00 0.020 0.020 0.010 0.010 0.020 0.010 ND	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) 0.06 0.06 0.06 0.03 0.03	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	INUM, DIS- SOLVED (UG/L AS AL)	TOTAL RECOV-ERABLE (UG/L AS CD) <10 <10 <10 <11 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	DIS- SOLVED (UG/L AS CD)  <1.0  <1.0 7.0	TOTAL RECOV- ERABLE (UG/L AS CU)  <10 <10  10  2  10  8  5 6	DIS- SOLVED (UG/L AS CU)  3 3 2	TOTAL RECOV-ERABLE (UG/L AS FE)  120 80 130 80 40 60 580 230 70	DIS- SOLVED (UG/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PB)  5 <5 6 13 <5 <5 <5 <5 <5	DIS- SOLVED (UG/L AS PB)  <5   <5 <5
MAY 1987 08 29 JUN 29 AUG 31 OCT 19 NOV 09 APR 1988 04 JUN 06 22 JUL	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.00 0.020 0.020 0.010 0.010 0.010 ND 0.00	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) 0.06 0.06 0.06 0.03 0.03 0.06	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)  60 50 110	INUM, DIS- SOLVED (UG/L AS AL)	TOTAL RECOVERABLE (UG/L AS CD)  <10 <10 <10 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	DIS- SOLVED (UG/L AS CD)  <1.0  <1.0 7.0  1.0	TOTAL RECOV- ERABLE (UG/L AS CU)  <10 <10  10  2  10  8  5 6 5 6	DIS- SOLVED (UG/L AS CU)  3 3 2 5	TOTAL RECOVERABLE (UG/L AS FE)  120 80 130 80 40 60 580 230 70 110 190	DIS- SOLVED (UG/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PB)  5 <5 6 13 <5 <5 <5 <5 <5 <5 <55 <55	DIS- SOLVED (UG/L AS PB)  <5   <5 <5
MAY 1987 08 29 JUN 29 AUG 31 OCT 19 NOV 09 30 APR 1988 04 21 JUN 06 22 JUL 18	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.00 0.020 0.020 0.010 0.010 0.020 0.010 ND	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) 0.06 0.06 0.06 0.03 0.03 0.06	INUM, TOTAL RECOV- BRABLE (UG/L AS AL)  60 50	INUM, DIS- SOLVED (UG/L AS AL)	TOTAL RECOV-ERABLE (UG/L AS CD)  <10 <10 <10 <11 <1	DIS- SOLVED (UG/L AS CD)  <1.0   <1.0 7.0	TOTAL RECOV- ERABLE (UG/L AS CU)  <10 <10 <10  10  2  10 8  5 6 5	DIS- SOLVED (UG/L AS CU)  3 3 2 5	TOTAL RECOV-ERABLE (UG/L AS FE)  120 80  130  80  40  60 580 230 70	DIS- SOLVED (UG/L AS FE)	TOTAL RECOV-ERABLE (UG/L AS PB)  5 <5 6 13 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	DIS- SOLVED (UG/L AS PB)  <5   <5 <5
MAY 1987 08 29 JUN 29 AUG 31 OCT 19 NOV 09 APR 1988 04 21 JUN 06 22 JUL 18 AUG	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.00 0.020 0.020 0.010 0.010 0.010 ND 0.00 0.020	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) 0.0 0.06 0.06 0.06 0.03 0.03 0.06 0.03 0.06	INUM, TOTAL RECOV- BRABLE (UG/L AS AL)  60 50 110 280	INUM, DIS- SOLVED (UG/L AS AL)	TOTAL RECOV-ERABLE (UG/L AS CD)  <10 <10 <10 <11 <1	DIS- SOLVED (UG/L AS CD)  <1.0  <1.0 7.0  1.0	TOTAL RECOV- ERABLE (UG/L AS CU)  <10 <10 <10 10 2 10 8 5 6 5 6 5	DIS- SOLVED (UG/L AS CU)  3 3 2 5	TOTAL RECOV-ERABLE (UG/L AS FE)  120 80  130  80  40  60 580  230 70  110 190  430	DIS- SOLVED (UG/L AS FE)	TOTAL RECOV-ERABLE (UG/L AS PB)  5 <5 6 13 <5 <5 <5 <5 <5 <5 <5 6	DIS- SOLVED (UG/L AS PB)  <5   <5 <5
MAY 1987 08 29 JUN 29 AUG 31 OCT 19 NOV 09 APR 1988 04 21 JUN 06 22 JUL 18 AUG 31	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.00 0.020 0.020 0.010 0.010 0.010 ND 0.00	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) 0.06 0.06 0.06 0.03 0.03 0.06	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)  60 50 110	INUM, DIS- SOLVED (UG/L AS AL)	TOTAL RECOVERABLE (UG/L AS CD)  <10 <10 <10 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	DIS- SOLVED (UG/L AS CD)  <1.0  <1.0 7.0  1.0	TOTAL RECOV- ERABLE (UG/L AS CU)  <10 <10  10  2  10  8  5 6 5 6	DIS- SOLVED (UG/L AS CU)  3 3 2 5	TOTAL RECOVERABLE (UG/L AS FE)  120 80 130 80 40 60 580 230 70 110 190	DIS- SOLVED (UG/L AS FE)	TOTAL RECOV- ERABLE (UG/L AS PB)  5 <5 6 13 <5 <5 <5 <5 <5 <5 <55 <55	DIS- SOLVED (UG/L AS PB)  <5   <5 <5
MAY 1987  08 29  JUN 29  AUG 31  OCT 19  NOV 09  APR 1988 04  JUN 06 22  JUL 18  AUG 31  OCT	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.00 0.020 0.020 0.010 0.010 0.010 ND 0.020 0.030	PHATE, ORTHO, ORTHO, DIS- SOLVED (MG/L AS PO4) 0.06 0.06 0.06 0.03 0.03 0.06 0.03	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)  60 50 110 280	INUM, DIS- SOLVED (UG/L AS AL)	TOTAL RECOVERABLE (UG/L AS CD)  <10 <10 <10 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	DIS- SOLVED (UG/L AS CD)  <1.0  <1.0 7.0  1.0	TOTAL RECOV- ERABLE (UG/L AS CU)  <10 <10 10 2 10 8 5 6 5 6 5 8	DIS- SOLVED (UG/L AS CU)  3 3 2 5	TOTAL RECOVERABLE (UG/L AS FE)  120 80 130 80 40 60 580 230 70 110 190 430 190	DIS- SOLVED (UG/L AS FE)	TOTAL RECOVERABLE (UG/L AS PB)  5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	DIS- SOLVED (UG/L AS PB)  <5 <5 <5 <5 < < <
MAY 1987 08 29 JUN 29 AUG 31 OCT 19 APR 1988 04 21 JUN 06 22 JUL 18 AUG 31 CCT 17	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.00 0.020 0.020 0.010 0.010 0.010 ND 0.00 0.020	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) 0.0 0.06 0.06 0.06 0.03 0.03 0.06 0.03 0.06	INUM, TOTAL RECOV- BRABLE (UG/L AS AL)  60 50 110 280	INUM, DIS- SOLVED (UG/L AS AL)	TOTAL RECOV-ERABLE (UG/L AS CD)  <10 <10 <10 <11 <1	DIS- SOLVED (UG/L AS CD)  <1.0  <1.0 7.0  1.0	TOTAL RECOV- ERABLE (UG/L AS CU)  <10 <10 <10 10 2 10 8 5 6 5 6 5	DIS- SOLVED (UG/L AS CU)  3 3 2 5	TOTAL RECOV-ERABLE (UG/L AS FE)  120 80  130  80  40  60 580  230 70  110 190  430	DIS- SOLVED (UG/L AS FE)	TOTAL RECOV-ERABLE (UG/L AS PB)  5 <5 6 13 <5 <5 <5 <5 <5 <5 <5 6	DIS- SOLVED (UG/L AS PB)
MAY 1987  08 29  JUN 29  AUG 31  OCT 19  NOV 09  APR 1988 04  JUN 06 22  JUL 18  AUG 31  OCT	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.00 0.020 0.020 0.010 0.010 0.010 ND 0.020 0.030	PHATE, ORTHO, ORTHO, DIS- SOLVED (MG/L AS PO4) 0.06 0.06 0.06 0.03 0.03 0.06 0.03	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)  60 50 110 280	INUM, DIS- SOLVED (UG/L AS AL)	TOTAL RECOVERABLE (UG/L AS CD)  <10 <10 <10 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	DIS- SOLVED (UG/L AS CD)  <1.0  <1.0 7.0  1.0	TOTAL RECOV- ERABLE (UG/L AS CU)  <10 <10 10 2 10 8 5 6 5 6 5 8	DIS- SOLVED (UG/L AS CU)  3 3 2 5	TOTAL RECOVERABLE (UG/L AS FE)  120 80 130 80 40 60 580 230 70 110 190 430 190	DIS- SOLVED (UG/L AS FE)	TOTAL RECOVERABLE (UG/L AS PB)  5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5 < 5	DIS- SOLVED (UG/L AS PB)  <5 <5 <5 <5 <5 < <

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 01422642 WEST BRANCH DELAWARE RIVER AT DE LANCEY, NY - continued

DATE	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOV-	NICKE DIS- SOLV (UG/ AS N	L, TO RE ED ER L (U	ECOV- RABLE : JG/L	ZINC, DIS- SOLVED (UG/L AS ZN)	BROMO- FORM TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)
MAY 1987													
08	10		<0.10	<1			40		ND	ND	ND	ND	ND
29	20		<0.10	<1		1	<10	20	ND	ND	ND	ND	ND
JUN													
29	20		<0.10	1			10		ND	ND	ND	ND	ND
AUG				_									
31	30		<0.10	<1			<10		ND	ND	ND	ND	ND
ОСТ 19	20		<0.10	3			<10		ND	ND	ND	ND	ND
NOV	20		<0.10				<10		ND	ND	ND	ND	ND
09	10		<0.10	<1			<10		ND	ND	ND	ND	ND
30	60		<0.10			3	<10	<10	ND	ND	ND	ND	ND
APR 1988													
04	30	11	<0.10	<1		5	<10	16	ND	ND	ND	ND	ND
21	20		<0.10	7			<10		ND	ND	ND	ND	ND
JUN													
06	30	18	<0.10			1	<10	23	ND	ND	ND	ND	ND
22	60		<0.10	3			10		ND	ND	ND	ND	ИD
JUL	70		.0.10				.10		N.D.	MD	MB		N.D.
18 AUG	70		<0.10	1			<10		ИD	ИD	ND	ИD	ИD
31	30		<0.10	3			<10		ND	ND	ND	ND	ND
OCT	30		70.10	,			110				11.5		1.2
17	10	12	<0.10	2		<1	<10	8	ND	ND	ND	ND	ND
NOV													
14	30		<0.10	3			<10		ND	ND	ND	ND	ND
DATE	CHLOR FORM TOTAI (UG/L	PROI L TOT	-DI- CHI DRO- BF PENE MET TAL TO	DI- LORO- ROMO- METH THANE BROD DTAL TO: UG/L) (UG/	HYL- HIDE FAL	ETHYL- CHLO- RIDE TOTAL UG/L)	METHYL ENE CHLO- RIDE TOTAL (UG/L)	- 1,1,1 TRI CHLO ETHA TOTA (UG/1	- 1,1 RO- CHL NE ETH L TO	-DI- CHLA DRO- ETH' ANE EI TAL TO	(L- CHLO NE ETH) TAL TO:	I- TETF DRO- CHLO ANE ETHA FAL TOT	RA- DRO- ANE PAL
MAY 1987	,												
08	ND	NI		ID NI	,	ND	ND	ND	N	D NI	o Ni	о п	<b>,</b>
29	ND	NI		ND NI		ND	ND	ND					
JUN					=					-		-	
29	ND	N	1 C	ID NI	)	ИD	ИD	ND	N	D N	IN C	и с	)
AUG													
31	ND	N	) h	ID NI	ט	ИD	ИD	ИD	N	D N	D NI	1N C	J
ост 19	ND	NI	, ,	ID NI	1	ND	ND	ND	N	D N	D NI	о и	,
NOV	ND	NI	, ,	וא טי	,	ND	ND	ND	N	L N	. N	, NI	•
09	ND	NI	) 1	ND NI	)	ND	ND	ND	N	D N	D NI	о <b>и</b> г	
30	ND	NI		ND NI		ND	ND	ND					
APR 1988	3												
04	ND	NI	1 0	ND NI	)	ND	ND	ND	N	D N	D NI	D NI	)
21	ND	NI	1 C	ND NI	)	ND	ND	ND	N	D N	D NI	ии с	)
JUN										_	_	_	_
06	ND	NI		ID NI		ND	ND	ND					
22	ND	NI	D 1	ID N	י	ND	ND	ND	N	D N	D N	D NI	•
JUL				ın :	_	ND	***	.,,		n	D <b>N</b> I	D NI	,
18 AUG	ND	NI	, I	ND N	,	ND	ND	ND	N	D N	NI NI	NI.	•
31	ND	NI	D 1	ND N	)	ND	ND	ND	N	D N	D N	D NI	)
OCT	NO	M	- '	141	-				• • • • • • • • • • • • • • • • • • • •		•••	•••	
17	ND	NI	D 1	ND N	0	ND	ND	ND	N	D N	D N	D NI	)
NOV													
14	ND	NI	D 1	ND NI	D	ND	ND	ND	N	D N	D N	D N	)

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-98 (continued).

# 01422642 WEST BRANCH DELAWARE RIVER AT DE LANCEY, NY - continued

# WATER-QUALITY DATA (continued)

		1,2-DI- CHLORO-		1,2-			TETRA-	TRANS-	TRI-	2- CHLORO-	
	1,2-DI-	ETHANE	1,2-DI-	TRANSDI	1,3-DI-	1,4-DI-	CHLORO-	1,3-DI-	CHLORO-	ETHYL-	VINYL
	CHLORO-	WATER	CHLORO-	CHLORO-	CHLORO-	CHLORO-	ETHYL-	CHLORO-	ETHYL-	VINYL-	CHLO-
	BENZENE	WHOLE	PROPANE	ETHENE	BENZENE	BENZENE	ENE	PROPENE	ENE	ETHER	RIDE
DATE	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL
	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)
MAY 1987											
08	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
29	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
JU <b>N</b>											
29	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
AUG											
31	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
OCT											
19	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
NOV											
09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
30 APR 1988	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
04	ND	ND	ND	ND	ND	ND		ND			ND
21	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND
JUN	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
06	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
22	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
JUL	_										
18	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
AUG											
31	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
OCT											
17	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
NOV											
14	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

# SUSPENDED SEDIMENT DISCHARGE

		DIS- CHARGE, INST. CUBIC FEET	SEDI- MENT, SUS-	SEDI- MENT, DIS- CHARGE, SUS-
DATE	TIME	PER SECOND	PENDED (MG/L)	PENDED (T/DAY)
JUN 1988		SECOND	(MG/L)	(I)DAI)
06	1100	184	4	2.0
22	1200	75	3	0.61
JUL				
18	1200		12	
AUG				
31	1145	141	6	2.3
OCT				
17	1200		2	
NOV				
14	1200	603	8	13

# BED MATERIAL ANALYSES

NESE, RECOV.	
RECOV.	
FM BOT-	
TOM MA-	
TERIAL	
(UG/G)	
310	
	FM BOT- TOM MA- TERIAL (UG/G)

	MERCURY	NICKEL,	ZINC,	BED	BED	BED	BED
	RECOV.	RECOV.	RECOV.	MAT.	MAT.	MAT.	MAT.
	FM BOT-	FM BOT-	FM BOT-	FALL	SIEVE	SIEVE	SIEVE
	TOM MA-	TOM MA-	TOM MA-	DIAM.	DIAM.	DIAM.	DIAM.
	TERIAL	TERIAL	TERIAL	% FINER	% FINER	% FINER	% FINER
DATE	(UG/G	(UG/G	(UG/G	THAN	THAN	THAN	THAN
	AS HG)	AS NI)	AS ZN)	.004 MM	.062 MM	.125 MM	2.00 MM
OCT 1987							
19	<0.10	10	40	1	8	17	97

#### 01426500 WEST BRANCH DELAWARE RIVER AT HALE EDDY, NY

LOCATION.--Lat 42 00'11", long 75 23'02", Delaware County, Hydrologic Unit 02040101, on left bank at downstream side of bridge on County Highway 56 in Hale Eddy, and 9 mi upstream from confluence of East and West Branches near Hancock. Water-quality sampling site at discharge station.

DRAINAGE AREA. -- 595 mi 2 .

PERIOD OF RECORD. -- April to November 1988. CHEMICAL DATA: 1988 (c), 1989 (a).
MINOR ELEMENT DATA: 1988 (c), 1989 (a). PESTICIDE DATA: 1988 (c), 1989 (a). ORGANIC DATA: PCB--1988 (a). NUTRIENT DATA: 1988 (c), 1989 (a). BIOLOGICAL DATA: Bacteria -- 1988 (a). SEDIMENT DATA: 1988 (c), 1989 (a).

PERIOD OF DAILY RECORD. --

WATER TEMPERATURES: October 1967 to current year (no winter record for water years 1969-77).

SPE-

INSTRUMENTATION. -- Water-temperature digital recorder since October 1976, provides one-hour-interval punches. Also, water-temperature satellite telemeter since May 1985, provides one-hour-interval readings. Prior to October 1976, water-temperature recorder provided continuous recordings.

REMARKS. -- Water-discharge data obtained from stream-flow gage at this site.

DIS-

EXTREMES FOR PERIOD OF DAILY RECORD .--

MATER TEMPERATURES: Maximum (water years 1968-77, 1979-83, 1985, 1988-89), 30.5 C, July 22, 23, 1972, June 16, 1981; minimum (water years 1968, 1978-89), 0.0 C on many days during winter periods.

PH

#### WATER-QUALITY DATA

BARO-

OXYGEN. COLT-

FECAL

FEET DUCT- ANCE (STAND- ATURE BID- (MM DIS- CE	PER- IMMED. 24-	LI~ RM -HR
	CENT (COLS. MEM	FIL
SECOND (US/CM) (US/CM) UNITS) (DEG C) (NTU) HG) (MG/L) ATTO	ATUR- PER (COI TION) 100 ML) 100	
	rion) luo mil) luo	ML)
APR 1988		
21 0930 142 104 101 6.0 7.5 755 11.6	98 >230	5.00
06 1250 609 84 81 8.2 19.0 1.5 748 10.6		
	126	
JUL 18 1500 441 87 81 8.4 14.5 0.90 762 12.3	121	
AUG	121	
	109	
OCT 17 1330 893 85 7.6 15.0 8.0 768 11.3		
NOV		
14 1400 389 79 75 7.8 7.5 3.9 764 13.8	115	
HARD-	EG. C TUENTS, AT : DIS- DIS- DEG OLVED SOLVED TO	IDUE 105
HARD-	SIDUE SUM OF SOLI 180 CONSTI- RESI EG. C TUENTS, AT DIS- DIS- DEG OLVED SOLVED TO MG/L) (MG/L) (MG	IDUE 105 . C, TAL G/L)
HARD- NESS CALCIUM SIUM, SODIUM, SIUM, LINITY SULFATE RIDE, RIDE, AT 1: TOTAL DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS-	SIDUE SUM OF SOLE 180 CONSTIRES EG. C TUENTS, AT DIS-DEG OLVED SOLVED TOM MG/L) (MG/L) (MG 55 39	IDUE 105 . C, TAL
HARD-	SIDUE SUM OF SOLE 180 CONSTIRES EG. C TUENTS, AT DIS- DEG OLVED SOLVED TOM MG/L) (MG/L) (MG 55 39	IDUE 105 . C, TAL G/L)
HARD-	SIDUE SUM OF SOLE 180 CONSTIRES: EG. C TUENTS, AT DIS-DEG OLVED SOLVED TO MG/L) (MG/L) (MG  55 39 49  66 50	1DUE 105 . C, PAL G/L) 65
HARD- MAGNE- POTAS- ALKA- CHLO- FLUO- RESIDENCE FOR THE POTAS SULFATE RIDE, RIDE, AT 1: TOTAL DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS-	SIDUE SUM OF SOL: 180 CONSTI- RES: EG. C TUENTS, AT DIS- DIS- DEG OLVED SOLVED TO' MG/L) (MG/L) (MG  55 39 49	IDUE 105 . C, PAL G/L)
HARD-	SIDUE SUM OF SOLE 180 CONSTIRES: EG. C TUENTS, AT DIS-DEG OLVED SOLVED TO MG/L) (MG/L) (MG  55 39 49  66 50	1DUE 105 . C, PAL G/L) 65
HARD-	SIDUE SUM OF SOL: 180 CONSTI- EG. C TUENTS, AT: DIS- DIS- DIS- OLVED SOLVED TO' MG/L) (MG/L) (MG  55 39 49  66 50 39  62 40	1DUE 105 . C, PAL G/L) 65  77 40
HARD- MAGNE- POTAS- ALKA- CHLO- FLUO- RESIDENCE POTAS- ALKA- SIUM, SODIUM, SIUM, LINITY SULFATE RIDE, RIDE, AT 1: TOTAL DIS- DIS- DIS- DIS- DIS- DIS- DIS- DIS-	SIDUE SUM OF SOL: 180 CONSTI- RES: EG. C TUENTS, AT DIS- DIS- DEG OLVED SOLVED TO' MG/L) (MG/L) (MG  55 39 49  66 50 39	IDUE 105 . C, PAL G/L) 65  77 40
HARD-	SIDUE SUM OF SOL: 180 CONSTI- EG. C TUENTS, AT: DIS- DIS- DIS- OLVED SOLVED TO' MG/L) (MG/L) (MG  55 39 49  66 50 39  62 40	1DUE 105 . C, PAL G/L) 65  77 40

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 01426500 WEST BRANCH DELAWARE RIVER AT HALE EDDY, NY - continued

					-							
DATE APR 1988	SOLIDS, VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	RESIDUE TOTAL FIXED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS NH4)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS NO3)	PHOS- PHORUS TOTAL (MG/L AS P)
04	24	41		ND	0.560	0.010	0.01	0.23	0.24	0.80	3.5	0.010
21				ND 	0.560				0.24		J.J	
JUN												
06	53	24	0.460	0.00	0.460	0.020	0.03	0.11	0.13	0.59	2.6	0.010
22	23	17		ND	0.590	0.00	0.0	0.16	0.16	0.75	3.3	0.080
JUL				2	•••••	****	• • • •	0.20		0.75	• • • • • • • • • • • • • • • • • • • •	0.000
18	27	45		ND	0.660	0.00	0.0	0.11	0.11	0.77	3.4	0.010
AUG												
31	46	50	0.760	0.010	0.770	0.020	0.03	0.25	0.27	1.0	4.6	0.030
OCT												
17	40	37	0.170	0.00	0.170	0.020	0.03	0.19	0.21	0.38	1.7	0.050
NOV												
14	21	41		ND	0.440	0.010	0.01	0.26	0.27	0.71	3.1	0.020
DATE	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)
APR 1988		• •		10	_						_	-
04	0.00	0.0		10	<1	<1.0	3	1	140	12	<5	<b>&lt;</b> 5
21			<10		2		4		60		<b>&lt;</b> 5	
JUN 06	ND		70	60	1	<1.0	7	3	130	22	<5	<5
22	ND		50		<1	<1.0	4		80		9	
JUL	ND		30		<1		•		80		,	
18	ND		20		<1		6		70		<5	
AUG					1-		•		. •			
31	0.00	0.0	80		1		4		220		<5	
OCT												
17	0.00	0.0	250	20	1	<1.0	5	2	590	48	<b>&lt;</b> 5	5
NOV											_	
14	0.00	0.0	120		<1		7		280		<5	
	Manga-											
	NESE,	MANGA-	MERCURY	NICKEL,		ZINC,			CARBON-		CHLORO-	
	TOTAL	NESE,	TOTAL	TOTAL	NICKEL,	TOTAL	ZINC,		TETRA-		DI-	
	RECOV-	DIS-	RECOV-	RECOV-	DIS-	RECOV-	DIS-	BROMO-	CHLO-	CHLORO-	BROMO-	CHLORO-
	ERABLE	SOLVED	ERABLE	ERABLE	SOLVED	ERABLE	SOLVED	FORM	RIDE	BENZENE	METHANE	ETHANE
DATE	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL
D D	AS MN)	AS MN)	AS HG)	AS NI)	AS NI)	AS ZN)	AS ZN)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)
APR 1988	710 E111)	AU AII)	AD 113)	VO 111)	AU HI)	אט פאן	AO 214)	(00/11/	(00,1)	(11,50)	(00/11)	(00/11/
04	20	9	<0.10	<1	3	<10	<3	ND	ND	ND	ND	ND
21	50		<0.10	8		<10		ND	ND	ND	ND	ND
JUN				•		124						
06	50	32	<0.10	4	3	<10	11	ND	ND	ND	ND	ND
22	30		<0.10	4		<10		ND	ND	ND	ND	ND
JUL				_								
18	40		<0.10	1		<10		ND	ND	ND	ND	ND
AUG												
31	80		<0.10	8		<10		ND	ND	ND	ND	ND
OCT												
17	400			_								
	190	130	<0.10	2	3	<10	7	ND	ND	ИD	ND	ND
NOV 14	50	130	<0.10	9	3	<10 <10	7	ND ND	ND ND	ND ND	ND ND	ND ND

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 01426500 WEST BRANCH DELAWARE RIVER AT HALE EDDY, NY - continued

### WATER-QUALITY DATA (continued)

DATE	CHLORO- FORM TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)
APR 1988											
04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
21	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
JUN											
06	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
22	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
JUL											
18	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
AUG											
31	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
OCT					_		_				
17	ND	ND	ND	ND	ND	ИD	ND	ND	ND	ND	ND
NOV	N.		***			115		•••			
14	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DATE	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)
DATE APR 1988	CHLORO- BENZENE TOTAL	CHLORO- ETHANE WATER WHOLE TOTAL	CHLORO- PROPANE TOTAL	TRANSDI CHLORO- ETHENE TOTAL	CHLORO- BENZENE TOTAL	CHLORO- BENZENE TOTAL	CHLORO- ETHYL- ENE TOTAL	1,3-DI- CHLORO- PROPENE TOTAL	CHLORO- ETHYL- ENE TOTAL	CHLORO- ETHYL- VINYL- ETHER TOTAL	CHLO- RIDE TOTAL
	CHLORO- BENZENE TOTAL	CHLORO- ETHANE WATER WHOLE TOTAL	CHLORO- PROPANE TOTAL	TRANSDI CHLORO- ETHENE TOTAL	CHLORO- BENZENE TOTAL	CHLORO- BENZENE TOTAL	CHLORO- ETHYL- ENE TOTAL	1,3-DI- CHLORO- PROPENE TOTAL	CHLORO- ETHYL- ENE TOTAL	CHLORO- ETHYL- VINYL- ETHER TOTAL	CHLO- RIDE TOTAL
APR 1988	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
APR 1988 04 21	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
APR 1988 04 21 JUN	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND	CHLORO- PROPANE TOTAL (UG/L) ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND	CHLORO- BENZENE TOTAL (UG/L) ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND	CHLO- RIDE TOTAL (UG/L) ND ND
APR 1988 04 21 JUN 06	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	CHLORO-ETHYL-VINYL-ETHER TOTAL (UG/L)  ND ND	CHLO- RIDE TOTAL (UG/L) ND ND
APR 1988 04 21 JUN 06 22	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	CHLORO-ETHYL-VINYL-ETHER TOTAL (UG/L)  ND ND	CHLO- RIDE TOTAL (UG/L) ND ND
APR 1988 04 21 JUN 06 22 JUL 18	CHLORO- BENZENE TOTAL (UG/L) ND ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND	CHLORO-PROPANE TOTAL (UG/L)  ND ND ND ND ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND ND
APR 1988 04 21 JUN 06 22 JUL 18	CHLORO- BENZENE TOTAL (UG/L) ND ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND	CHLORO-PROPANE TOTAL (UG/L)  ND ND ND ND ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND ND
APR 1988 04 21 JUN 06 22 JUL 18 AUG 31 OCT	CHLORO- BENZENE TOTAL (UG/L) ND ND ND ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND ND ND ND	CHLORO-PROPANE TOTAL (UG/L)  ND ND ND ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND ND ND ND ND ND ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND ND ND ND ND ND ND ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND ND ND
APR 1988 04 21 JUN 06 22 JUL 18 AUG 31 OCT 17	CHLORO- BENZENE TOTAL (UG/L) ND ND ND ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND ND ND ND	CHLORO-PROPANE TOTAL (UG/L)  ND ND ND ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND ND ND ND ND ND ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND ND ND ND ND ND ND ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND ND ND
APR 1988 04 21 JUN 06 22 JUL 18 AUG 31 OCT	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND	CHLORO-PROPANE TOTAL (UG/L)  ND ND ND ND ND ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND ND ND

# SUSPENDED SEDIMENT DISCHARGE

TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)
1315	1510		
0930	142		
1250	609	5	8.2
1345	808	2	4.4
1500	441	<1	
1400	139	4	1.5
1330	893	12	29
1400	389	4	4.2
	1315 0930 1250 13 <b>4</b> 5	INST. CUBIC FEET PER SECOND  1315 1510 0930 142 1250 609 1345 808 1500 441 1400 139 1330 893	CHARGE, INST. SEDI- CUBIC MENT, FEET SUS- PER PENDED SECOND (MG/L)  1315 1510 0930 142 1250 609 5 1345 808 2 1500 441 <1 1400 139 4 1330 893 12

### 01427000 WEST BRANCH DELAWARE RIVER AT HANCOCK, NY

LOCATION.--Lat 41 57'08", long 75 17'31", Delaware County, Hydrologic Unit 02040101, at bridge at end of Pennsylvania State Highway 191 in Hancock and 1.3 mi (2.1 km) upstream from confluence with East Branch. Gaging Station 1906-1912.

DRAINAGE AREA. -- 650 mi2.

SEDIMENT DATA: 1987-88 (b).

PERIOD OF RECORD.--Water year May to November 1987 (discontinued). CHEMICAL DATA: 1987-88 (b).
MINOR ELEMENT DATA: 1987-88 (b).
PESTICIDE DATA: 1987-88 (b).
NUTRIENT DATA: 1987-88 (b). BIOLOGICAL DATA: Bacteria -- 1987 (a).

Remarks.--Water-discharge data based on records from stream-flow gage 01426500 West Branch Delaware River at Hale Eddy, NY. Sampling site moved upstream to 01426500 West Branch Delaware River at Hale Eddy NY in 1988.

#### WATER-OUALITY DATA

					WATER-C	DALLIT DA	VIA					
DATE	TIME	DIS- CHARGE, IN CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	FECAL COLI- FORM 24-HR MEM.FIL (COLS./ 100 ML)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
MAY 1987												
08	1030	132	96	7.7	13.5	0.80	11.4	>190	2.00	29	8.2	2.0
29	1030	230	91	8.2	22.0	0.80	10.8			27	7.8	1.9
JUN						• • • • • • • • • • • • • • • • • • • •					,	
29	1345	424	80	7.9	23.5	1.1	11.3			27	7.7	1.9
AUG												
31	1245	144		7.8	18.0	0.90	10.6			34	10	2.1
OCT												
19	1330	162	90	7.6	13.0	1.6	13.0			28	8.0	2.0
NOA												
09	1200	201		7.0	7.5	1.2	12.8			24	6.7	1.8
30	1400	1160		7.2	6.0	27	16.2			19	5.2	1.5
	SOLIDS, RESIDUE	SOLIDS,	SOLIDS, VOLA-		NITRO-	NIMBO	NITRO-	NITRO-	NITRO-	NITRO-	NITRO- GEN, AM-	
	AT 180	RESIDUE	TILE ON		GEN,	NITRO- GEN,	GEN,	GEN,	GEN,	GEN,	MONIA +	NITRO-
	DEG. C	AT 105	IGNI-	RESIDUE		NITRITE	NO2+NO3	AMMONIA	AMMONIA	ORGANIC	ORGANIC	GEN,
	DIS-	DEG. C,	TION,	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL
DATE	SOLVED	TOTAL	TOTAL	FIXED	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L
DAIL	(MG/L)	(MG/L)	(MG/L)	(MG/L)	AS N)	AS N)	AS N)	AS N)	AS NH4)	AS N)	AS N)	AS N)
	(MG/L)	(MG/L)	(MG/L)	(MG/L)	AS N)	AS N)	AS N	AS N	AS NITE	AS N)	AS N	AS N
MAY 1987												
08	70	77	<b>2</b> 2	55	0.400	0.00	0.400	0.010	0.01	0.09	0.10	0.50
29	48	80	25	55		ND	0.210	0.010	0.01	0.07	0.08	0.29
JUN		00		33		ND	0.210	0.010	0.01	0.07	0.00	0.23
29	27	57	26	29		ND	0.200	0.010	0.01	0.12	0.13	0.33
AUG	-	5,	20					0.010	0.01	*****	****	*****
31	55	59	28	31		ND	0.550	ND			0.19	0.74
OCT												
19	60	64	17	47		ND	0.380	0.00	0.0	0.11	0.11	0.49
NOV												
09	54	56	33	23		ND	0.490	ND			0.12	0.61
30	50	86	30	58		ND	0.350	0.020	0.03	0.32	0.34	0.69
			PHC	os- Pho	S-							
			PHOR				COPP		IRO			
	NIT											
	GE					OV- DI		OV- DIS				
	TOT					BLE SOL			VED ERA		BLE SOL	
DATE												
	AS N	O3) AS	P) AS P	) AS P	04) AS	CD) AS	CD) AS	CU) AS	CU) AS	FE) AS	PB) AS	PB)
MAY 1005	7											
MAY 1987		2 0	010 0	00 0	0	<b>-</b> 10 -		.10		90	.E	
08						-10		<10 -	-		<5	
29	1	.3 0.	010 <b>0</b> .	00 0	.0	<10	1.0	<10	2	90	6	5
JUN	4	E ^	010 0	00 0	0	-10		-10		110	.E	
29	1	.5 0.	010 0.	00 0	.0	<10 -	-	<10 -	-	110	<5	-
AUG	_	2 2	010 0	00 0	0	10		20		00	<5	
31	3	.3 0.	010 0.	00 0	.0	<10 -	-	20 -	-	80	<5	-
OCT 10	_	2 2	010 0	00 2			1 0	7	2	00	.c	.e
19	2	.2 0.	010 0.	00 <b>0</b>	.0	1 <	1.0	7	3	90	<5	<5
NOV	_	7 ^	010 0	00 2	0	₋ 1 -			_	120	-5 <del>-</del> -	_
09					.0	~1		-		120	~ 5	
30	3	.1 0.	090 0.	010 0	.03	<1 -	_	6 -	- 1	200	<5	

# 01427000 WEST BRANCH DELAWARE RIVER AT HANCOCK, NY - continued

# WATER-QUALITY DATA (continued)

DATE MAY 1987	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)	BROMO- FORM TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)
08 29	50 30	<0.10 <0.10	<1 <1	 <1	<10 <10	10	ND ND	ND ND	ND ND	ND ND	ND ND
JUN	30	20.10	~1	~1	<10	10	NU	ND	ND	ND	ND
29	20	<0.10	<1		<10		ND	ND	ND	ND	ND
AUG 31	20	<0.10	1		40		ND	ND	ND	ND	ND
OCT 19	10	<0.10	<1	<1	10	20	ND	ND	ND	ND	ND
NOV 09	20	<0.10	<1		<10		ND	ND	ND	ND	ND
30	110	<0.10	<1		10		ND	ND	ND	ND	ND
DATE	CHLORO- FORM TOTAL	CIS 1,3-DI- CHLORO- PROPENE TOTAL	DI- CHLORO- BROMO- METHANE TOTAL	METHYL- BROMIDE TOTAL	METHYL- CHLO- RIDE TOTAL	METHYL- ENE CHLO- RIDE TOTAL	1,1,1- TRI- CHLORO- ETHANE	1,1-DI- CHLORO- ETHANE TOTAL	1,1-DI- CHLORO- ETHYL- ENE TOTAL	1,1,2- TRI- CHLORO- ETHANE TOTAL	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL
DAIL	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)
MAY 1987	(,-,	,,,,,	(00, 2,	(,-,	(,,	(,-,	(,,	(,-,	(	(,,	(//
08	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
29 JUN	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
29 AUG	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
31 OCT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
19 NOV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
30	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DATE	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)
MAY 1987 08	NT	Mr.	N.	ATP	N.E.	M	47P		ATP.	475	M
29	ND ND	ND ND	ND ND	ND ND	ND ND	nd nd	ND ND	ND ND	ND ND	ND ND	ND ND
JUN	ND.	110	142	N.	ND	ND	ND	ND	ND	ND	ND
29 AUG	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
31 OCT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
19	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
09 30	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND

# SUSPENDED SEDIMENT DISCHARGE

		DIS-
		CHARGE,
		IN
		CUBIC
		FEET
DATE	TIME	PER
		SECOND
MAY 1987		
08	1030	132
29	1030	230
JUN		
29	1345	424
AUG		
31	1245	144
OCT		
19	1330	162
NOV		
09	1200	201
30	1400	1160

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 01427000 WEST BRANCH DELAWARE RIVER AT HANCOCK, NY - continued

# BED MATERIAL ANALYSES

		SOLIDS, VOLA- TILE IN BOTTOM MA-	CADMIUM RECOV. FM BOT- TOM MA- TERIAL	COPPER, RECOV. FM BOT- TOM MA- TERIAL	IRON, RECOV. FM BOT- TOM MA- TERIAL	LEAD, RECOV. FM BOT- TOM MA- TERIAL	MANGA- NESE, RECOV. FM BOT- TOM MA-
DATE	TIME	TERIAL (MG/KG)	(UG/G AS CD)	(UG/G AS CU)	(UG/G AS FE)	(UG/G AS PB)	TERIAL (UG/G)
OCT 1987							
19	1330	21700	<1	7	10000	10	530
DATE	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G	BED MAT. FALL DIAM. % FINER THAN	BED MAT. SIEVE DIAM. % FINER THAN	BED MAT. SIEVE DIAM. % FINER THAN	BED MAT. SIEVE DIAM. % FINER THAN
	AS HG)	AS NI)	AS ZN)	.004 MM	.062 MM	.125 MM	2.00 MM
OCT 1987 19	<0.10	10	60	1	10	17	100

### 01434000 DELAWARE RIVER AT PORT JERVIS, NY

LOCATION.--Lat 41 22'14", long 74 41'52", Pike County, Pa., Hydrologic Unit 02040104, on right bank 250 ft downstream from bridge (on U.S. Highways 6 and 209) between Port Jervis, N.Y. and Matamoras, Pa., 1.2 mi upstream from Neversink River, and 6.5 mi downstream from Mongaup River. Water-quality sampling site at discharge station.

DRAINAGE AREA. -- 3.070 mi 2 .

PERIOD OF RECORD.--Water years 1957-60, 1964 to current year.

CHEMICAL DATA: 1958-59 (e), 1964-65 (c), 1966 (a), 1967-68 (c), 1969-76 (d), 1987 (b), 1988 (c), 1989 (a).

MINOR ELEMENTS DATA: 1970 (a), 1972-73 (a), 1974-76 (c), 1987 (b), 1988 (c), 1989 (a).

PESTICIDE DATA: 1974 (a), 1987 (b), 1988 (c), 1989 (a).

ORGANIC DATA: OC--1974 (b), 1975 (d).

NUTRIENT DATA: 1968 (a), 1969-76 (d), 1987 'b), 1988 (c), 1989 (a).

BIOCOLCAL DATA: BIOLOGICAL DATA: Bacteria--1973-76 (d), 1987 (a), 1988 (c), 1989 (a). Phytoplankton--1974 (b), 1975-76 (c). Periphyton--1976 (a). SEDIMENT DATA: 1959 (c), 1976 (c), 1988 (b), 1989 (a).

PERIOD OF DAILY RECORD. --

SPECIFIC CONDUCTANCE: January 1973 to September 1973.

WATER TEMPERATURES: February 1957 to September 1960, January 1973 to September 1973, June 1974 to current year.

SUSPENDED-SEDIMENT DISCHARGE: February 1957 to September 1960, March 1970 to June 1976.

INSTRUMENTATION .-- Water-temperature digital recorder since January 1973, provides one-hour-interval punches.

REMARKS.--Water-discharge data obtained from stream-flow gage at this site.

EXTREMES FOR PERIOD OF DAILY RECORD. --

WATER TEMPERATURES: Maximum (water years 1957-59, 1973-81, 1983-84, 1988-90), 30.0 C, July 13, 1981; minimum (water years 1958-60, 1973, 1975-90), 0.0 C, on many days during winter periods, except 1984.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	FECAL COLI- FORM 24-HR MEM.FIL (COLS./ 100 ML)
MAY 1987												
07	1345	3200		71	7.9	15.0	0.60		11.7			
28	1530	1810		79	7.8	24.0	0.70		9.7		~ ~	
JUN												
30	1100	1390		82	7.9	25.0	0.70		9.4		>50	10.0
SEP	2045	1.000				45.5					100	24.0
01	0915	1730			7.4	17.5	0.90		9.2		>100	34.0
ОСТ 20	1030	1680		75	7.4	10.0	0.60		10.8		20	8.00
NOV	1030	1680		,,	/ • 😘	10.0	0.60		10.0		20	8.00
10	0930	2490			7.0	5.0	0.50		11.8		70	6.00
DEC	0,50	2470				5.0	0.55				, <del>-</del>	
01	1000	11000			7.2	5.0	56		16.5		>2000	>400
APR 1988												
05	1000	6630	71	72	6.5	9.5	1.3	760	11.4	100	70	6.00
20	1400	2290	76	75	6.6	9.5	0.90	755	11.9	105		
JUN												
07	1015	2600	77	74	7.0	18.5	0.80	748	9.2	100	100	18.0
23	1000	2560	85	82	6.7	24.0	1.4		7.2		>210	16.0
JUL 19	1030	1560	87	86		25.0	0.90		7.5		>280	36.0
SEP	1030	1260	81	80	6.6	45.0	0.90		1.5		>280	36.0
01	0945	1870	90	87	7.0	19.0	1.1		8.4		>100	36.0
OCT	0,40	10,0	,,	ο,	,	19.0	1.1		0.4		/100	JJ.:
18	1000	1710	86	83	7.0	12.0	0.40		10.3		>30	4.00
NOV												
15	1000	3740	81	78	7.2	5.5	2.3		11.9		360	88.0

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 01434000 DELAWARE RIVER AT PORT JERVIS, NY - continued

DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, TOTAL (MG/L)
MAY 1987												
07 28	20 24	6.1 7.6	1.2 1.3							58 <b>4</b> 2		67 53
JUN 30 SEP	<b>25</b>	7.5	1.5							22		49
01 ⊙T	27	8.4	1.5							58		59
20 NOV	23	7.0	1.4							50		53
10	32	9.8	1.9							42		48
01 APR 1988	19	5.8	1.2							52		58
05 20 JUN	20 22	5.9 6.6	1.3 1.3	3.8 4.3	0.80 0.70	10 12	9.3 11	7.0 7.3	0.10 0.10	41 64	34 38	65 84
07 23	23 25	6.8 7. <b>4</b>	1.4 1.6	4.1 5.6	0.70 1.2	14 14	11 11	6. <b>9</b> 8.5	0.30	 66	40 44	35 73
JUL 19	25	6.9	1.8	5.3	1.0	15	11	8.3	0.10	48	43	54
SEP 01 OCT	26	7.6	1.8	5.1	1.1	16	11	8.1	0.10	67	44	71
18	27	7.6	1.9	4.8	1.1	18	9.9	7.5	<0.10	53	44	57
15	23	6.9	1.4	3.9	0.90	13	12	6.9	<0.10	55	40	76
DATE	SOLIDS, VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	RESIDUE TOTAL FIXED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 'TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS NH4)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS NO3)	PHOS- PHORUS TOTAL (MG/L AS P)
MAY 1987	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L)	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 'TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS NO3)	PHORUS TOTAL (MG/L AS P)
MAY 1987 07 28	VOLA- TILE ON IGNI- TION, TOTAL	TOTAL FIXED	GEN, NITRATE TOTAL (MG/L	GEN, NITRITE TOTAL (MG/L	GEN, NO2+NO3 TOTAL (MG/L	GEN, AMMONIA TOTAL (MG/L	GEN, AMMONIA TOTAL (MG/L	GEN, ORGANIC TOTAL (MG/L	GEN, AM- MONIA + ORGANIC TOTAL (MG/L	GEN, TOTAL (MG/L	GEN, TOTAL (MG/L	PHORUS TOTAL (MG/L
MAY 1987 07 28 JUN 30	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L)	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS NO3)	PHORUS TOTAL (MG/L AS P)
MAY 1987 07 28 JUN	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L) 43	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N) ND ND	GEN, NO2+NO3 'TOTAL (MG/L AS N) 0.060 0.250	GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.020	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.09	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N) 0.18 0.36	GEN, TOTAL (MG/L AS NO3) 0.80 1.6	PHORUS TOTAL (MG/L AS P) 0.010 0.020
MAY 1987 07 28 JUN 30 SEP 01	VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 24 29	TOTAL FIXED (MG/L) 43 34 25	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)  ND ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.060 0.250	GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.020	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.03	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.09	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.12 0.11	GEN, TOTAL (MG/L AS N) 0.18 0.36	GEN, TOTAL (MG/L AS NO3) 0.80 1.6	PHORUS TOTAL (MG/L AS P) 0.010 0.020
MAY 1987 07 28 JUN 30 SEP 01 OCT 20 NOV 10 DEC	VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 24 29 26 29 14	TOTAL FIXED (MG/L) 43 34 25 38	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)  ND ND ND ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.060 0.250 0.250	GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.020 0.010 ND	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.03	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.09	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.12 0.11 0.12	GEN, TOTAL (MG/L AS N) 0.18 0.36 0.37	GEN, TOTAL (MG/L AS NO3) 0.80 1.6 1.6	PHORUS TOTAL (MG/L AS P) 0.010 0.020 0.010
MAY 1987 07 28 JUN 30 SEP 01 OCT 20 NOV 10 DEC 01 APR 1988	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  24 29 26 29 14 32 30	TOTAL FIXED (MG/L)  43 34 25 38 39 16 35	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)  ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.060 0.250 0.250 0.310 0.100 0.190	GEN, AMMONIA TOTAL (MG/L AS N)  0.010 0.020  0.010 ND  0.010 ND	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.03 0.01  0.01	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.09 0.11  0.25	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.12 0.11 0.12 0.20 0.26 0.04 0.23	GEN, TOTAL (MG/L AS N) 0.18 0.36 0.37 0.51 0.36	GEN, TOTAL (MG/L) AS NO3) 0.80 1.6 2.3 1.6 1.0	PHORUS TOTAL (MG/L AS P) 0.010 0.020 0.010 0.010 0.000 0.010
MAY 1987 07 28 JUN 30 SEP 01 OCT 20 NOV 10 DEC 01 APR 1988 05 20	VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 24 29 26 29 14	TOTAL FIXED (MG/L)  43 34 25 38 39 16	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)  ND ND ND ND ND ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.060 0.250 0.250 0.310 0.100	GEN, AMMONIA TOTAL (MG/L AS N)  0.010 0.020  0.010 ND  0.010	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.01 0.03  0.01 0.01	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.09 0.11	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.12 0.11 0.12 0.20 0.26	GEN, TOTAL (MG/L AS N) 0.18 0.36 0.37 0.51 0.36	GEN, TOTAL (MG/L AS NO3) 0.80 1.6 1.6 2.3 1.6	PHORUS TOTAL (MG/L AS P) 0.010 0.020 0.010 0.010 0.010
MAY 1987 07 28 JUN 30 SEP 01 OCT 20 NOV 10 DEC 01 APR 1988 05 20 JUN 07 23	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  24 29 26 29 14 32 30	TOTAL FIXED (MG/L)  43 34 25 38 39 16 35	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)  ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.060 0.250 0.250 0.310 0.100 0.190 0.280	GEN, AMMONIA TOTAL (MG/L AS N)  0.010 0.020  0.010 ND  0.010 ND	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.01 0.03  0.01 0.01	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.09 0.11  0.25	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.12 0.11 0.12 0.20 0.26 0.04 0.23 0.18	GEN, TOTAL (MG/L AS N) 0.18 0.36 0.37 0.51 0.36 0.23 0.51	GEN, TOTAL (MG/L AS NO3) 0.80 1.6 2.3 1.6 2.3 2.3	PHORUS TOTAL (MG/L AS P) 0.010 0.020 0.010 0.010 0.000 0.010 0.030
MAY 1987 07 28 JUN 30 SEP 01 OCT 20 NOV 10 DEC 01 APR 1988 05 20 JUN 07 23 JUL 19	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  24 29 26 29 14 32 30 22 37	TOTAL FIXED (MG/L)  43 34 25 38 39 16 35 43 47	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)  ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.060 0.250 0.250 0.310 0.100 0.190 0.280 0.450 0.170 0.060	GEN, AMMONIA TOTAL (MG/L AS N)  0.010 0.020  0.010 ND  0.010 ND  0.00 0.00 0.00	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.01 0.03  0.01 0.01 0.01 0.0	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.09 0.11  0.25  0.18 0.10	GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N)  0.12 0.11  0.12 0.20 0.26 0.04 0.23 0.18 0.10 0.19	GEN, TOTAL (MG/L AS N) 0.18 0.36 0.37 0.51 0.36 0.23 0.51 0.63 0.27	GEN, TOTAL (MG/L AS NO3) 0.80 1.6 2.3 1.6 2.3 2.8 1.2	PHORUS TOTAL (MG/L AS P) 0.010 0.020 0.010 0.010 0.030 0.010 0.030 0.010 0.020
MAY 1987 07 28 JUN 30 SEP 01 OCT 20 NOV 10 DEC 01 APR 1988 05 20 JUN 07 23 JUL 19 SEP	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  24 29 26 29 14 32 30 22 37 30 41	TOTAL FIXED (MG/L)  43 34 25 38 39 16 35 43 47	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)  ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.060 0.250  0.250  0.310  0.100  0.190  0.280  0.450 0.170  0.060 0.160	GEN, AMMONIA TOTAL (MG/L AS N)  0.010 0.020  0.010 ND  0.010 ND  0.000 0.00 0.000	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.01 0.03  0.01 0.01 0.00 0.0 0.0	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.09 0.11  0.25  0.18 0.10 0.19 0.20	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.12 0.11 0.12 0.20 0.26 0.04 0.23 0.18 0.10 0.19 0.22	GEN, TOTAL (MG/L AS N) 0.18 0.36 0.37 0.51 0.36 0.23 0.51 0.63 0.27	GEN, TOTAL (MG/L AS NO3) 0.80 1.6 2.3 1.6 2.3 2.8 1.2	PHORUS TOTAL (MG/L AS P)  0.010 0.020 0.010 0.010 0.000 0.010 0.000 0.010 0.030 0.010 0.020 0.010 0.020 0.010 0.020 0.010 0.020 0.010 0.0280
MAY 1987 07 28 JUN 30 SEP 01 CTT 20 NOV 10 DEC 01 APR 1988 05 20 JUN 07 23 JUL 19 SEP	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  24 29 26 29 14 32 30 22 37 30 41	TOTAL FIXED (MG/L)  43 34 25 38 39 16 35 43 47 5 32 43	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)  ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.060 0.250 0.250 0.310 0.100 0.190 0.280 0.450 0.170 0.060 0.160 0.340	GEN, AMMONIA TOTAL (MG/L AS N)  0.010 0.020  0.010 ND  0.010 ND  0.00 0.00 0.00 0.00 0.020 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.01 0.03  0.01 0.01 0.0 0.0 0.0 0.0 0.03	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.09 0.11  0.25  0.18 0.10 0.19 0.20	GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N)  0.12 0.11  0.12 0.20 0.26 0.04 0.23 0.18 0.10 0.19 0.22	GEN, TOTAL (MG/L AS N) 0.18 0.36 0.37 0.51 0.36 0.23 0.51 0.63 0.27 0.25 0.38	GEN, TOTAL (MG/L AS NO3) 0.80 1.6 2.3 1.6 2.3 2.8 1.2 1.1	PHORUS TOTAL (MG/L AS P)  0.010 0.020 0.010 0.000 0.010 0.000 0.010 0.030 0.010 0.020 0.010 0.020 0.010 0.020 0.010 0.020 0.010 0.020 0.010 0.020 0.010 0.020 0.010 0.020 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 01434000 DELAWARE RIVER AT PORT JERVIS, NY - continued

DATE	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)
MAY 1987												
07 28 JUN	0.00	0.0			<10 <10		10 <10		90 70		16 <b>&lt;</b> 5	
30 SEP	0.00	0.0			<10	+-	<10		80		<b>&lt;</b> 5	
01	0.00	0.0			<10	1.0	30	2	90		<5	<5
20	ND				<1		6		30		<5	
10	ND				1		7		80		<5	
01 APR 1988	0.00	0.0			<1	1.0	6	4	370		<5	<5
05 20	0.00 ND	0.0	 <10	10	<1 3	<1.0	2 2	1	110 70	20 	<5 <5	<5 
JUN 07 23	ND ND		30 40	20	<1 <1	<1.0	6 6	2	90 110	45	<5 <5	_<5 
JUL 19	0.00	0.0	30		1		4		110		<5	
SEP 01	ND		50		<1		7		120		<5	
ОСТ 18	ND		20	10	<1	<1.0	4	2	80	12	<5	5
NOV 15	ND		70		<1		7		150		<5	
DATE	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)	PHENOL (C6H- 5OH) TOTAL (UG/L)	BROMO- FORM TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)
MAY 1987	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L AS ZN)	(C6H- 5OH) TOTAL	FORM TOTAL (UG/L)	TETRA- CHLO- RIDE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	DI- BROMO- METHANE TOTAL (UG/L)
	NESE, TOTAL RECOV- ERABLE (UG/L	NESE, DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	(C6H- 5OH) TOTAL	FORM TOTAL	TETRA- CHLO- RIDE TOTAL	BENZENE TOTAL	DI- BROMO- METHANE TOTAL
MAY 1987 07	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L AS ZN)	(C6H- 5OH) TOTAL (UG/L)	FORM TOTAL (UG/L) ND	TETRA- CHLO- RIDE TOTAL (UG/L)	BENZENE TOTAL (UG/L) ND	DI- BROMO- METHANE TOTAL (UG/L)
MAY 1987 07 28 JUN 30 SEP 01	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10	DIS- SOLVED (UG/L AS ZN)	(C6H- 5OH) TOTAL (UG/L)	FORM TOTAL (UG/L) ND ND	TETRA- CHLO- RIDE TOTAL (UG/L) ND	BENZENE TOTAL (UG/L) ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND
MAY 1987 07 28 JUN 30 SEP 01 OCT 20	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <1 <1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	(C6H- 5OH) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND ND	TETRA- CHLO- RIDE TOTAL (UG/L) ND ND	BENZENE TOTAL (UG/L) ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND
MAY 1987 07 28 JUN 30 SEP 01 CCT 20 NOV 10	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 20 30 20	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <1 <1 <1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 10	DIS- SOLVED (UG/L AS ZN)	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND ND ND	TETRA- CHLO- RIDE TOTAL (UG/L) ND ND	BENZENE TOTAL (UG/L) ND ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND
MAY 1987 07 28 JUN 30 SEP 01 OCT 20 NOV 10 DEC 01	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 20 30 20 10 20	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <1 <1 <1 <1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 20	DIS- SOLVED (UG/L AS ZN)	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L) ND ND ND	TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND ND ND ND	BENZENE TOTAL (UG/L) ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L)  ND ND ND ND
MAY 1987 07 28 JUN 30 SEP 01 OCT 20 NOV 10 DEC 01 APR 1988 05	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 20 30 20 10 20 80 30	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 <10 <10 <10 10 20 <10 10 <10 <10 10	DIS- SOLVED (UG/L AS ZN)	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND	BENZENE TOTAL (UG/L) ND ND ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L)  ND
MAY 1987 07 28 JUN 30 SEP 01 OCT 20 NOV 10 DEC 01 APR 1988 05 20 JUN	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 20 30 20 10 20 80 30	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOVERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS ZN)  <10 <10 <10  20 <10  10  10  10  10  10  10  10  10  10	DIS- SOLVED (UG/L AS ZN)  10 20 <3	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE TOTAL (UG/L)  ND	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L)  ND
MAY 1987 07 28 JUN 30 SEP 01 CCT 20 NOV 10 DEC 01 APR 1988 05 20 JUN 07 23	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 20 30 20 10 20 80 30	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 <10 <10 <10 10 20 <10 10 <10 <10 10	DIS- SOLVED (UG/L AS ZN)	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND	BENZENE TOTAL (UG/L) ND ND ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L)  ND
MAY 1987 07 28 JUN 30 SEP 01 COT 20 NOV 10 DEC 01 APR 1988 05 20 JUN 07 23 JUL 19	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 20 30 20 10 20 80 30 10	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)  <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	DIS- SOLVED (UG/L AS NI)	TOTAL RECOVERABLE (UG/L AS ZN)  <10 <10 <10  20 <10  10  20 <10  10  <10  10  <10  10  <10  10  10  10  10  10  10  10  10  10	DIS- SOLVED (UG/L AS ZN) 10 20 <3	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L)  ND
MAY 1987 07 28 JUN 30 SEP 01 CCT 20 NOV 10 DEC 01 APR 1988 05 JUN 07 23 JUN 19 SEP	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 20 30 20 10 20 80 30 10 20 50	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOVERABLE (UG/L AS NI)  <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS ZN)  <10 <10 <10  20 <10  10  20 <10  10  10 <10  10  10 <10  10  10 <10  10  10 <10  10  10 <10  10 <10  10  10 <10  10  10 <10  10  10 <10  10  10 <10  10  10 <10  10  10 <10  10  10 <10  10  10  10  10  10  10  10  10  10	DIS- SOLVED (UG/L AS ZN)  10 20 <3 8	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L)  ND
MAY 1987 07 28 JUN 30 SEP 01 OCT 20 NOV 10 DEC 01 APR 1988 05 20 JUN 07 23 JUL 19 SEP	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)  20 30 20 10 20 80 30 10 20 70	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOVERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOVERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)  2 <1 1 4	TOTAL RECOVERABLE (UG/L AS ZN)  <10 <10 <10  20 <10  10  20 <10  10  <10  10  <10  10  <10  10  <10  10  <10  10  <10  10  <10  10  <10  10  <10  10  <10  10  <10  10  <10  10  <10  10  <10  <	DIS- SOLVED (UG/L AS ZN)  10 20 <3 8	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L)  ND

# 01434000 DELAWARE RIVER AT PORT JERVIS, NY - continued

### WATER-QUALITY DATA (continued)

					WATER-Q			•				
DATE	CHLORO- ETHANE TOTAL (UG/L)	CHLORO- FORM TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)
MAY 1987												
07	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
28	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
JUN						_	_					
30	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SEP 01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
OCT	ND		ND.		110	ND	110		ND		ND	112
20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
NOV												
10 DEC	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
APR 1988									112	2		
05	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
JUN 07	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
23	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND
JUL		2							2		2	
19	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SEP												
01 OCT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
18	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
NOV												
15	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DATE		ro- wat ene who al tot	ORO- INE 1,2-1 PER CHLOI OLE PROPA PAL TOTA	RO- CHLO: ANE ETHE: AL TOT.	SDI 1,3- RO- CHLO NE BENZ AL TOT	RO- CHLOF ENE BENZE 'AL TOTA	ro- ethy ene ene al tot	ORO- 1,3- CL- CHLO PROP	DI- CHLO RO- ETHY ENE EN AL TOT	RO- ETHY L- VINY E ETH	RO- L- VIN L- CHI ER RID AL TOI	io- De Pal
	(UG/	L) (UG/	L) (UG/1	L) (UG/	L) (UG/	L) (UG/I		L) (UG/	L) (UG	/L) (UG/	L) (UG	(/L)
MAY 1987	7						ري (۲)	_, ,	-, ,			
07	ND						J) (UG/	_, ,,,,	_, , , , ,			
28	ND	NI	) ND	ND	ND	) ND	3) (0G/ NC			) ND	NE	1
JUN				ND ND				) ND	NE	) ND		
30	ND	NI	) ND		ND	) ND	NE	O ND	NC	2.0 ND	NE	)
SEP	ND	NI	O ND	ND ND	nd nd	nd nd	NE NE	O NDO NDO	NE NE	2.0 ND	NE	)
SEP 01		NI	O ND	ND	nd nd	nd nd	NE NE	O NDO NDO	NE NE	2.0 ND	NE	)
SEP 01 OCT	ND ND	NI NI	ND ND ND	ND ND	ND ND ND	nd nd nd	NE NE NE	O ND ND ND ND	NE NE	2.0 ND ND ND	NE NE	) )
SEP 01	ND	NI NI	ND ND ND	ND ND	ND ND ND	nd nd nd	NE NE	O ND ND ND ND	NE NE	2.0 ND ND ND	NE NE	) )
SEP 01 OCT 20 NOV 10	ND ND	NE NE NE	ND ND ND ND ND	ND ND	nd nd nd	ND ND ND ND ND	NE NE NE	O ND O ND O ND	NE NE	2.0 ND ND ND ND	NC NC	
SEP 01 OCT 20 NOV 10 DEC	nd nd nd	NI NI NI NI	ND ND ND ND ND ND ND	ND ND ND ND	ND ND ND ND	ND ND ND ND ND ND	NC NC NC NC	O ND	NE NE	2.0 ND ND ND ND	NE NE NE	
SEP 01 OCT 20 NOV 10 DEC 01	ND ND ND ND	NI NI NI NI	ND ND ND ND ND ND ND	ND ND ND	ND ND ND ND	ND ND ND ND ND ND	NE NE NE	O ND	NE NE	2.0 ND ND ND ND	NE NE NE	
SEP 01  CCT 20  NOV 10  DEC 01  APR 1988	ND ND ND	NI NI NI NI	ND	ND ND ND ND ND	ND ND ND ND ND	nD nD nD nD nD nD nD nD nD	NE	O ND	NE	2.0 ND	NE NE NE NE NE	
SEP 01 OCT 20 NOV 10 DEC 01	ND ND ND ND	NE NE NE	ND N	ND ND ND ND	ND	nD n	NC NC NC NC	D ND	NE	2.0 ND N	NE NE NE	
SEP 01  OCT 20  NOV 10  DEC 01  APR 1988  05 20  JUN	ND	NE NE NE NE NE NE NE	ND	ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	NE N	O ND	NE N	2.0 ND N	NE NE NE NE NE NE	
SEP 01 OCT 20 NOV 10 DEC 01 APR 1988 05 20 JUN 07	ND N	NE N	ND N	ND	ND	ND N	NE N	O ND	NE N	2.0 ND N	NE N	
SEP 01 OCT 20 NOV 10 DEC 01 APR 1988 05 20 JUN 07 23	ND	NE N	ND N	ND ND ND ND ND ND	ND	ND N	NE N	O ND	NE N	2.0 ND N	NE N	
SEP 01 OCT 20 NOV 10 DEC 01 APR 1988 05 20 JUN 07	ND N	NI NI NI NI NI NI NI	ND N	ND ND ND ND ND ND ND ND	ND	ND N	NE N	O ND ND O ND	NE N	2.0 ND N	NE N	
SEP 01 OCT 20 NOV 10 DEC 01 APR 1988 05 20 JUN 07 23 JUL 19 SEP	ND	NE NE	ND N	ND	ND N	ND N	NE N	O ND	NE N	2.0 ND N	NE N	
SEP 01  OCT 20  NOV 10  DEC 01  APR 1988 05  20  JUN 07  23  JUL 19  SEP 01	ND	NE NE	ND N	ND ND ND ND ND ND ND ND ND	ND N	ND N	NE N	O ND	NE N	2.0 ND N	NE N	
SEP 01  OCT 20  NOV 10  DEC 01  APR 1988 05  20  JUN 07  23  JUL 19  SEP 01  OCT	ND	NE N	ND N	ND	ND	ND N	NE N	O ND	NE N	2.0 ND N	NE N	
SEP 01  OCT 20  NOV 10  DEC 01  APR 1988 05  20  JUN 07  23  JUL 19  SEP 01	ND	NE N	ND N	ND	ND	ND N	NE N	O ND	NE N	2.0 ND N	NE N	
SEP 01  OCT 20  NOV 10  DEC 01  APR 1988 05  20  JUN 07  23  JUL 19  SEP 01  OCT 18	ND	NE NE	ND N	ND	ND N	ND N	NE N	O ND	NE N	2.0 ND N	NE N	

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 01434000 DELAWARE RIVER AT PORT JERVIS, NY - continued

# SUSPENDED SEDIMENT DISCHARGE

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)
JUN 1988				
23 JUL	1000	2560	2	14
19	1030	1560	3	13
SEP				
01	0945	1870	4	20
OCT				
18	1000	1710	1	4.6
NOV				
15	1000	3740	3	30

# BED MATERIAL ANALYSES

DATE	VC TIL BOI M TIME TE	DLA- RE E IN FM TOM TOM IA- TE RIAL (U	ECOV. MI BOT- RE 1 MA- FM ERIAL TON JG/G TE	COV. FM BOT~ TO MA~ T ERIAL (	ECOV. RI BOT- FM M MA- TOI ERIAL TI UG/G (1	ECOV. RE BOT- FM M MA- TON ERIAL TE	BOT- REG MA- FM I ERIAL TOM JG/G TEI	NGA- SE, COV. BOT- MA- RIAL G/G)
ОСТ 1987 20	1030 2	0200	<1	<10	9	6100	30	300
DATE	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	BED MAT. FALL DIAM. % FINER THAN .004 MM	THAN	THAN	BED MAT. SIEVE DIAM. % FINER THAN 2.00 MM	
OCT 1987 20	<0.10	10	80	1	5	28	99	

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

#### 01437500 NEVERSINK RIVER AT GODEFFROY, NY

LOCATION.--Lat 41 26'28", long 74 36'07", Orange County, Hydrologic Unit 02040104, on right bank just upstream from highway bridge on Graham Road, 0.5 mi downstream from Basher Kill, 0.8 mi southeast of Godeffroy, 1.7 mi south of Cuddebackville, and 8.5 mi upstream from mouth.

DRAINAGE AREA. -- 307 mi 2 .

PERIOD OF RECORD.--Water years 1987 to current year.
CHEMICAL DATA: 1987 (b), 1988 (c), 1989 (a).
MINOR ELEMENTS DATA: 1987 (b), 1988 (c), 1989 (a).
PESTICIDE DATA: 1987 (b), 1988 (c), 1989 (a).
NUTRIENT DATA: 1987 (b), 1988 (c), 1989 (a).
BIOLOGICAL DATA:
Bacteria--1987 (a), 1988 (c), 1989 (a).
SEDIMENT DATA: 1988 (b), 1989 (a).

REMARKS .-- Water-discharge data obtained from stream-flow gage at this site.

		DIS-		SPE-	PH			BARO-		OXYGEN,	COLI-	FECAL
		CHARGE, INST.	SPE- CIFIC	CIFIC CON-	WATER WHOLE			METRIC PRES-		DIS- SOLVED	FORM, TOTAL,	COLI- FORM
		CUBIC	CON-	DUCT-	FIELD	TEMPER-	TUR-	SURE	OXYGEN,	(PER-	IMMED.	24-HR
		FEET	DUCT-	ANCE	(STAND-	ATURE	BID-	(MM	DIS-	CENT	(COLS.	MEM.FIL
DATE	TIME	PER	ANCE	LAB	ARD	WATER	ITY	OF	SOLVED	SATUR-	PER	(COLS./
		SECOND	(US/CM)	(US/CM)	UNITS)	(DEG C)	(NTU)	HG)	(MG/L)	ATION)	100 ML)	100 ML)
MAY 1987												
07	1500	483		80	7.9	16.5	1.6		11.1			
28	1400	266		95	7.6	20.0	0.60		9.7			
JUN												
30	1000	165		96	7.2	22.0	0.70		9.3		>40	40.0
SEP												
01	1030	262			7.2	16.5	1.0		9.9		>260	52.0
OCT.	4400	222			<b>5</b> 0						100	
20	1130	232		89	7.2	10.5	1.1		11.0		180	6.00
NOV 10	1045	257			7.2	5.0	0.70		11.7		180	40.0
DEC	1045	237			1.2	5.0	0.70		11./		100	40.0
01	1130	1130			7.0	5.0	6.4		16.9		>2000	>400
APR 1988	1130	1130			,.0	3.0	0.4		10.5		22000	2400
05	1115	477	86	86	6.6	10.5	0.80	760	11.5	104	70	6.00
20	1300	228	92	91	9.1	9.0	1.3	755	13.0	114		
JUN												
07	1130	244	88	8,6	6.6	17.5	1.0	748	9.3	99	60	24.0
23	1100	134	100	98	6.7	22.0	0.90		8.4		>200	34.0
JUL												
19	1200	159	95	93	7.0	24.0	1.0		8.4		>240	160
SEP												
01	1100	186	111	106	6.8	17.0	1.0	766	8.7	90	>280	54.0
oct .												
18	0800	84	103	100	6.6	11.0	0.40		10.5		>60	4.00
NOV	0000	262	95	0.3	7.1	F 0	- 1		12.0		040	. 26. 0
15	0900	362	95	93	7.1	5.0	5.1		12.8		840	>26.0

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 01437500 NEVERSINK RIVER AT GODEFFROY, NY - continued

DATE MAY 1987	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, TOTAL (MG/L)
07	20	6.1	1.2							56		64
28	25	7.7	1.3							57		83
JUN 30 SEP	27	8.3	1.5							56		67
01	26	8.1	1.5							68		72
20 NOV	24	7.2	1.4							61		72
10	21	6.3	1.3							53		56
01 APR 1988	17	5.0	1.2							49		66
05 20	21 23	6.3 6.9	1.2 1.4	6.5 6.9	0.90 0.80	10 13	9.6 11	10 12	0.10 0.10	62 53	41 47	67 58
JUN 07	21	6.6	1.2	5.7	0.70	14	12	10	0.30	46	45	54
23 JUL	27	8.3	1.6	6.7	1.0	21	11	10	0.20		51	49
19 SEP	22	6.5	1.4	7.2	1.1	12	10	10	0.10	66	44	83
01 OCT	28	8.5	1.7	8.3	1.0	16	14	12	0.10	89	55	92
18	27	8.2	1.6	7.8	1.2	17	10	11	0.10	53	50	55
15	24	7.0	1.5	6. <b>6</b>	1.1	13	14	11	0.10	62	49	66
DATE	SOLIDS, VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	RESIDUE TOTAL FIXED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS NH4)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS NO3)	PHOS- PHORUS TOTAL (MG/L AS P)
DATE MAY 1987	VOLA- TILE ON IGNI- TION, TOTAL	TOTAL FIXED	GEN, NITRATE TOTAL (MG/L	GEN, NITRITE TOTAL (MG/L	GEN, NO2+NO3 TOTAL (MG/L	GEN, AMMONIA TOTAL (MG/L	GEN, AMMONIA TOTAL (MG/L	GEN, ORGANIC TOTAL (MG/L	GEN, AM- MONIA + ORGANIC TOTAL (MG/L	GEN, TOTAL (MG/L	GEN, TOTAL (MG/L	PHORUS TOTAL (MG/L
MAY 1987 07	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L)	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS NO3)	PHORUS TOTAL (MG/L AS P)
MAY 1987 07 28 JUN	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L)	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS NO3)	PHORUS TOTAL (MG/L AS P)
MAY 1987 07 28 JUN 30	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L) 45 38	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)  ND ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.180 0.500	GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.020	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.03	GEN, ORGANIC TOTAL (MG/L AS N) 0.13 0.09	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.14 0.11	GEN, TOTAL (MG/L AS N) 0.32 0.61	GEN, TOTAL (MG/L AS NO3) 1.4 2.7	PHORUS TOTAL (MG/L AS P) 0.020 0.060
MAY 1987 07 28 JUN 30	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L) 45	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)  ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.180 0.500	GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.020	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01	GEN, ORGANIC TOTAL (MG/L AS N) 0.13 0.09	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.14	GEN, TOTAL (MG/L AS N) 0.32 0.61	GEN, TOTAL (MG/L AS NO3) 1.4 2.7	PHORUS TOTAL (MG/L AS P) 0.020 0.060
MAY 1987 07 28 JUN 30 SEP 01 OCT 20	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L) 45 38	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)  ND ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.180 0.500	GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.020	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.03	GEN, ORGANIC TOTAL (MG/L AS N) 0.13 0.09	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.14 0.11 0.21	GEN, TOTAL (MG/L AS N) 0.32 0.61	GEN, TOTAL (MG/L AS NO3) 1.4 2.7	PHORUS TOTAL (MG/L AS P) 0.020 0.060
MAY 1987 07 28 JUN 30 SEP 01 OCT 20 NOV 10	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  19 45 17	TOTAL FIXED (MG/L) 45 38 39 47	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)  ND ND ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.180 0.500 0.350	GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.020 0.020	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.03 0.03	GEN, ORGANIC TOTAL (MG/L AS N) 0.13 0.09 0.19	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.14 0.11 0.21	GEN, TOTAL (MG/L AS N) 0.32 0.61 0.56	GEN, TOTAL (MG/L AS NO3) 1.4 2.7 2.5	PHORUS TOTAL (MG/L AS P) 0.020 0.060 0.060
MAY 1987 07 28 JUN 30 SEP 01 OCT 20 NOV 10 DEC 01	VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 19 45 17 25	TOTAL FIXED (MG/L) 45 38 39 47	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)  ND ND ND ND ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.180 0.500 0.350 0.760 0.400	GEN, AMMONIA TOTAL (MG/L AS N)  0.010 0.020 0.020 0.000 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.03 0.03	GEN, ORGANIC TOTAL (MG/L AS N) 0.13 0.09 0.19	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.14 0.11  0.21 0.21	GEN, TOTAL (MG/L AS N) 0.32 0.61 0.56 0.97	GEN, TOTAL (MG/L AS NO3) 1.4 2.7 2.5 4.3 3.0	PHORUS TOTAL (MG/L AS P) 0.020 0.060 0.060 0.070
MAY 1987 07 28 JUN 30 SEP 01 OCT 20 NOV 10 DEC 01 APR 1988 05	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  19 45 17 25 24 37 25 21	TOTAL FIXED (MG/L) 45 38 39 47 48 19 36	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)  ND ND ND ND ND ND ND ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.180 0.500 0.350 0.760 0.400 0.420 0.260	GEN, AMMONIA TOTAL (MG/L AS N)  0.010 0.020 0.020 0.000 0.010 ND 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.01 0.03 0.03 0.00 0.01 0.01	GEN, ORGANIC TOTAL (MG/L AS N) 0.13 0.09 0.19 0.21 0.26	GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N)  0.14 0.11 0.21 0.21 0.27 0.22 0.20 0.23	GEN, TOTAL (MG/L AS N) 0.32 0.61 0.56 0.97 0.67 0.64 0.46	GEN, TOTAL (MG/L AS NO3) 1.4 2.7 2.5 4.3 3.0 2.8 2.0	PHORUS TOTAL (MG/L AS P) 0.020 0.060 0.060 0.070 0.030 0.030 0.050
MAY 1987 07 28 JUN 30 SEP 01 OCT 20 NOV 10 DEC 01 APR 1988 05 20	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  19 45 17 25 24 37	TOTAL FIXED (MG/L) 45 38 39 47 48 19	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)  ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.180 0.500 0.350 0.760 0.400 0.420 0.260	GEN, AMMONIA TOTAL (MG/L AS N)  0.010 0.020 0.020 0.000 0.010 ND 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.01 0.03 0.03 0.00 0.01 0.01	GEN, ORGANIC TOTAL (MG/L AS N) 0.13 0.09 0.19 0.21	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.14 0.11  0.21 0.21 0.27 0.22	GEN, TOTAL (MG/L AS N) 0.32 0.61 0.56 0.97 0.67	GEN, TOTAL (MG/L AS NO3) 1.4 2.7 2.5 4.3 3.0 2.8 2.0	PHORUS TOTAL (MG/L AS P) 0.020 0.060 0.060 0.070 0.030 0.030
MAY 1987 07 28 JUN 30 SEP 01 OCT 20 NOV 10 DEC 01 APR 1988 05 20 JUN 07 23	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  19 45 17 25 24 37 25 21	TOTAL FIXED (MG/L) 45 38 39 47 48 19 36	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)  ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.180 0.500 0.350 0.760 0.400 0.420 0.260	GEN, AMMONIA TOTAL (MG/L AS N)  0.010 0.020 0.020 0.000 0.010 ND 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.01 0.03 0.03 0.00 0.01 0.01	GEN, ORGANIC TOTAL (MG/L AS N) 0.13 0.09 0.19 0.21 0.26	GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N)  0.14 0.11 0.21 0.21 0.27 0.22 0.20 0.23	GEN, TOTAL (MG/L AS N) 0.32 0.61 0.56 0.97 0.67 0.64 0.46	GEN, TOTAL (MG/L AS NO3) 1.4 2.7 2.5 4.3 3.0 2.8 2.0	PHORUS TOTAL (MG/L AS P) 0.020 0.060 0.060 0.070 0.030 0.030 0.050
MAY 1987 07 28 JUN 30 SEP 01 CCT 20 NOV 10 DEC 01 APR 1988 05 20 JUN 07	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  19 45 17 25 24 37 25 21 16 41	TOTAL FIXED (MG/L)  45 38 39 47 48 19 36 46 42	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRIE TOTAL (MG/L AS N)  ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.180 0.500  0.350  0.760  0.400  0.420  0.260  0.280 0.130  0.290	GEN, AMMONIA TOTAL (MG/L AS N)  0.010 0.020 0.020 0.000 0.010 ND 0.010 0.010 0.010 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.01 0.03  0.03  0.01 0.01 0.01 0.01 0.0	GEN, ORGANIC TOTAL (MG/L AS N) 0.13 0.09 0.19 0.21 0.26	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.14 0.11 0.21 0.21 0.27 0.22 0.20 0.20 0.23 0.19 0.29	GEN, TOTAL (MG/L AS N) 0.32 0.61 0.56 0.97 0.67 0.64 0.46	GEN, TOTAL (MG/L AS NO3) 1.4 2.7 2.5 4.3 3.0 2.8 2.0 2.3 1.4 2.6	PHORUS TOTAL (MG/L AS P) 0.020 0.060 0.060 0.070 0.030 0.030 0.050 0.020 0.030
MAY 1987 07 28 JUN 30 SEP 01 OCT 20 NOV 10 DEC 01 APR 1988 05 20 JUN 07 23 JUL 19 SEP 01	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  19 45 17 25 24 37 25 21 16 41 40	TOTAL FIXED (MG/L) 45 38 39 47 48 19 36 46 42 13	GEN, NITRATE TOTAL (MG/L AS N)  0.450	GEN, NITRITE TOTAL (MG/L AS N)  ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.180 0.500  0.350  0.760  0.420  0.260  0.280 0.130  0.290 0.450	GEN, AMMONIA TOTAL (MG/L AS N)  0.010 0.020  0.020  0.000  0.010  ND  0.010  0.010  0.010  0.010  0.020	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.01 0.03  0.03  0.01 0.01 0.01 0.01 0.01 0.01	GEN, ORGANIC TOTAL (MG/L AS N) 0.13 0.09 0.19 0.21 0.26	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.14 0.11 0.21 0.27 0.22 0.20 0.23 0.19 0.29 0.31	GEN, TOTAL (MG/L AS N) 0.32 0.61 0.56 0.97 0.67 0.64 0.46 0.51 0.32	GEN, TOTAL (MG/L AS NO3) 1.4 2.7 2.5 4.3 3.0 2.8 2.0 2.3 1.4 2.6 3.4	PHORUS TOTAL (MG/L AS P) 0.020 0.060 0.060 0.070 0.030 0.030 0.050 0.020 0.030
MAY 1987 07 28 JUN 30 SEP 01 CCT 20 NOV 10 DEC 01 APR 1988 05 20 JUN 07 23 JUL 19 SEP	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  19 45 17 25 24 37 25 21 16 41 40 40	TOTAL FIXED (MG/L)  45 38 39 47 48 19 36 46 42 13 9	GEN, NITRATE TOTAL (MG/L AS N)  0.450 1.01	GEN, NITRIE TOTAL (MG/L AS N)  ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.180 0.500  0.350  0.760  0.400  0.420  0.260  0.280 0.130  0.290 0.450  1.01	GEN, AMMONIA TOTAL (MG/L AS N)  0.010 0.020 0.020 0.010 ND 0.010 0.010 0.010 0.010 0.010 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.01 0.03  0.03  0.01 0.01 0.01 0.01 0.01 0.01 0.01	GEN, ORGANIC TOTAL (MG/L AS N) 0.13 0.09 0.19 0.21 0.26  0.19 0.22 0.19 0.28 0.29	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.14 0.11 0.21 0.27 0.22 0.20 0.23 0.19 0.29 0.31	GEN, TOTAL (MG/L AS N) 0.32 0.61 0.56 0.97 0.67 0.64 0.46 0.51 0.32	GEN, TOTAL (MG/L AS NO3) 1.4 2.7 2.5 4.3 3.0 2.8 2.0 2.3 1.4 2.6 3.4 5.2	PHORUS TOTAL (MG/L AS P) 0.020 0.060 0.070 0.030 0.030 0.050 0.020 0.030 0.020 0.030

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 01437500 NEVERSINK RIVER AT GODEFFROY, NY - continued

MAY 1987   O.00   O.0
28   0.040   0.12       <10     <10     160     <5       <5       30
Note
30 0.550 0.15 <10 <10 <10 120 7 7 SEP 01 0.050 0.15 <10 <10 30 90 7 7 80 7 80
011 0.050 0.15 <-
CCT   20   0.010   0.03         <1       11       80       <5       NOV
20 0.010 0.03 <1 11 80 <5   NOV  10 0.010 0.03 <1 55 550 550 <5   DEC 01 0.010 0.03 1 1 1.0 7 5 340 <5   AFR 1988 05 0.00 0.0 0.0 20 <1 <1.0 6 3 160 56 <5 <5   20 0.00 0.0 60 3 3 190 <5   20 0.00 0.0 60 3 3 190 <5   21 0.00 0.0 0.0 60 3 <1 140 190 <5   JUN 07 0.020 0.06 60 20 1 <1.0 7 4 230 120 <5 -5   23 0.00 0.0 30 <1 <1 4 140 <5   JUL 19 0.120 0.37 50 <1 4 140 <5   SEP 01 0.030 0.09 80 1 1 13 110 <5   SEP 01 0.040 0.12 30 <10 <1 <1.0 19 3 80 21 <5 <5   NOV 15 0.00 0.0 110 3 10 200 <5   NOV 15 0.00 0.0 110 3 10 200 <5   NOV 15 0.00 0.0 110 3 10 10 200 <5   MANGA- NESE, TOTAL NESE, TOTAL NESE, TOTAL NESE, TOTAL NESE, TOTAL NESE, SOLVED ERABLE
10 0.010 0.03
01 0.010 0.03 1 1.0 7 5 340 <5 <5  APR 1988 05 0.00 0.0 0.0 20 <1 <1.0 6 3 160 56 <5 <5  20 0.00 0.0 60 3 3 3 190 <5 <-5  20 0.00 0.0 60 3 3 3 190 <5 <-5  20 0.020 0.06 60 20 1 <1.0 7 4 230 120 <5 <-5  23 0.00 0.0 30 <1 4 140 140 <5 <-5  JUL 19 0.120 0.37 50 <1 4 140 <5  SEP 01 0.030 0.09 80 1 1 13 110 <5 <-5  NOV 15 0.00 0.0 110 3 3 10 200 <5 <-5  NOV 15 0.00 0.0 110 3 10 200 <5 <  MANGA- NESE, TOTAL RECOV- DIS- RECOV-
NAMICA   NESE, TOTAL   NICKEL, NOW   15   DIS   RECOV   DIS   REABLE   SOLVED   REABLE   REABLE   SOLVED   REABLE   REABLE   SOLVED   REABLE   REABLE   SOLVED   REABLE   REABLE   REABLE   SOLVED   REABLE
20 0.00 0.0 60 3 3 190 <5  JUN 07 0.020 0.06 60 20 1 <1.0 7 4 230 120 <5 <5 23 0.00 0.0 30 <1 4 140 140 <5  JUL 19 0.120 0.37 50 <1 4 14 140 <5  SEP 01 0.030 0.09 80 1 1 13 110 <5  CCT 18 0.040 0.12 30 <10 <1 <1.0 19 3 80 21 <5 <5  NOV 15 0.00 0.0 110 3 10 10 200 <5  MANGA- NESE, TOTAL NESE, T
JUN
23 0.00 0.0 30 <1 4 140 <5  JUL 19 0.120 0.37 50 <1 4 140 <5  SEP 01 0.030 0.09 80 1 13 110 <5  OCT 18 0.040 0.12 30 <10 <1 <1.0 19 3 80 21 <5 <5  NOV 15 0.00 0.0 110 3 3 10 200 <5  RECOV- DIS- RECOV- DIS- RECOV- PRABLE ERABLE SOLVED ERABLE SOLVED ERABLE SOLVED ERABLE SOLVED AS MN) AS MN) AS HG) AS NI) AS NI) AS NI) AS ZN) AS ZN) (UG/L) (UG/L) (UG/L) (UG/L) (UG/L)  MAY 1987 07 20 <0.10 <1 <10 ND ND ND ND ND ND ND  JUN 30 20 <0.10 <1 <10 ND ND ND ND ND ND ND  ND  ND  ND  ND  N
JUL 19 0.120 0.37 50 <1
19 0.120 0.37 50 <1 4 140 <5  SEP 01 0.030 0.09 80 1 13 110 <5  CCT 18 0.040 0.12 30 <10 <1 <1.0 19 3 80 21 <5 <5  NOV 15 0.00 0.0 110 3 10 200 <5  NOV 15 0.00 0.0 110 3 10 200 <5  MANGA- NESE, TOTAL RECOV- DIS- REABLE SOLVED RABLE RABLE
01 0.030 0.09 80 1 13 110 <5  OCT  18 0.040 0.12 30 <10 <1 <1.0 19 3 80 21 <5 <5  NOV  15 0.00 0.0 110 3 3 10 200 <5  NOV  15 0.00 0.0 110 3 3 10 200 <5  NOV  15 0.00 0.0 110 3 1 10 200 <5  NOV  NOSE, TOTAL TOTAL NICKEL, TOTAL TO
18   0.040   0.12   30   <10   <1   <1.0   19   3   80   21   <5   <5   NOV
MANGA-
NESE,   MANGA-   NECURY   NICKEL,   TOTAL   NICKEL,   TOTAL   ZINC,   TETRA-   TETRA-   DI-   TOTAL   NICKEL,   TOTAL   ZINC,   TETRA-   DI-   TETRA-   DI-   TOTAL   NICKEL,   TOTAL   ZINC,   TETRA-   DI-   TETRA-
07 20 <0.10 <1 <10 ND
28 50 <0.10 <1 <10 ND ND ND ND ND ND ND JUN  30 20 <0.10 <1 10 ND
JUN 30 20 <0.10 <1 10 ND ND ND ND ND ND SEP 01 20 <0.10 3 <10 ND ND ND ND ND ND OCT 20 10 0.10 2 30 ND ND ND ND ND
30 20 <0.10 <1 10 ND ND ND ND ND ND SEP  01 20 <0.10 3 <10 ND
01 20 <0.10 3 <10 ND ND ND ND ND ND CCT 20 10 0.10 2 30 ND ND ND ND ND
20 10 0.10 2 30 ND ND ND ND ND
10 40 <0.10 2 20 ND ND ND ND ND ND DEC
01 50 <0.10 <1 1 20 20 ND
05 40 31 <0.10 6 2 <10 9 ND ND ND ND ND
20 30 <0.10 11 <10 ND ND ND ND ND
JUN 07 40 21 <0.10 7 1 <10 13 ND ND ND ND ND
JUN 07 40 21 <0.10 7 1 <10 13 ND ND ND ND ND ND 23 40 <0.10 <1 10 ND ND ND ND ND JUL
JUN 07 40 21 <0.10 7 1 <10 13 ND ND ND ND ND ND ND 23 40 <0.10 <1 10 ND ND ND ND ND ND JUL 19 60 <0.10 2 <10 ND ND ND ND ND ND SEP
JUN 07 40 21 <0.10 7 1 <10 13 ND ND ND ND ND ND ND 23 40 <0.10 <1 10 ND ND ND ND ND ND JUL 19 60 <0.10 2 <10 ND ND ND ND ND

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 01437500 NEVERSINK RIVER AT GODEFFROY, NY - continued

DATE	CHLORO- FORM TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)
MAY 1987											
07	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
28	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
JUN				***							***
30 SEP	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
OCT											
20 Nov	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DEC					•			***			
01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
APR 1988 05	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
JUN											
07 23	nd nd	ND ND	ND ND	nd nd	ND ND	ND ND	nd nd	ND ND	ND ND	ND ND	ND ND
JUL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
19	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SEP 01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
OCT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
18 NOV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
15	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DATE	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)
	CHLORO- BENZENE TOTAL	CHLORO- ETHANE WATER WHOLE TOTAL	CHLORO- PROPANE TOTAL	TRANSDI CHLORO- ETHENE TOTAL	CHLORO- BENZENE TOTAL	CHLORO- BENZENE TOTAL	CHLORO- ETHYL- ENE TOTAL	1,3-DI- CHLORO- PROPENE TOTAL	CHLORO- ETHYL- ENE TOTAL	CHLORO- ETHYL- VINYL- ETHER TOTAL	CHLO- RIDE TOTAL
DATE MAY 1987 07	CHLORO- BENZENE TOTAL	CHLORO- ETHANE WATER WHOLE TOTAL	CHLORO- PROPANE TOTAL	TRANSDI CHLORO- ETHENE TOTAL	CHLORO- BENZENE TOTAL	CHLORO- BENZENE TOTAL	CHLORO- ETHYL- ENE TOTAL	1,3-DI- CHLORO- PROPENE TOTAL	CHLORO- ETHYL- ENE TOTAL	CHLORO- ETHYL- VINYL- ETHER TOTAL	CHLO- RIDE TOTAL
MAY 1987 07 28	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
MAY 1987 07 28 JUN	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND	CHLO- RIDE TOTAL (UG/L) ND
MAY 1987 07 28 JUN 30 SEP	CHLORO- BENZENE TOTAL (UG/L) ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
MAY 1987 07 28 JUN 30 SEP 01	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND	CHLO- RIDE TOTAL (UG/L) ND
MAY 1987 07 28 JUN 30 SEP 01	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND	CHLORO-PROPANE TOTAL (UG/L)  ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND
MAY 1987 07 28 JUN 30 SEP 01	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	CHLORO-ETHYL-VINYL-ETHER TOTAL (UG/L)  ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND
MAY 1987 07 28 JUN 30 SEP 01 OCT 20 NOV 10	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND	CHLORO-PROPANE TOTAL (UG/L)  ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND
MAY 1987 07 28 JUN 30 SEP 01 OCT 20 NOV 10	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)  ND ND ND ND ND ND	CHLORO-PROPANE TOTAL (UG/L)  ND ND ND ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND ND ND	CHLO-RIDE TOTAL (UG/L)  ND ND ND ND ND
MAY 1987 07 28 JUN 30 SEP 01 OCT 20 NOV 10	CHLORO- BENZENE TOTAL (UG/L) ND ND ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND ND ND ND	CHLORO- PROPANE TOTAL (UG/L)  ND ND ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND ND  ND  ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND ND
MAY 1987 07 28 JUN 30 SEP 01 OCT 20 NOV 10 DEC 01 APR 1988 05	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND	CHLO-RIDE TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND
MAY 1987 07 28 JUN 30 SEP 01 OCT 20 NOV 10 DEC 01 APR 1988 05 20	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND	CHLORO- PROPANE TOTAL (UG/L)  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-VINYL-ETHER TOTAL (UG/L)  ND N	CHLO-RIDE TOTAL (UG/L)  ND ND ND ND ND ND ND ND
MAY 1987 07 28 JUN 30 SEP 01 OCT 20 NOV 10 DEC 01 APR 1988 05 20 JUN	CHLORO- BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND
MAY 1987 07 28 JUN 30 SEP 01 OCT 20 NOV 10 DEC 01 APR 1988 05 20	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND	CHLO-RIDE TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND
MAY 1987 07 28 JUN 30 SEP 01 OCT 20 NOV 10 DEC 01 APR 1988 05 20 JUN 07 23 JUL	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND N
MAY 1987 07 28 JUN 30 SEP 01 CCT 20 NOV 10 DEC 01 APR 1988 05 20 JUN 07 23 JUL 19	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND
MAY 1987 07 28 JUN 30 SEP 01 OCT 20 NOV 10 DEC 01 APR 1988 05 20 JUN 07 23 JUL 19 SEP 01	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND N
MAY 1987 07 28 JUN 30 SEP 01 OCT 20 NOV 10 DEC 01 APR 1988 05 20 JUN 07 23 JUL 19 SEP 01 OCT	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND
MAY 1987 07 28 JUN 30 SEP 01 OCT 20 NOV 10 DEC 01 APR 1988 05 20 JUN 07 23 JUL 19 SEP 01	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- ENE ENE TOTAL (UG/L)  ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND N

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 01437500 NEVERSINK RIVER AT GODEFFROY, NY - continued

### SUSPENDED SEDIMENT DISCHARGE

TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)
1130	244	4	2.6
1200	159	4	1.7
1100	196	6	3.0
1100	100	Ů	3.0
0800	84	1	0.23
		_	
0900	362	3	2.9
	1130 1200 1100 0800	CHARGE, INST. CUBIC FEET PER SECOND  1130 244 1200 159 1100 186 0800 84	CHARGE, INST. SEDI- CUBIC MENT, FEET SUS- PER PENDED SECOND (MG/L)  1130 244 4  1200 159 4  1100 186 6  0800 84 1

# BED MATERIAL ANALYSES

DATE	,	SOLIDS, VOLA- TILE IN BOTTOM MA- TERIAL (MG/KG)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
OCT 1987								
20	1130	11300	<1	<10	4	4000	<10	180
DATE	MERCU RECO FM BO TOM M TERI (UG/ AS H	V. REC T- FM B A- TOM AL TER G (UG	OV. RECOT- FM EMA- TOMIAL TER	COV. MA BOT- FA MA- DIA RIAL % FI B/G TH	AT. MALL SINAM. DIA INER & FI	AT. M. EVE SI AM. DI INER % F. HAN T	EVE SIE AM. DIA INER % FI	AT. EVE M. ENER IAN
OCT 1987 20	<0.	10	<10	40	0	4	13	100

#### 01502701 SUSQUEHANNA RIVER AT AFTON, NY

LOCATION.--Lat 42 13'38", long 75 31'27", Chenango County, Hydrologic Unit 02050101, at bridge on State Highway 41, 0.1 mi southeast of Afton and intersection of State Highways 7 and 41, and 0.2 mi downstream from Kelsey Brook.

DRAINAGE AREA. -- 1,716 mi2.

PERIOD OF RECORD. -- Water years 1988 to current year.

CHEMICAL DATA: 1988 (b), 1989 (a).

MINOR ELEMENT DATA: 1988 (b), 1989 (a).

PESTICIDE DATA: 1988 (b), 1989 (a).

NUTRIENT DATA: 1988 (b), 1989 (a).

BIOLOGICAL DATA:

Bacteria -- 1988 -89 (a).

SEDIMENT DATA: 1988 (a).

REMARKS .-- Water-discharge data obtained from a discharge rating developed for this site.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	FECAL COLI- FORM 24-HR MEM.FIL (COLS./ 100 ML)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
APR 1988 05	1100	5220	158	7.5	9.0	14		10.8			65	22
MAY	0800	3140	154	7.4	6.0	3.6		11.4	2300	290	63	21
03												
07	0830	1200	188	8.0	17.0	2.6	756	9.3	1500	90.0	78	26
03 OCT	0930	402	218	7.5	26.0	3.3	756	8.2	600	120	87	29
06	0900	3 <b>5</b> 5	238		11.0	4.4	771	8.4	11000	460	96	32
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, TOTAL (MG/L)	SOLIDS, VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	RESIDUE TOTAL FIXED (MG/L)
APR 1988 05	2.4	3.9	1.0	53	14	6.8	0.10	100	82	140	24	116
MAY 03	2.5	4.2	1.0	50	14	7.0	0.10	84	80	88	52	36
JUN 07	3.1	5.4	1.0	66	12	8.1	0.10	124	95	144	32	112
AUG 03	3.6	7.0	1.2	76	15	11	<0.10	128	112	164	64	100
ост 06	4.0	8.3	1.5	79	17	12	0.10	132	122	140	32	108
	NITRO- GEN, NITRATE TOTAL	NITRO- GEN, NITRITE TOTAL	NITRO- GEN, NO2+NO3 TOTAL	NITRO- GEN, AMMONIA TOTAL	NITRO- GEN, AMMONIA TOTAL	NITRO- GEN, ORGANIC TOTAL	NITRO- GEN, AM- MONIA + ORGANIC TOTAL	NITRO- GEN, TOTAL	NITRO- GEN, TOTAL	PHOS- PHORUS TOTAL	PHOS- PHORUS ORTHO, DIS- SOLVED	PHOS- PHATE, ORTHO, DIS- SOLVED
DATE	(MG/L AS N)	(MG/L AS N)	(MG/L AS N)	(MG/L AS N)	(MG/L AS NH4)	(MG/L AS N)	(MG/L AS N)	(MG/L AS N)	(MG/L AS NO3)	(MG/L AS P)	(MG/L AS P)	(MG/L AS PO4)
APR 1988 05 MAY	0.680	0.00	0.680	0.030	0.04	0.19	0.22	0.90	4.0	0.040	0.00	0.0
03 JUN		ND	0.550	0.030	0.04	0.16	0.19	0.74	3.3	0.020	0.00	0.0
07 AUG	0.350	0.00	0.350	0.020	0.03	0.34	0.36	0.71	3.1	0.030	0.00	0.0
03 OCT		ND	0.070	0.010	0.01	0.32	0.33	0.40	1.8	0.030	0.00	0.0
06	0.560	0.00	0.560	0.030	0.04	0.21	0.24	0.80	3.5	0.040	0.00	0.0

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 01502701 SUSQUEHANNA RIVER AT AFTON, NY - continued

# WATER-QUALITY DATA (continued)

DATE	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	BROMO- FORM TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)
APR 1988 05 MAY	750	<1	6	1300	<b>&lt;</b> 5	50	<0.10	4	10	0	0	0.0
03	170	2	10	370	<5	30	<0.10	<1	<10	0	0	0.0
JUN 07	110	<1	6	280	<5	40	<0.10	3	<10	~-	~-	
AUG 03 OCT	80	<1	<1	200	<5	70	<0.10	1	<10	ND	ND	ND
06	150	<1	52	330	8	40	0.10	2	200	ND	ND	ND
DATE	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)	CHLORO- FORM TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	DI - CHLORO- BROMO- METHANE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)
APR 1988												
05 MAY	0	0	0	0	0	0	0	0	0	0	0	0
03 JUN	0	0	0	0	0	0	0	0	0	0	0	0
07 <b>AUG</b>												
03	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
06	ND	ND	0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND
DATE	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)
APR 1988	0	0	0.00	0	0	٥	0	0.0	0	0	0	0
05 MAY		-	0.00		-	0	-	0.0	_		_	0
03 JUN	0	0	0.00	0	0	0	0	0.0	0	0	0	0
07 <b>AUG</b>												
03 OCT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
06	<b>N</b> D	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

### SUSPENDED SEDIMENT DISCHARGE

	DIS-		SEDI-
	CHARGE,		MENT,
	INST.	SEDI-	DIS-
	CUBIC	MENT,	CHARGE,
	FEET	sus-	sus-
TIME	PER	PENDED	PENDED
	SECOND	(MG/L)	(T/DAY)
0830	1200	5	16
		INST. CUBIC FEET TIME PER SECOND	CHARGE, INST. SEDI- CUBIC MENT, FEET SUS- TIME PER PENDED SECOND (MG/L)

#### 01512850 CHENANGO RIVER AT BINGHAMTON, NY

LOCATION.--Lat 42 06'11", long 75 54'55", Broome County, Hydrologic Unit 02050102, at bridge on Clinton Street, at Binghamton, and 0.7 mi upstream from mouth.

DRAINAGE AREA. -- 1,602 mi2.

PERIOD OF RECORD.--Water years 1967,1988 to current year.
CHEMICAL DATA: 1967 (a), 1988 (b), 1989 (a).
MINOR ELEMENT DATA: 1967 (a), 1988 (b), 1989 (a).
PESTICIDE DATA: 1988 (b), 1989 (a).
NUTRIENT DATA: 1988 (b), 1989 (a).
BIOLOGICAL DATA:
Bacteria--1988 (b), 1989 (a).
SEDIMENT DATA: 1988 (a).

REMARKS.--Water-discharge data obtained from a discharge rating developed for this site.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	FECAL COLI- FORM 24-HR MEM.FIL (COLS./ 100 ML)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
APR 1988 05 MAY	1200	5700	171	7.3	12.0	16		11.2			67	21
03 JUN	1200	2500	201	7.4	11.0	4.6		11.0	6000	20.0	80	25
07 AUG	1045	820	282	8.0	17.5	6.5	755	9.0	480	15.0	110	35
03 OCT	1100	430	295	7.5	28.0	5.3	756	7.0	2400	80.0	120	36
06	1045	290	372		12.0	5.3	772	6.7	1600	95.0	140	43
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, TOTAL (MG/L)	SOLIDS, VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	RESIDUE TOTAL FIXED (MG/L)
APR 1988 05	3.5	5.8	1.0	51	15	10	0.10	120	87	160	32	128
MAY 03	4.3	7.0	1.0	61	17	12	0.10	112	103	128	68	60
JUN 07	6.6	11	1.2	95	14	17	0.10	172	142	224	44	180
AUG 03	7.2	13	1.3	87	19	21	<0.10	188	150	228	80	148
06	9.0	17	1.6	121	20	28	<0.10	204	191	220	64	156
DATE	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS NH4)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS NO3)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)
APR 1988 05	1.05	0.020	1.07	0.060	0.08	0.12	0.18	1.2	5.5	0.060	0.00	0.0
MAY 03	0.900	0.020	0.900	0.020	0.03	0.15	0.17	1.1	4.7	0.020	0.00	0.0
JUN 07	0.740	0.010	0.750	0.070	0.09	0.43	0.50	1.2	5.5	0.030	0.00	0.0
AUG 03	0.240	0.00	0.240	0.030	0.04	0.45	0.48	0.72	3.2	E0.040	E0.040	
03 0CT 06	0.240	0.00	0.690	0.030	0.04	0.19	0.22	0.72	4.0	0.040	ND	
	0.000	0.00	0.030	0.030	0.04	0.19	0.22	0.91	4.0	0.040	112	

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 01512850 CHENANGO RIVER AT BINGHAMTON, NY - continued

# WATER-QUALITY DATA (continued)

DATE	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	BROMO- FORM TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)
APR 1988 05	900	<1	6	1400	<5	50	<0.10	4	10	0	0	0.0
MAY			-		-			_	_	-		
03 JUN	200	1	6	450	<b>&lt;</b> 5	30	<0.10	<1	<10	0	0	0.0
07 AUG	340	1	8	680	5	70	<0.10	4	20			
03	180	<1	10	440	<b>&lt;</b> 5	80	<0.10	3	<10	ND	ND	ND
06	200	<1	7		<5	50	<0.10	4		ND	ND	ND
DATE	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)	CHLORO- FORM TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	DI - CHLORO- BROMO- METHANE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)
APR 1988												
05 MAY	0	0	0	0	0	0	0	0	0	0	0	0
03 JUN	0	0	0	0	0	0	0	0	0	0	0	0
07												
AUG 03 OCT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
06	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DATE	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	1,2-DI CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)
APR 1988 05	0	0	0.00	0	0	0	0	0.0	0	0	0	0
MAY	-			_			-			-	-	•
03 JUN	0	0	0.00	0	0	0	0	0.0	0	0	0	0
07						<del>-</del> -			***			
03	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ост 06	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.1	ND	ND

# SUSPENDED SEDIMENT DISCHARGE

		DIS-		SEDI-
		CHARGE,		MENT,
		INST.	SEDI-	DIS-
		CUBIC	MENT,	CHARGE,
		FEET	SUS-	sus-
DATE	TIME	PER	PENDED	PENDED
		SECOND	(MG/L)	(T/DAY)
JUN 1988				
07	1045	820	13	29

#### 01514937 SUSQUEHANNA RIVER AT SMITHBORO, NY

LOCATION.--Lat 42 01'41", long 76 23'07", Tioga County, Hydrologic Unit 02050103, at bridge on State Highway 282, 1.2 mi west of Nichols and 1.2 mi east of Smithboro.

DRAINAGE AREA. -- 4,725 mi2.

PERIOD OF RECORD.--Water years 1988 to current year.
CHEMICAL DATA: 1988 (b), 1989 (a).
MINOR ELEMENT DATA: 1988 (b), 1989 (a).
PESTICIDE DATA: 1988-89 (a).
ORGANIC DATA: 0C--1988 (b).
NUTRIENT DATA: 1988 (b), 1989 (a).
BIOLOGICAL DATA:
Bacteria--1988-89 (a).
SEDIMENT DATA: 1988 (a).

REMARKS.--Water-discharge data obtained from a discharge rating developed for this site.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	FECAL COLI- FORM 24-HR MEM.FIL (COLS./ 100 ML)	HARD- NESS TOTAL (MG/L AS CACO3)
APR 1988 05	1600	14000	166	7.3	15.0	17		10.3			63
MAY 05	1030	6850	175	7.8	11.0	5.6		8.4	4700	280	66
JUN 09	0945	2850	241	7.9	16.0	7.6	759	10.2	1700	65.0	93
AUG 04	1100	1200	310	7.9	28.0	2.8	755	8.2	160	45.0	110
OCT 04	1030	850	327	7.7	15.0	3.0	765	7.4	780	75.0	120
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, TOTAL (MG/L)
APR 1988 05	20	3.1	6.0	1.1	47	16	11	0.10	116	85	152
MAY 05	21	3.4	7.5	1.2	49	17	11	0.10	96	91	100
JUN											
09	29	4.9	10	1.2	<b>7</b> 5	14	16	0.10	148	120	188
04 OCT	34	6.4	15	1.6	102	21	23	0.10	184	162	248
04	37	6.3	14	1.9	98	23	24	0.10	188	165	196
DATE	SOLIDS, VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	RESIDUE TOTAL FIXED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS NH4)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS NO3)
APR 1988 05	32	120	0 000	0.020	0.020	0.000	0 10	0.35	0.43	1 2	c <i>c</i>
MAY	_	52	0.800	0.030	0.830	0.080	0.10	0.35	0.43	1.3	5.6
05 JUN	48		0.600	0.00	0.600	0.050	0.06	0.19	0.24	0.84	3.7
09 AUG	56	132	0.590	0.010	0.600	0.030	0.04	0.25	0.28	0.88	3.9
04 OCT	80	168	0.590	0.00	0.590	0.030	0.04	0.46	0.49	1.1	4.8
04	52	144	0.980	0.020	1.00	0.040	0.05	0.18	0.22	1.2	5.4

# 01514937 SUSQUEHANNA RIVER AT SMITHBORO, NY - continued

### WATER-QUALITY DATA (continued)

DATE APR 1988 05 MAY 05 JUN	PHOS-PHORUS TOTAL (MG/L AS P) 0.060	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.00	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) 0.0	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL) 790 250	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) 1300	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG) <0.10
09 AUG	0.070	0.00	0.0	310	1	10	610	5	60	<0.10
04	0.050	0.010	0.03	80	<1	37	190	<5	70	<0.10
04	0.070	0.030	0.09	90	<1	8	220	<5	40	<0.10
DATE APR 1988	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOL (C6H- 5OH) TOTAL (UG/L)	BROMO- FORM TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)	CHLORO- FORM TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)
05	4	20	ИD	0	0	0.0	0	0	0	0
MAY 05 JUN	2	20	ИD	0	0	0.0	0	0	0	0
09 AUG	8	20	ИД							
04 OCT	2	10		ND	ИD	ND	ИD	ND	0.1	ND
04	3	20		ND	ИD	ИD	ИD	ИD	0.1	ND
DATE APR 1988	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)
APR 1988 05	CHLORO- BROMO- METHANE TOTAL	BROMIDE TOTAL	CHLO- RIDE TOTAL	ENE CHLO- RIDE TOTAL	TRI- CHLORO- ETHANE TOTAL	CHLORO- ETHANE TOTAL	CHLORO- ETHYL- ENE TOTAL	TRI- CHLORO- ETHANE TOTAL	TETRA- CHLORO- ETHANE TOTAL	CHLORO- BENZENE TOTAL
APR 1988 05 MAY 05	CHLORO- BROMO- METHANE TOTAL (UG/L)	BROMIDE TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)	ENE CHLO- RIDE TOTAL (UG/L)	TRI- CHLORO- ETHANE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	TRI- CHLORO- ETHANE TOTAL (UG/L)	TETRA- CHLORO- ETHANE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)
APR 1988 05 MAY 05 JUN 09	CHLORO- BROMO- METHANE TOTAL (UG/L)	BROMIDE TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)	ENE CHLO- RIDE TOTAL (UG/L)	TRI- CHLORO- ETHANE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	TRI- CHLORO- ETHANE TOTAL (UG/L)	TETRA- CHLORO- ETHANE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)
APR 1988 05 MAY 05 JUN 09 AUG 04	CHLORO- BROMO- METHANE TOTAL (UG/L) 0	BROMIDE TOTAL (UG/L) 0	CHLO- RIDE TOTAL (UG/L) 0	ENE CHLO- RIDE TOTAL (UG/L) 0	TRI- CHLORO- ETHANE TOTAL (UG/L) 0	CHLORO- ETHANE TOTAL (UG/L) 0	CHLORO- ETHYL- ENE TOTAL (UG/L) 0	TRI- CHLORO- ETHANE TOTAL (UG/L) 0	TETRA- CHLORO- ETHANE TOTAL (UG/L) 0	CHLORO- BENZENE TOTAL (UG/L)
APR 1988 05 MAY 05 JUN 09 AUG	CHLORO- BROMO- METHANE TOTAL (UG/L) 0	BROMIDE TOTAL (UG/L) 0 0	CHLO- RIDE TOTAL (UG/L) 0	ENE CHLO- RIDE TOTAL (UG/L) 0	TRI- CHLORO- ETHANE TOTAL (UG/L) 0	CHLORO- ETHANE TOTAL (UG/L) 0 0	CHLORO- ETHYL- ENE TOTAL (UG/L) 0	TRI- CHLORO- ETHANE TOTAL (UG/L) 0	TETRA- CHLORO- ETHANE TOTAL (UG/L) 0	CHLORO- BENZENE TOTAL (UG/L) 0 0
APR 1988 05 MAY 05 JUN 09 AUG 04 OCT 04	CHLORO-BROMO-METHANE TOTAL (UG/L)  0  0  ND	BROMIDE TOTAL (UG/L) 0 0  ND	CHLO-RIDE TOTAL (UG/L)  0  0  ND ND  1,2- TRANSDI CHLORO-	ENE CHLO- RIDE TOTAL (UG/L)  0  0  0.9 1.6	TRI- CHLORO- ETHANE TOTAL (UG/L) 0 0	CHLORO-ETHANE TOTAL (UG/L)  0  0  ND	CHLORO- ETHYL- ENE TOTAL (UG/L) 0 0	TRI- CHLORO- ETHANE TOTAL (UG/L) 0 0	TETRA- CHLORO- ETHANE TOTAL (UG/L) 0 0	CHLORO-BENZENE TOTAL (UG/L)  0  0  ND
APR 1988 05 MAY 05 JUN 09 AUG 04 OCT 04	CHLORO-BROMO-METHANE TOTAL (UG/L)  0  0   ND  ND  1,2-DI-CHLORO-ETHANE WATER WHOLE TOTAL	BROMIDE TOTAL (UG/L)  0  0   ND  ND  1,2-DI-CHLORO-PROPANE TOTAL	CHLO-RIDE RIDE TOTAL (UG/L)  0  0  ND ND  1,2- TRANSDI CHLORO- ETHENE TOTAL	ENE CHLO- RIDE TOTAL (UG/L)  0  0  0.9  1.6  1,3-DI- CHLORO- BENZENE TOTAL	TRI- CHLORO- ETHANE TOTAL (UG/L)  0  0  ND  ND  1,4-DI- CHLORO- BENZENE TOTAL	CHLORO-ETHANE TOTAL (UG/L)  0  0  ND  ND  TETRA-CHLORO-ETHYL- ENE TOTAL	CHLORO-ETHYL-ENE TOTAL (UG/L)  0  0   ND  TRANS-1,3-DI-CHLORO-PROPENE TOTAL	TRI- CHLORO- ETHANE TOTAL (UG/L)  0  0  ND  ND  TRI- CHLORO- ETHYL- ENE TOTAL	TETRA-CHLORO-ETHANE TOTAL (UG/L)  0  0  ND  ND  2- CHLORO-ETHYL- VINYL- ETHER TOTAL	CHLOROBENZENE TOTAL (UG/L)  0  0  ND ND VINYL CHLO- RIDE TOTAL
APR 1988 05 MAY 05 JUN 09 AUG 04 OCTT 04 DATE APR 1988 05 MAY 05	CHLORO-BROMO-METHANE TOTAL (UG/L)  0  0   ND  ND  1,2-DI-CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)	BROMIDE TOTAL (UG/L)  0  0  ND  ND  1,2-DI-CHLORO-PROPANE TOTAL (UG/L)	CHLO-RIDE TOTAL (UG/L)  0  0  ND ND  1,2- TRANSDI CHLORO-ETHENE TOTAL (UG/L)	ENE CHLO- RIDE TOTAL (UG/L)  0  0  0.9 1.6  1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	TRI- CHLORO- ETHANE TOTAL (UG/L)  0  0  ND ND  1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	CHLORO-ETHANE TOTAL (UG/L)  0  0  ND ND  TETRA- CHLORO-ETHYL- ENE TOTAL (UG/L)	CHLORO-ETHYL-ENE TOTAL (UG/L)  0  0   ND  TRANS- 1,3-DI- CHLORO-PROPENE TOTAL (UG/L)	TRI- CHLORO- ETHANE TOTAL (UG/L)  0  0  ND  TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	TETRA-CHLORO-ETHANE TOTAL (UG/L)  0  0  ND  ND  2- CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLORO-BENZENE TOTAL (UG/L)  0  0  ND ND VINYL CHLO-RIDE TOTAL (UG/L)
APR 1988 05 MAY 05 JUN 09 AUG 04 OCT 04 DATE APR 1988 05 MAY 05 JUN 09	CHLORO-BROMO-METHANE TOTAL (UG/L)  0  0   ND  ND  1,2-DI-CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  0.00	BROMIDE TOTAL (UG/L)  0  0   ND  ND  1,2-DI-CHLORO-PROPANE TOTAL (UG/L)  0	CHLO-RIDE TOTAL (UG/L)  0  0  ND ND  1,2- TRANSDI CHLORO-ETHENE TOTAL (UG/L)  0	ENE CHLO- RIDE TOTAL (UG/L)  0  0  0.9  1.6  1,3-DI- CHLORO- BENZENE TOTAL (UG/L)  0	TRI- CHLORO- ETHANE TOTAL (UG/L)  0  0  ND  ND  1,4-DI- CHLORO- BENZENE TOTAL (UG/L)  0	CHLORO-ETHANE TOTAL (UG/L)  0  0  ND ND  TETRA-CHLORO-ETHYL-ENE ETTOTAL (UG/L)  0.0	CHLORO-ETHYL-ENE TOTAL (UG/L)  0  0   ND  TRANS-1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  0	TRI- CHLORO- ETHANE TOTAL (UG/L)  0  0  ND  ND  TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)  0	TETRA-CHLORO-ETHANE TOTAL (UG/L)  0  0  ND  ND  2- CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  0	CHLOROBENZENE TOTAL (UG/L)  0  0  ND ND VINYL CHLORIDE TOTAL (UG/L) 0
APR 1988 05 MAY 05 JUN 09 AUG 04 OCTT 04 DATE APR 1988 05 MAY 05 JUN 09 AUG 04	CHLORO-BROMO-METHANE TOTAL (UG/L)  0  0   ND  1,2-DI-CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  0.00  0.00	BROMIDE TOTAL (UG/L)  0  0  ND  ND  1,2-DI-CHLORO-PROPANE TOTAL (UG/L)  0  0	CHLO-RIDE TOTAL (UG/L)  0  0  ND ND  1,2- TRANSDI CHLORO-ETHENE TOTAL (UG/L)  0  0	ENE CHLO- RIDE TOTAL (UG/L)  0  0  0.9  1.6  1,3-DI- CHLORO- BENZENE TOTAL (UG/L)  0  0	TRI- CHLORO- ETHANE TOTAL (UG/L)  0  0  ND ND  1,4-DI- CHLORO- BENZENE TOTAL (UG/L)  0  0	CHLORO-ETHANE TOTAL (UG/L)  0  0  ND ND  TETRA- CHLORO-ETHYL- ENE TOTAL (UG/L)  0.0  0.0	CHLORO-ETHYL-ENE TOTAL (UG/L)  0  0   ND  TRANS-1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  0  0	TRI- CHLORO- ETHANE TOTAL (UG/L)  0  0  ND ND  TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)  0  0	TETRA-CHLORO-ETHANE TOTAL (UG/L)  0  0  ND  ND  2- CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  0  0	CHLORO-BENZENE TOTAL (UG/L)  0  0  ND ND VINYL CHLO-RIDE TOTAL (UG/L)  0  0
APR 1988 05 MAY 05 JUN 09 AUG 04 OCT 04  DATE APR 1988 05 MAY 05 JUN 09 JUN 09 AUG	CHLORO-BROMO-METHANE TOTAL (UG/L)  0  0   ND  ND  1,2-DI-CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  0.00  0.00	BROMIDE TOTAL (UG/L)  0  0   ND  ND  1,2-DI-CHLORO-PROPANE TOTAL (UG/L)  0  0	CHLO-RIDE TOTAL (UG/L)  0  0  ND  ND  1,2- TRANSDI CHLORO-ETHENE TOTAL (UG/L)  0  0	ENE CHLO- RIDE TOTAL (UG/L)  0  0  0.9  1.6  1,3-DI- CHLORO- BENZENE TOTAL (UG/L)  0  0	TRI- CHLORO- ETHANE TOTAL (UG/L)  0  0  ND  ND  1,4-DI- CHLORO- BENZENE TOTAL (UG/L)  0  0	CHLORO-ETHANE TOTAL (UG/L)  0  0  ND ND  TETRA-CHLORO-ETHYL-ENE TOTAL (UG/L)  0.0  0.0	CHLORO-ETHYL-ENE TOTAL (UG/L)  0  0   ND  TRANS-1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  0  0   0   0   0   0   1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  0  0	TRI- CHLORO- ETHANE TOTAL (UG/L)  0  0  ND  ND  TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)  0  0	TETRA-CHLORO-ETHANE TOTAL (UG/L)  0  0 ND  ND  2- CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  0  0	CHLORO-BENZENE TOTAL (UG/L)  0  0  ND ND VINYL CHLO- RIDE TOTAL (UG/L)  0  0

# SUSPENDED SEDIMENT DISCHARGE

		DIS-		SEDI-
		CHARGE,		MENT,
		INST.	SEDI-	DIS-
		CUBIC	MENT,	CHARGE,
		FEET	SUS-	SUS-
DATE	TIME	PER	PENDED	PENDED
		SECOND	(MG/L)	(T/DAY)
JUN 1988				
09	0945	2850	15	115

### 01520500 CHEMUNG RIVER AT CHEMUNG, NY

LOCATION.--Lat 42 00'08". long 76 38'06", Chemung County, Hydrologic Unit 02050105, on right bank 100 ft upstream from bridge State Highway 427, 0.7 mi southwest of Chemung, and 10.0 mi upstream from mouth.

DRAINAGE AREA .-- 2,506 mi2.

PERIOD OF RECORD.--Water years 1953-54, 1962, 1970-78, 1988 to current year.

CHEMICAL DATA: 1953-54 (a), 1962 (a), 1970-71 (a), 1972 (b), 1974 (b), 1975-77 (d), 1988 (b), 1989 (a).

MINOR ELEMENT DATA: 1953-54 (a), 1972 (b), 1973 (a), 1974 (b), 1975-77 (d), 1988 (b), 1989 (a).

PESTICIDE DATA: 1972 (a), 1988 (b), 1989 (a).

ORGANIC DATA: 1972 (a), 1974 (a), 1975-77 (d).

OC--1988 (b), 1989 (a).

NUTRIENT DATA: 1953-54 (a), 1970-71 (a), 1972 (b), 1974 (a), 1975-77 (d), 1988 (b), 1989 (a).

BIOLOGICAL DATA:

Bacterial--1974 (a), 1975-77 (d).

Phytoplankton--1974 (a), 1975 (d), 1976-77 (c).

SEDIMENT: 1972 (a), 1975 (b), 1976 (a), 1988 (a), 1989 (a).

REMARKS.--Water-discharge data obtained from stream-flow gage at this site.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)
APR 1988												
05 May	1050	7490	176	8.0	12.0		8.5	60	18	3.7	7.2	1.6
03 NUT	1145	2770	229	8.9	10.5		10.6	82	24	5.3	9.1	1.5
07	1130	1120	<b>29</b> 9	8.1	17.5	5.2	8.2	110	33	7.3	13	1.8
01 OCT	1145	715	384	8.7	29.0		8.8	140	41	9.4	20	2.4
05	1130	228	485	8.6	17.5		9.0	180	52	13	27	3.2
DATE	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, TOTAL (MG/L)	SOLIDS, VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	RESIDUE TOTAL FIXED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)
APR 1988 05	42	22	12	0.10		90					ND	0.490
MAY 03	56	29	15	0.10		118				0.340	0.00	0.340
JUN 07	82	31	19	0.20	166	155	185	75	110	0.590	0.020	0.610
AUG					-~							
01 OCT	106	33	34	0.20		204				0.340	0.00	0.340
05	125	43	46	0.10		259	~-			0.910	0.020	0.930
DATE	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS NH4)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS NO3)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
APR 1988 05	0.180	0.23	0.06	0.24	0.73	3.2	0.340	0.010	0.03	6800	1	15
MAY 03	0.010	0.01	0.16	0.17	0.51	2.3	0.040	0.00	0.0	320	1	9
JUN 07	0.080	0.10	0.01	0.09	0.70	3.1	0.050	0.020	0.06	230	1	6
AUG 01	0.020	0.03	0.30	0.32	0.66	2.9	0.090	0.030	0.09	410	<1	9
OCT	0.010	0.03				4.9		0.070	0.21	330	<1	6
05	0.010	0.01	0.16	0.17	1.1	4.9	0.120	0.070	0.21	330	<1	0

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

### 01520500 CHEMUNG RIVER AT CHEMUNG, NY - continued

# WATER-QUALITY DATA (continued)

DATE	TOTAL RECOV- ERABLE (UG/L	LEAD, TOTAL CRECOV- ERABLE (UG/L	TOTAL T RECOV- R ERABLE E (UG/L (	OTAL TO ECOV- R RABLE E UG/L (	OTAL TO ECOV- RI RABLE E UG/L (1		PHENOL (C6H- 5OH) TOTAL UG/L)	BROMO- FORM TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO ETHANE TOTAL (UG/L)
APR 1988 05	11000	5	440	<0.10	1	70	3.0	0	0	0.0	0	0
MAY				20.10							•	-
03 JUN	570	<5	130		5	<10	ND	0	0	0.0	0	0
07 AUG	450	<5	70		6	10	ND			~~		
01	780	<b>&lt;</b> 5	110	<0.10	4	<10	2.0	ND	ND	ND	ND	ND
05	350	<b>&lt;</b> 5	70		3	<10	ND	ND	ND	ND	ND	ND
DATE  APR 1988 05 MAY 03 JUN 07 AUG 01 OCT 05	(UG/L)	PROPENI TOTAL	- BROMO-	METHYL-	METHYL- CHLO- RIDE TOTAL (UG/L) 0 0	METHYLI ENE CHLO- RIDE TOTAL (UG/L) 0 0 ND	TRI-	1,1-1 RO- CHLOI RE ETHAN TOT (UG/I	RO- ETHY NE EN AL TOT L) (UG/	DRO- TRI L- CHLC E ETHA L TOI L) (UG/ 0 0 NE	CHLC RO- CHLC RO- CHLC CHLC CHLC CHLC CHLC CHLC CHLC CHLC	RA-RO-NE PAL L) 0
DATE	1,2-DI CHLORO BENZEN TOTAL (UG/L)	- WATER IE WHOLE TOTAL		CHLORO-	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	1,4-DI CHLORC BENZEN TOTAL (UG/L)	- ETHYL E ENE TOTA	CO- 1,3-1 CHLOI PROPI	DI- CHLO RO- ETHY ENE EN AL TOT	DRO- ETHY L- VINY IE ETH	RO- L- VIN L- CHI ER RIE AL TOT	O-
APR 1988 05	0	0.00	0	0	0	0		).0 (	2	0	0	0
MAY		0.00		_		-			-	-	-	
03 JUN	0	0.00	0	0	0	0	O	0.0	0	0	0	0
07 AUG												-
01	ND	ND	ND	ND	ND	ND	ND	ND	ND	) NE	) NE	,
05	ND	ND	ND	ND	ND	ИD	ND	ND	ND	) ND	NE	1

# SUSPENDED SEDIMENT DISCHARGE

EDI-
ENT,
DIS-
ARGE,
SUS-
PENDED
(YAD\
25
6.8

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

### 01520500 CHEMUNG RIVER AT CHEMUNG, NY - continued

### BED MATERIAL ANALYSES

					BED	MAIDAI	.ALI A	WALISES								
DATE	TIME	SOLIE VOLA TILE BOTTO MA- TERI (MG/K	A- IN IN RE OM FM TOM IAL TE	UM, RECOV. FM BOT- TOM MA- TE	COV. M BOT- R MA- FM RIAL TO G/G T	IUM, ECOV.	FM E TOM TER (UG	COV. RI BOT- FM MA- TOI RIAL TI	ECOV. BOT- F M MA- T ERIAL UG/G	LEAD, RECOV. M BOT- OM MA- TERIAL (UG/G AS PB)	NES REC FM I TOM TEI	SE, F COV. FN BOT- TO MA- T RIAL	RCURY ECOV. BOT- M MA- PERIAL UG/G LS HG)	RE FM TOM TE (U		ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)
00m 1007																
OCT 1987 26 AUG 1988	1100	83	160		<1	<10		1	3500	<10		100	<0.10		<10	20
15	1000	108	300	2100	<10			<1	4900	<100		180	0.02		<100	20
DATE OCT 1987 26 AUG 1988 15	AROCI 122: IN BOTTY MAC (UG/)	L A DM C. E (G) (	AROCLOR 1248 PCB SOT.MAT (UG/KG)	AROCLOR 1254 PCB BOT.MAT (UG/KG)	AROCLOR 1260 PCB BOT.MAT (UG/KG)	IN BO	IN, AL PT- IA- IAL	ALPHA BHC TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ATRA- ZINE, TOTAL IN BOT TOM MA TERIA (UG/KG	BENZ HEX - CHL - ID L BOT.	A- OR- E MAT KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAI (UG/KG)	CHLC PYRI IN E	FOS SOT. 'KG)	DELT BENZE HEXA CHLO IDE BOT.M (UG/K	NE  R- AT
DATE	DI- AZINO TOTA IN BO TOM I TER: (UG/I	ON, E AL OT- I MA- I IAL	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN ALPHA BOT.MAT (UG/KG)	ENDO- SULFAN BETA BOT.MAT (UG/KG)	ENDO SULFA SULFA BOT.M	AN TE AT	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN ALDE- HYDE BOT.MA (UG/KG	IN E TOM T TER	AL OT- MA- IAL	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHI EPOX TOT. BOX	IDE IN TOM	MALA THIO TOTA IN BO TOM M TERI (UG/K	N, L T- IA- AL
OCT 1987																
26 AUG 1988		-					•			-	-		•			
15	ND		ND	ND	ND	ND		ND	ND	NE	)	ND	NI	)	ND	
DATE	METI OXY- CHLO TOT. BOT MA' (UG/)	OR, IN I IOM T	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	P,P' DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	P, P' DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOM M	T, L MT- IA- IAL	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOXA-PHENE TOTAL IN BOT TOM MA TERIA (UG/KG	FA - DIA - % FI L TH	T. LL M. NER	BED MAT. SIEVE DIAM. % FINEI THAN .062 MI	SII DI/ R & FI	T. EVE	BED MAT SIEV DIAM % FIN THA 2.00	r. Te I. IER IN
OCT 1987		-					-				0	;	3	15		98
AUG 1988 15	ND		ND	ND	ND	ND		ND	ND		1		Į	100		
									•		-	-	-			

#### ALLEGHENY RIVER BASIN

#### 03011020 ALLEGHENY RIVER AT SALAMANCA, NY

LOCATION.--Lat 42 09'23",long 78 42'56", Cattaraugus County, Hydrologic Unit 05010001, on left bank 230 ft upstream from Main Street bridgein Salamanca,1.3 mi downstream from Great Valley Creek, and 1.6 mi upstream from Little Valley Creek.

DRAINAGE AREA. -- 1,608 mi2.

PERIOD OF RECORD.-- Water years 1967, 1971-74, 1988 to current year.

CHEMICAL DATA: 1967 (a). 1971-72 (a). 1988 (b), 1989 (a).

MINOR ELEMENT DATA: 1967 (a), 1971 (a), 1972-74 (a), 1988 (b), 1989 (a).

PESTICIDE DATA: 1988 (b), 1989 (a).

NUTRIENT DATA: 1967 (a), 1971-72 (a), 1988 (b), 1989 (a).

REMARKS. -- Water-discharge data obtained from stream-flow gage at this site.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
APR 1988												
12 M <b>A</b> Y	1115	2780	129	7.2	10.0	5.8						
10 JUL	1230	3120	158	7.2	15.0	43		8.0				
21 OCT	1030	349	307	7.9	22.0	6.4		6.4		88	26	5.7
17	1030	391	298	8.0	11.0	5.2	764	10.0	90	88	26	5.7
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, TOTAL (MG/L)	SOLIDS, VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	RESIDUE TOTAL FIXED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)
APR 1988												
12 MAY			27	11	10	0.40	72		86	14	72	0.360
10 JUL			31				116		204	100	104	0.320
21	24	1.8	<b>6</b> 6	14	44	0.10	188	155	232	76	156	0.530
ост 17	25	1.8	60	20	40	0.10	160	155	172	12	160	0.430
DATE	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS NH4)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS NO3)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)
APR 1988		0.000							0.040			400
12 May	0.00	0.360	0.020	0.03	0.10	0.12	0.48	2.1	0.040	0.00	0.0	180
10 JUL	0.00	0.320	0.090	0.12	0.32	0.41	0.73	3.2	0.190	0.00	0.0	1100
21 OCT	0.010	0.540	0.050	0.06	0.38	0.43	0.97	4.3	0.050	ND		400
17	0.00	0.430	0.010	0.01	0.89	0.90	1.3	5.9	0.040	0.00	0.0	200

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

### ALLEGHENY RIVER BASIN

# 03011020 ALLEGHENY RIVER AT SALAMANCA, NY - continued

# WATER-QUALITY DATA (continued)

							, , , , , , , , , , , ,					
DATE	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	BROMO- FORM TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)
APR 1988												
12	<1	3	550	<b>&lt;</b> 5	80	<0.10	12	<10	ND	ND	ND	ND
MAY 10	1	8	2400	<b>&lt;</b> 5	180		6	20	ND	ND	ND	ND
JUL 21	<1	34	750	<b>&lt;</b> 5	160	<0.10	4	30	ND	ND	ND	ND
OCT												
17	1	3	580	<5	80	<0.10	6	<10	ND	ND	ND	ND
DATE	CHLORO- ETHANE TOTAL (UG/L)	CHLORO- FORM TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)
APR 1988	}											
12	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MAY	N.D.	MP	W.D.	ND	ND	ND	N.D.	ND	N.D.	MD	ND	ND
10 JUL	ND	ND	ND	מא	ND	ND	ND	מא	ND	ND	NU	ND
21 OCT	ND	ND	ИD	ND	ND	ИD	ND	ND	ИD	ND	ND	ND
17	ND	0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DAT	CHLO BENZ TE TO	ZENE WHO	ORO- ANE 1,2- TER CHLO OLE PROP TAL TOT	DI- TRANDRO- CHLO PANE ETHE	ORO- CHLO ENE BENI PAL TO	DRO- CHLO ZENE BENI TAL TO	oro- eth zene eni ral to:	ORO- 1,3- YL- CHLO E PROI TAL TO	PENE EN TAL TO	ORO- ETHY (L- VINY NE ETH PAL TO	ORO- (L- VII (L- CHI HER RII TAL TO	<b>FAL</b>
	(UG,	/L) (UG,	/L) (UG/	/L) (UG/	L) (UG	/L) (UG	/L) (UG	/L) (UG,	/L) (U)	3/L) (UG,	/L) (U	G/L)
APR 198 12 MAY 10 JUL	. NI											
21	. NI	D NI	D NI	D NI	) NI	וא ס	וא ס	D NI	D NI	NI C	o Ni	ס
OCT			- ***	- •••			_ •••	- •••	,,	• •••		
17	. NI	D NI	D NI	D NI	) NI	D N	D N	D NI	D	0.2 N	וא כ	ס

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

### 04213320 CHAUTAUQUA CREEK AT BARCELONA, NY

LOCATION.--Lat 42 20'15", long 79 36'04", Chautauqua County, Hydrologic Unit 04120101, at bridge on State Highway 5, at Barcelona, and about 0.8 mi (1.3 km) down stream from Westfield Sewage Disposal Plant out Fall.

DRAINAGE AREA. -- 35.6 mi2.

PERIOD OF RECORD.--Water years 1987 to 1989.

CHEMICAL DATA: 1987 (b) 1988 (d), 1989 (a).

MINOR ELEMENT DATA: 1987 (b), 1988 (d), 1989 (a).

PESTICIDE DATA: 1987 (b) 1988 (d), 1989 (a).

NUTRIENT DATA: 1987 (b) 1988 (d), 1989 (a).

SEDIMENT DATA: 1987 (a), 1988 (b), 1989 (a).

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
APR 1987												
16	0715			7.9	7.5	9.6		15.5	110	36	5.8	
30	0830			8.0	5.0	2.2		12.0	130	42	6.7	
MAY												
19	1500		327	8.7	18.0	1.1			150	46	9.6	
JUN												
23	0900			8.3	17.0	38			100	32	4.8	
JUL 21	0900			8.0	25.0	1.0		7.9	180	59	8.3	
OCT	0900			8.0	25.0	1.0		7.9	180	29	8.3	
01	0910		224	8.5	12.0	20						
NOV	0,10		224	0.5	12.0	20						
17	1645			8.0	12.0	2.5		15.5	140	44	7.3	
DEC	_											
10	0945			8.1	4.0	64		12.0				
MAR 1988												
24	0930		166	7.6	3.0	100			62	19	3.5	6.2
APR												
07	1230		226	8.0	10.0	40						
21	0915		255	8.2	5.0	0.0			110	34	6.2	6.8
MAY	1115		2.50									
0 <b>4</b> 19	1115 1130		268 237	8.3 8.2	11.0	9.7		11.2	98	30	 5.5	7.1
JUN	1130		231	8.2	12.0	15		10.2	98	30	5.5	7.1
27	1815	438	440	8.7	24.0	0.60		8.7	160	49	9.1	20
SEP	1013	400	440	0.7	24.0	0.60		0.7	160	4.7	9.1	20
08	1030		406	8.1	14.5	1.7			180	54	10	11
OCT			•••	0.1	2	_ • •			100			
06	1015		398	8.3	10.0	4.9	772	10.4	170	52	9.7	15
NOV												
17	1130		255	7.9	5.0	2.8	760	11.6	110	34	6.3	6.1

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 04213320 CHAUTAUQUA CREEK AT BARCELONA, NY - continued

DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, TOTAL (MG/L)	SOLIDS, VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	RESIDUE TOTAL FIXED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)
APR 1987											
16						110		157	44	102	
30 MAY						146		168	32	128	
19						240		260	24	236	
JUN 23 JUL						140		260	80	132	0.830
21 OCT						248		256	28	228	
01 NOV						164		192	28	164	
17						176		196	76	116	
10 MAR 1988	~-					124		352	76	276	
24 APR	1.1	48	16	11	0.10	102	87	410	52	358	0.520
07 21	1.2	70 82	30 29	10 12	0.10 0.10	152 160	 139	228 212	60 52	168 160	0.470 0.530
MAY 04	~-	84				176		208	44	164	
19 JUN	1.5	78	23	10	0.20	124	124	232	36	196	
27 SEP	7.7	108	60	24	0.40	265	235	296	101	195	2.66
08	4.3	120	63	14	0.10	256	228	264	76	188	
06	4.5	125	56	13	0.20	264	226	268	44	224	
17	1.9	80	33	9.4	0.10	136	139	140	48	92	
DATE	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS NH4)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS NO3)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)
APR 1987	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS NO3)	PHORUS TOTAL (MG/L AS P)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHATE, ORTHO, DIS- SOLVED (MG/L
APR 1987 16 30	GEN, NITRITE TOTAL (MG/L	GEN, NO2+NO3 TOTAL (MG/L	GEN, AMMONIA TOTAL (MG/L	GEN, AMMONIA TOTAL (MG/L	GEN, ORGANIC TOTAL (MG/L	GEN, AM- MONIA + ORGANIC TOTAL (MG/L	GEN, TOTAL (MG/L	GEN, TOTAL (MG/L	PHORUS TOTAL (MG/L	PHORUS ORTHO, DIS- SOLVED (MG/L	PHATE, ORTHO, DIS- SOLVED (MG/L
APR 1987 16 30 MAY 19	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS NO3)	PHORUS TOTAL (MG/L AS P)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)
APR 1987 16 30 MAY 19 JUN 23	GEN, NITRITE TOTAL (MG/L AS N) ND ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.560 0.390	GEN, AMMONIA TOTAL (MG/L AS N) 0.030 0.020	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.04	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.12	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.14	GEN, TOTAL (MG/L AS N) 0.70 0.53	GEN, TOTAL (MG/L AS NO3) 3.1 2.3	PHORUS TOTAL (MG/L AS P) 0.020 0.010	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND 0.00	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)
APR 1987 16 30 MAY 19 JUN 23 JUL 21	GEN, NITRITE TOTAL (MG/L AS N)  ND ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.560 0.390	GEN, AMMONIA TOTAL (MG/L AS N) 0.030 0.020	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.04 0.03	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.12	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.14 0.14	GEN, TOTAL (MG/L AS N) 0.70 0.53	GEN, TOTAL (MG/L AS NO3) 3.1 2.3	PHORUS TOTAL (MG/L AS P) 0.020 0.010	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND 0.00	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01	GEN, NITRITE TOTAL (MG/L AS N)  ND ND ND ND O.00	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.560 0.390 0.600	GEN, AMMONIA TOTAL (MG/L AS N) 0.030 0.020 0.020	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.04 0.03 0.03	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.12 0.08	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.14 0.14 0.10 0.29	GEN, TOTAL (MG/L AS N) 0.70 0.53 0.70	GEN, TOTAL (MG/L AS NO3) 3.1 2.3 3.1 5.0	PHORUS TOTAL (MG/L AS P) 0.020 0.010 0.030	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND 0.00 0.020	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 17	GEN, NITRITE TOTAL (MG/L AS N)  ND ND ND ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.560 0.390 0.600 0.830 1.49	GEN, AMMONIA TOTAL (MG/L AS N) 0.020 0.020 0.020 0.080 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.04 0.03 0.03 0.10	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.12 0.08 0.21	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.14 0.14 0.10 0.29	GEN, TOTAL (MG/L AS N) 0.70 0.53 0.70 1.1	GEN, TOTAL (MG/L AS NO3) 3.1 2.3 3.1 5.0	PHORUS TOTAL (MG/L AS P) 0.020 0.010 0.030 0.100 0.00	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND 0.00 0.020 0.00	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 17 DEC 10	GEN, NITRITE TOTAL (MG/L AS N)  ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.560 0.390 0.600 0.830 1.49	GEN, AMMONIA TOTAL (MG/L AS N) 0.030 0.020 0.020 0.080 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.04 0.03 0.03 0.10 0.01	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.12 0.08 0.21 0.14	GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N)  0.14 0.14 0.10 0.29 0.15	GEN, TOTAL (MG/L AS N) 0.70 0.53 0.70 1.1 1.6	GEN, TOTAL (MG/L AS NO3) 3.1 2.3 3.1 5.0 7.3	PHORUS TOTAL (MG/L AS P) 0.020 0.010 0.030 0.100 0.00 0.050	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND 0.00 0.020 0.00	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 17 DEC 10 MAR 1988 24	GEN, NITRITE TOTAL (MG/L AS N)  ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.560 0.390 0.600 0.830 1.49 0.060 0.130	GEN, AMMONIA TOTAL (MG/L AS N) 0.020 0.020 0.020 0.080 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.04 0.03 0.03 0.10 0.01	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.12 0.08 0.21 0.14	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.14 0.14 0.10 0.29 0.15 0.28 0.14	GEN, TOTAL (MG/L AS N) 0.70 0.53 0.70 1.1 1.6 0.34	GEN, TOTAL (MG/L AS NO3) 3.1 2.3 3.1 5.0 7.3 1.5	PHORUS TOTAL (MG/L AS P) 0.020 0.010 0.030 0.100 0.050 0.050	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND 0.00 0.020 0.00 0.00	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 17 DEC 10 MAR 1988	GEN, NITRITE TOTAL (MG/L AS N)  ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.560 0.390 0.600 0.830 1.49 0.060 0.130	GEN, AMMONIA TOTAL (MG/L AS N)  0.030 0.020  0.020  0.080  0.010  0.030  ND	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.04 0.03 0.10 0.01 0.04 	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.12 0.08 0.21 0.14 0.25	GEN, AM- MONIA + ORGANIC (MG/L AS N)  0.14 0.14 0.10 0.29 0.15 0.28 0.14	GEN, TOTAL (MG/L AS N) 0.70 0.53 0.70 1.1 1.6 0.34 0.27 0.69	GEN, TOTAL (MG/L AS NO3) 3.1 2.3 3.1 5.0 7.3 1.5 1.2	PHORUS TOTAL (MG/L AS P) 0.020 0.010 0.030 0.100 0.00 0.050 0.010	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND 0.00 0.020 0.00 0.00 0.00 ND	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)  0.0 0.0 0.0 0.0
APR 1987 16 30 MAY 19 JUN 23 OCT 01 NOV 17 DEC 10 MAR 1988 24 APR 07 21 MAY	GEN, NITRITE TOTAL (MG/L AS N)  ND ND ND ND ND ND O.000 ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.560 0.390 0.600 0.830 1.49 0.060 0.130 0.310 0.520 0.470 0.530	GEN, AMMONIA TOTAL (MG/L AS N)  0.030 0.020 0.020 0.080 0.010 0.030 ND 0.120 0.310 0.070 0.080	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.04 0.03  0.10 0.01 0.04 0.15 0.40 0.09 0.10	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.12 0.08 0.21 0.14 0.25  0.26 0.25 0.18 0.16	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.14 0.14 0.10 0.29 0.15 0.28 0.14 0.38 0.56 0.25 0.24	GEN, TOTAL (MG/L AS N) 0.70 0.53 0.70 1.1 1.6 0.34 0.27 0.69 1.1	GEN, TOTAL (MG/L AS NO3) 3.1 2.3 3.1 5.0 7.3 1.5 1.2 3.1 4.8	PHORUS TOTAL (MG/L AS P) 0.020 0.010 0.030 0.100 0.050 0.010 0.190 0.230 0.040 0.070	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND 0.00 0.020 0.00 ND 0.00 0.00 0.00	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)  0.0 0.06 0.0 0.0  0.0 0.06
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 17 DEC 10 MAR 1988 24 APR 07 21 MAY 04 19	GEN, NITRITE TOTAL (MG/L AS N)  ND ND ND ND ND ND O.000 ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.560 0.390 0.600 0.830 1.49 0.060 0.130 0.310 0.520 0.470	GEN, AMMONIA TOTAL (MG/L AS N)  0.030 0.020 0.020 0.080 0.010 0.030 ND 0.120 0.310 0.070	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.03 0.03 0.10 0.01 0.04  0.15 0.40	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.12 0.08 0.21 0.14 0.25  0.26 0.25	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.14 0.14 0.10 0.29 0.15 0.28 0.14 0.38 0.56	GEN, TOTAL (MG/L AS N) 0.70 0.53 0.70 1.1 1.6 0.34 0.27 0.69 1.1	GEN, TOTAL (MG/L AS NO3) 3.1 2.3 3.1 5.0 7.3 1.5 1.2 3.1 4.8	PHORUS TOTAL (MG/L AS P) 0.020 0.010 0.030 0.100 0.050 0.010 0.190 0.230 0.040	PHORUS ORTHO, DIS-SOLVED (MG/L AS P)  ND 0.00 0.020 0.00 ND 0.00 0.00 0.00 0.00	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)  0.0 0.06 0.0 0.0
APR 1987 16 30 MAY 19 JUN 23 OCT 01 NOV 17 DEC 10 MAR 1988 24 APR 07 21 MAY 04 19 JUN 27	GEN, NITRITE TOTAL (MG/L AS N)  ND ND ND ND ND O.000 ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.560 0.390 0.600 0.830 1.49 0.060 0.130 0.310 0.520 0.470 0.530	GEN, AMMONIA TOTAL (MG/L AS N)  0.030 0.020 0.080 0.010 0.030 ND 0.120 0.310 0.070 0.080 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.04 0.03  0.10 0.01  0.04 0.15 0.40 0.09 0.10 0.01	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.12 0.08 0.21 0.14 0.25  0.26 0.25 0.18 0.16	GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N)  0.14 0.10 0.29 0.15 0.28 0.14 0.38 0.56 0.25 0.24 0.13	GEN, TOTAL (MG/L AS N) 0.70 0.53 0.70 1.1 1.6 0.34 0.27 0.69 1.1	GEN, TOTAL (MG/L AS NO3) 3.1 2.3 3.1 5.0 7.3 1.5 1.2 3.1 4.8 3.2 3.4	PHORUS TOTAL (MG/L AS P)  0.020 0.010  0.030  0.100  0.050  0.010  0.190  0.230  0.040  0.070	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND 0.00 0.020 0.00 0.00 ND 0.020 0.00 0.00 0.00	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)  0.0 0.06 0.0 0.0 0.0 0.06
APR 1987 16 30 MAY 19 JUN 23 OCT 01 NOV 17 DEC 10 MAR 1988 24 APR 07 21 MAY 04 19 JUN	GEN, NITRITE TOTAL (MG/L AS N)  ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.560 0.390 0.600 0.830 1.49 0.060 0.130 0.310 0.520 0.470 0.530 0.820 0.380	GEN, AMMONIA TOTAL (MG/L AS N)  0.030 0.020 0.020 0.080 0.010 0.030 ND 0.120 0.310 0.070 0.080 0.010 0.080	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.04 0.03  0.10 0.01 0.04 0.15 0.40 0.09 0.10 0.01 0.05	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.12 0.08 0.21 0.14 0.25  0.26 0.25 0.18 0.16	GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N)  0.14 0.14 0.10 0.29 0.15 0.28 0.14 0.38 0.56 0.25 0.24 0.13 0.34	GEN, TOTAL (MG/L AS N) 0.70 0.53 0.70 1.1 1.6 0.34 0.27 0.69 1.1 0.72 0.77	GEN, TOTAL (MG/L AS NO3) 3.1 2.3 3.1 5.0 7.3 1.5 1.2 3.1 4.8 3.2 3.4	PHORUS TOTAL (MG/L AS P)  0.020 0.010  0.030  0.100  0.050  0.010  0.230  0.230  0.040  0.070  0.040  0.050	PHORUS ORTHO, DIS-SOLVED (MG/L AS P)  ND 0.00 0.020 0.00 0.00 ND 0.020 0.00 0.00 0.00 0.00	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 17 DEC 10 MAR 1988 24 APR 07 21 MAY 04 19 JUN 27 SEP 08	GEN, NITRITE TOTAL (MG/L AS N)  ND ND ND ND ND O.00 ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.560 0.390 0.600 0.830 1.49 0.060 0.130 0.310 0.520 0.470 0.530 0.820 0.380 2.66	GEN, AMMONIA TOTAL (MG/L AS N)  0.030 0.020 0.020 0.080 0.010 0.030 ND 0.120 0.310 0.070 0.080 0.010 0.040 0.040	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.04 0.03  0.01  0.04 0.15  0.40 0.09 0.10  0.01 0.05	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.12 0.08 0.21 0.14 0.25  0.26 0.25 0.18 0.16 0.12	GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N)  0.14 0.10 0.29 0.15 0.28 0.14 0.38 0.56 0.25 0.24 0.13 0.34 0.07	GEN, TOTAL (MG/L AS N) 0.70 0.53 0.70 1.1 1.6 0.34 0.27 0.69 1.1 0.72 0.77	GEN, TOTAL (MG/L AS NO3) 3.1 2.3 3.1 5.0 7.3 1.5 1.2 3.1 4.8 3.2 3.4	PHORUS TOTAL (MG/L AS P)  0.020 0.010  0.030  0.100  0.050  0.010  0.190  0.230  0.040 0.070  0.040 0.050  0.020	PHORUS ORTHO, DIS-SOLVED (MG/L AS P)  ND 0.00 0.020 0.00 0.00 ND 0.020 0.00 0.00 0.00 0.00 0.00 0.00 0.	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)  0.0 0.06 0.0 0.0 0.0 0.06 0.0 0.0 0.0

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

### 04213320 CHAUTAUQUA CREEK AT BARCELONA, NY - continued

DATE	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS~ SOLVED (UG/L AS CD)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)
APR 1987											
16			<10		<10		460		<100		10 10
30 MAY		~~	<10		<10		100		11		10
19			<10	1.0	<10	2	70		<5	<5	<10
JUN 23			<10		<10		2100				60
JUL									_		
21 OCT			<10		20		270		<5		10
01			<10		10		1600		<100		40
NOV 17			<1		5		130		<5		10
DEC					_				_		450
10 MAR 1988			<1		9		7400		6		150
24	6000	90	<1	<1.0	10	1	11000	790	<5	<5	230
APR 07	1700		<1		6		2600		<5		50
21	1700	30	2	<1.0	4	<1	2500	33	<5	<5	40
MAY 04	260		<1		4		640		<5		20
19	610	80	5	<1.0	10	2	720	56	<b>&lt;</b> 5	<5	20
JUN 27	120		<1		6		50		<5		40
SEP	440				4		100		.e		.10
08 OCT	110		<1		4		120		<5		<10
06 NOV	360	160	<1	<1.0	9	2	300	41	<5	<5	20
17	100		1		37		180		10		20
DATE	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)	BROMO- FORM TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)
DATE APR 1987	NESE, DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	FORM TOTAL	TETRA- CHLO- RIDE TOTAL	BENZENE TOTAL	DI- BROMO- METHANE TOTAL	ETHANE TOTAL
APR 1987 16	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)	TETRA- CHLO- RIDE TOTAL (UG/L)	BENZENE TOTAL (UG/L) ND	DI- BROMO- METHANE TOTAL (UG/L)	ETHANE TOTAL (UG/L) ND
APR 1987	NESE, DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L	FORM TOTAL (UG/L)	TETRA- CHLO- RIDE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	DI- BROMO- METHANE TOTAL (UG/L)	ETHANE TOTAL (UG/L)
APR 1987 16 30 MAY 19	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)	TETRA- CHLO- RIDE TOTAL (UG/L)	BENZENE TOTAL (UG/L) ND	DI- BROMO- METHANE TOTAL (UG/L)	ETHANE TOTAL (UG/L) ND
APR 1987 16 30 MAY 19 JUN 23	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L) ND ND	TETRA- CHLO- RIDE TOTAL (UG/L) ND ND	BENZENE TOTAL (UG/L) ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND	ETHANE TOTAL (UG/L) ND ND
APR 1987 16 30 MAY 19 JUN 23	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L) ND ND ND	TETRA- CHLO- RIDE TOTAL (UG/L) ND ND ND	BENZENE TOTAL (UG/L) ND ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND	ETHANE TOTAL (UG/L) ND ND ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 CCT	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 0.10 <0.10 <0.10 0.20	TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 <1 2	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <20	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L) ND ND ND ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND ND ND ND ND ND	BENZENE TOTAL (UG/L) ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND	ETHANE TOTAL (UG/L)  ND ND ND ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 CCT 01	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L) ND ND ND	TETRA- CHLO- RIDE TOTAL (UG/L) ND ND ND	BENZENE TOTAL (UG/L) ND ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND	ETHANE TOTAL (UG/L) ND ND ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 17	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 0.10 <0.10 <0.10 0.20	TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 <1 2	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <20	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L) ND ND ND ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND ND ND ND ND ND	BENZENE TOTAL (UG/L) ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND	ETHANE TOTAL (UG/L)  ND ND ND ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 17 DEC	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <100 <1 <1 2 <100 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND ND ND ND ND ND	BENZENE TOTAL (UG/L) ND ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND	ETHANE TOTAL (UG/L)  ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 17 DEC 10 MAR 1988	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <100 <1 <1 2 <100 <1 8	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND	TETRA- CHLO- RIDE TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND	BENZENE TOTAL (UG/L) ND ND ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 17 DEC 10 MAR 1988 24	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <100 <1 <1 2 <100 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND ND ND ND ND ND	BENZENE TOTAL (UG/L) ND ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND	ETHANE TOTAL (UG/L)  ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 17 DEC 10 MAR 1988 24 APR 07	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)  <100 <1 <1 2 <100 <1 1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	DIS-SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND N	BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 17 DEC 10 MAR 1988 24 APR	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <100 <1 <1 2 <100 <1 8 17	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <40 <40 <40 <40 <40 <40 <40 <40 <40 <4	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND	BENZENE TOTAL (UG/L) ND ND ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 17 DEC 10 MAR 1988 24 APR 07 21 MAY 04	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10	TOTAL RECOVERABLE (UG/L AS NI)  <100 <1 <1 2 <100 <1	DIS- SOLVED (UG/L AS NI)  3 4 2	TOTAL RECOV-ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN) 1 10 <3 8	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND N	BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 17 DEC 10 MAR 1988 24 APR 07 APR 07 MAY	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)  <100 <1 <1 2 <100 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	DIS-SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND	BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 17 DEC 10 MAR 1988 24 APR 07 21 MAY 04 19 JUN 27	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10	TOTAL RECOVERABLE (UG/L AS NI)  <100 <1 <1 2 <100 <1	DIS- SOLVED (UG/L AS NI)  3 4 2	TOTAL RECOV-ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN) 1 10 <3 8	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND N	BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 17 DEC 10 MAR 1988 24 APR 07 21 MAY 04 19 JUN 27 SEP 08	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)  <100 <1	DIS- SOLVED (UG/L AS NI)  3 4 2 <1	TOTAL RECOV-ERABLE (UG/L AS ZN)  <10 <10 <10  210  210  410  20  10  20  40  210  20  210  210  210  210  210  210	DIS- SOLVED (UG/L AS ZN)  10 <3 8 5	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTTAL (UG/L)  ND N	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND
APR 1987 16 30 MAY 19 JUN 23 OCT 01 NOV 17 DEC 10 MAR 1988 24 APR 07 21 MAY 04 19 JUN 27 SEP 08 OCT	NESE, DIS- SOLVED (UG/L AS MN)  40 29 6 7	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10	TOTAL RECOVERABLE (UG/L AS NI)  <100 <1 <1	DIS- SOLVED (UG/L AS NI)  3	TOTAL RECOV-ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	DIS-SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND N	BENZENE TOTAL (UG/L)  ND N	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 17 DEC 10 MAR 1988 24 APR 07 21 MAY 04 19 JUN 27 SEP 08	NESE, DIS- SOLVED (UG/L AS MN)  40 29 6 7	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10	TOTAL RECOVERABLE (UG/L AS NI)  <100 <1 <1	DIS- SOLVED (UG/L AS NI)  3 4 2 <1	TOTAL RECOVERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)  10 <3 8 5	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND N	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 04213320 CHAUTAUQUA CREEK AT BARCELONA, NY - continued

DATE	CHLORO- FORM TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)
APR 1987 16 30	ND 2.0	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
MAY 19	1.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
JUN 23	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
JUL 21	ND	ND	ND	ND	ИĎ	ND	ND	ND	ND	ND	ND
OCT 01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
NOV 17	2.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DEC 10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MAR 1988 24	0.2	ND	ND	ND	ND	0.5	ND	ND	ND	ND	ND
APR 07	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
21 May	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
04 19	0 ND	0 ND	0 Ди	ND ND	<b>N</b> D 0	ND 0	0 ND	0 ND	0 ND	0 ND	0 ND
JUN 27	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SEP 08	0.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
OCT 06	3.2	ND	0.2	ND	ND	ND	ND	ND	ND	ND	ND
NOV 17	1.3	ND	0.2	ND	ND	ND	ND	ND	ND	ND	ND
DATE	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)
APR 1987 16	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
APR 1987 16 30 MAY	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND	CHLORO- PROPANE TOTAL (UG/L) ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND	CHLO- RIDE TOTAL (UG/L) ND
APR 1987 16 30 MAY 19 JUN	CHLORO- BENZENE TOTAL (UG/L) ND ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
APR 1987 16 30 MAY 19 JUN 23 JUL	CHLORO- BENZENE TOTAL (UG/L) ND ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND	CHLORO-BENZEME TOTAL (UG/L)  ND ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND ND ND ND ND ND ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND ND ND ND ND ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND ND ND ND ND	CHLORO-PROPANE TOTAL (UG/L)  ND ND ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND ND ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 17 DEC	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND	CHLORO-PROPANE TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND ND ND ND ND ND ND ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 17 DEC 10 MAR 1988	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 17 DEC 10 MAR 1988 24 APR	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND	CHLORO-PROPANE TOTAL (UG/L)  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 17 DEC 10 MAR 1988 24 APR 07 21	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 17 DEC 10 MAR 1988 24 APR 07	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 17 DEC 10 MAR 1988 24 APR 07 21 MAY	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 17 DEC 10 MAR 1988 24 APR 07 21 MAY 04 19 JUN 27	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND	CHLOROBENZEME TOTAL (UG/L)  ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-VINYL-ETHER TOTAL (UG/L)  ND N	CHLO-RIDE TOTAL (UG/L)  ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 17 DEC 10 MAR 1988 24 APR 07 21 MAY 04 19 JUN 27 SEP 08	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 04213320 CHAUTAUQUA CREEK AT BARCELONA, NY - continued

# SUSPENDED SEDIMENT DISCHARGE

DATE	TIME	SEDI- MENT, SUS- PENDED (MG/L)
APR 1987		
16	0715	21
30	0830	3
OCT		
01	0910	60
DEC		
10	0945	246
MAY 1988		
19	1130	25
JUN		
27	1815	3
SEP		
08	1030	4
OCT		_
06	1015	8
NOV		
17	1130	4

# BED MATERIAL ANALYSES

D <b>ATE</b>	T E TIME	OLIDS, VOLA- ILE IN OTTOM MA- TERIAL MG/KG)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	RECOV FM BOT TOM MA TERIA (UG/G	- FM BOT- - TOM MA- L TERIAL (UG/G	•
JUL 1987								
21	0900	22000	<1	140	10	820	0 20	300
DATE	MERCUR RECOV FM BOT TOM MA TERIA (UG/G AS HG	RECO FM BC TOM I TERI	OV. REC OT- FM   MA- TOM IAL TEI /G (UC	COV. MA BOT- FA MA- DIA RIAL % FA	AT. M ALL SI AM. DI INER & F HAN T	AT. EVE S AM. D INER %	MAT. M IEVE SI IAM. DI FINER % F THAN T	ED AT. EVE AM. INER HAN O MM
JUL 1987 21	<0.1	0 -	<10	50	0	6	23	100

# Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

#### STREAMS TRIBUTARY TO LAKE ERIE

#### 04213378 CANADA CREEK AT DUNKIRK, NY

LOCATION.--Lat 42 28'32", long 79 21'56", Chautauqua County, Hydrologic Unit 04120101, at bridge on State Highway 5, 0.6 mi (.01 km) west of city line of Dunkirk.

DRAINAGE AREA. -- 39.9 mi2.

PERIOD OF RECORD.--Water years 1987 to 1989.
CHEMICAL DATA: 1987 (b), 1988 (d), 1989 (a).
MINOR ELEMENT DATA: 1987 (b), 1988 (d), 1989 (a).
PESTICIDE DATA: 1987 (b), 1988 (d), 1989 (a).
ORGANIC DATA: PCB--1988 (a).
NUTRIENT DATA: 1987 (b), 1988 (c), 1989 (a).
SEDIMENT DATA: 1987-88 (b), 1989 (a).

REMARKS--Water-discharge data from gage and height measurements and rating developed for 04213376 Canada Creek at Fredonia.

DATE	TIME	DIS- CHARGE, IN CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
APR 1987												
16	0815				8.0	8.0	6.2		14.8	120	39	6.2
30	0945				8.2	6.0	1.3		12.0	120	39	6.7
MAY												
19	1400			386	8.5	19.0	1.0			170	53	8.5
JUN												
23	0945				8.0	18.0	42			150	49	7.8
JUL												
21	1000				8.2	25.5	0.90		8.7	190	62	9.1
OCT				24.7		22.2						
01 NOV	1100	110		317	8.3	22.0	23					
18	0845				8.0	7.0	96		15.5	110	33	5.7
DEC	0043				0.0	7.0	30		15.5	110	33	3.7
10	1030	23			8.0	5.0	48		12.2			
MAR 1988	1030	23			0.0	3.0	40		10.0			
24	1015	360		198	7.6	4.0	96			71	22	3.8
APR												
07	1345	136		264	7.8	10.0	40					
21	1000	55		326	8.2	6.0	0.0			120	38	6.8
MAY												
04	1030	43		284	8.3	10.0	3.6		11.2			
19	1020	102		264	8.3	11.5	3 <b>3</b>		9.8	100	32	5 <b>.5</b>
JUN												
27	2000	10	454	454	8.2	23.5	1.2		7.6	180	56	10
SEP				4.00								
08	1050			463	8.3	14.0	0.85			190	58	12
OCT	1100			400	7.0		2.0		10.4	100	••	0.7
06 NOV	1100			423	7.9	9.0	3.8	772	10.4	180	55	9.7
17	1215			311	7.7	5.0	4.5	760	11.8	130	40	7.3
						0		. 50				

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 04213378 CANADA CREEK AT DUNKIRK, NY - continued

DATE	SODIUM, DIS- SOLVED S (MG/L	POTAS- SIUM, I DIS- SOLVED (MG/L AS K)	LAB (MG/L AS	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- R RIDE, A' DIS- SOLVED (MG/L	OLIDS, ESIDUE T 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, TOTAL (MG/L)	TION,	RESIDUE TOTAL FIXED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)
APR 1987												
16 30							162 168		18 <b>9</b> 91	76 <b>4</b> 0	106 142	
MAY												0 510
19 JUN							220		234	20	208	0.510
23 JUL							244		376	108	228	1.22
21 OCT							280		292	32	260	
01 NOV							228		244	40	20 <b>4</b>	
18 DEC							168		272	68	20 <b>0</b>	0.320
10 MAR 1988							172		26 <b>4</b>	68	196	
2 <b>4</b> APR	9.0	1.1	51	22	15	0.10	128	104	344	46	298	0.680
07 21	14	1.3	68 8 <b>4</b>	33 37	19 2 <b>4</b>	0.1 <b>0</b> 0.20	152 200	172	22 <b>4</b> 216	1 <b>0</b> 0 60	12 <b>4</b> 156	0.680 0.800
MAY 04			87				184		216	32	184	
19 JUN	11	1.3	75	25	18	0.20	172	138	240	<b>4</b> 8 125	192 200	0.400
27 SEP 08	18 17		126 119	56 71	29 29	0.20	320	247 260	325 316	76	240	0.100
OCT 06	16		104	62	29	0.10	312 284	236	292	68	224	0.100
NOA												
17	10	1.5	81	42	17	0.10	180	166	192	88	104	
												_
DATE	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	GEN	GEN AMMON TOTA (MG/	I, GEN, IIA AMMONI L TOTAI L (MG/I	, GEN, IA ORGANI L TOTAL L (MG/I	, MONIA IC ORGANI L TOTAL L (MG/L	- + NITE C GEN TOTA	N, GE AL TOT. /L (MG	N, PHORU AL TOTA /L (MG/	JS DIS- AL SOLVE /L (MG/L	S PHA O, ORT DI D SOL	TE, HO, S- VED S/L
APR 1987	GEN, NITRITE TOTAL (MG/L AS N)	GEN, E NO2+NO TOTAI (MG/I AS N	GEN  AMMON  TOTA  (MG/ AS N	I, GEN, IIA AMMONI L TOTAI L (MG/I I) AS NH	GEN, GEN, GEN, GEN, GEN, GEN, GEN, GEN,	O- GEN, AM , MONIA IC ORGANI L TOTAL L (MG/L ) AS N)	- NITH C GEN TOTA (MG/ AS N	N, GE AL TOT /L (MG N) AS N	N, PHORU AL TOTA /L (MG/ O3) AS E	PHORUS S- ORTH JS DIS- AL SOLVE /L (MG/L P) AS P)	S PHA O, ORT DI D SOL (MG AS P	TE, HO, S- VED S/L O4)
APR 1987 16 30	GEN, NITRITE TOTAL (MG/L AS N)	GEN, E NO2+NO TOTAL (MG/I	GEN  GEN  GEN  GEN  GEN  GEN  GEN  GEN	I, GEN IIA AMMONI L TOTAL IL (MG/I I) AS NH	GEN, GEN, TA ORGANI TOTAL (MG/I AS N)	O- GEN, AM MONIA IC ORGANI L TOTAL L (MG/L ) AS N)	+ NITEC GENTOTA (MG/AS N	N, GEI AL TOT. /L (MG N) AS No	N, PHORU AL TOTA /L (MG/	PHORUS S- ORTHO JS DIS- AL SOLVE /L (MG/L P) AS P)	S PHA O, ORT DI D SOL (MG AS P	TE, HO, S- VED S/L O4)
APR 1987 16 30 MAY 19	GEN, NITRITE TOTAL (MG/L AS N) ND	GEN, NO2+NO TOTAL (MG/I AS N	GEN 3 AMMON TOTA (MG/ AS N 7 0.0	GEN, GEN, IIA AMMONI L TOTAL L (MG/I I) AS NH	GEN, GEN, TOTAL GMG/I AS N	GEN, AM MONIA COGANIC TOTAL CMG/L AS N)  11 0.1 09 0.1	+ NITF C GEN TOTH (MG, AS N	N, GE AL TOT. /L (MG N) AS No .2 5 .84 3	N, PHORU AL TOTA /L (MG/ 03) AS E	PHORUS ORTHO SOLVE /L (MG/L P) AS P) 010 ND 00 ND	S PHA O, ORT DI D SOL (MG AS P	TE, HO, S- VED I/L O4)
APR 1987 16 30 MAY 19 JUN 23	GEN, NITRITE TOTAL (MG/L AS N) ND ND	GEN, E NO2+NO TOTAL (MG/I AS N) 1.0° 0.76	GEN 33 AMMON TOTA C (MG/ ) AS N 7 0.0 10 0.0	I, GEN, AMMON: L. TOTAL L. (MG/I I) AS NH4	GEN, IA ORGAN: TOTAL (MG/I 4) AS N 01 0.0	D- GEN, AM MONIA ORGANIL TOTAL (MG/L) AS N)  11 0.1 0.9 0.1 0.6 0.0	+ NITF C GEN TOTA (MG) AS 1	N, GEI AL TOT. /L (MG N) AS No .2 5 .84 3	N, PHORU AL TOTA (MG/03) AS E	PHORU ORTH DIS- AL SOLVE //L (MG/L P) AS P)  D10 ND D0 ND	S PHA O, ORT DI D SOL (MG AS P	TE, HO, S- VED I/L O4)
APR 1987 16 30 MAY 19 JUN 23 JUL 21	GEN, NITRITE TOTAL (MG/L AS N) ND ND 0.00	GEN, E NO2+NO TOTAL (MG/I AS N) 1.0° 0.76	GEN AMMON TOTA AS N 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	GEN, GEN, AMMON: TOTAL TOTAL (MG/I) AS NH4	GEN, GEN, GEN, GRAN: TOTAL TOTAL C. (MG/I AS N) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	O- GEN, AM MONIA (ORGANI) TOTAL (MG/L) AS N)  11 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0	+ NITE C GEN TOTE (MG/AS N  2 1.0 0.9 0.6 1.0	N, GEI AL TOT. /L (MG N) AS N  .2 5 .84 3 .60 2	N, PHORUAL TOTA /L (MG/ 03) AS E .3 0.0 .7 0.0	PHORU: ORTH- US DIS- AL SOLVE VL (MG/L AS P)  D10 ND D10 ND D10 ND D10 ND D10 ND	S PHA O, ORT DI D SOLL (MG AS P	TE, HO, S- VED I/L O4)
APR 1987 16 30 MAY 19 JUN 23	GEN, NITRITE TOTAL (MG/L AS N) ND ND ND 0.00	GEN, TOTAL (MG/I AS N) 1.0' 0.7' 0.52	GEN AMMON TOTA (MG/ AS N AS	I, GEN, AMMONI. II A AMMONI. II (MG/I) AS NH4	GEN, ORGAN: TOTAL TOTAL (MG/I) AS NO 101 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0	D- GEN, AM MONIA ORGANI TOTAL (MG/L AS N)  11 0.1 0.9 0.1 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1	-+ NITH C GEN TOTI (MG, AS N  2 1.0 0 0.0 9 0.6 1.2	N, GEI AL TOT. V/L (MG N) AS N  .2 5 .84 3 .60 2 .6 7	N, PHORUAL TOTAL (MG/N) AS E	PHORU: ORTH- US DIS- AL SOLVE VL (MG/L AS P)  D10 ND D10 ND D10 ND D10 ND D10 ND	S PHA O, ORT DI D SOL (MG AS P	TE, HO, S- VED I/L O4)
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01	GEN, NITRITE TOTAL (MG/L AS N) ND ND 0.00	GEN, TOTAL (MG/I AS N)  1.07 0.74 0.55 0.33	GEN AMMON TOTAL (MG/AS N 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	I, GEN, AMMONI TOTAL L (MG/I) AS NH4  110 0.6  110 0.6  120 0.6  120 0.6	GEN, GEN, ORGAN: TOTAL (MG/I	D- GEN, AM MONIA CORGANI TOTAL (MG/L AS N)  11 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0	-+ NITTE C GEN TOTY (MG, AS 1  0 0.  9 0.  6 1.  2 0.	N, GEI AL TOT. (/L (MG N) AS No .2 5 .84 3 .60 2 .66 7 .45 2	N, PHORUAL TOTAL (MG/N) AS E	PHORU ORTH- JIS DIS- AL SOLVE (/L (MG/L AS P)  D10 ND N	S PHA O, ORT DI D SOL (MG AS P 10 0	TE, HO, S- VED V/L O4)
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10	GEN, NITRITE TOTAL (MG/L AS N)  ND ND 0.00  ND	GEN, 102+NC TOTAI (MG/I AS N) 1.00 0.74 0.52 0.33	GEN AMMON TOTA (MG/A) AS N (MG/A) (MG	GEN   AMMONI   TOTAL   TOTAL   MG/I   AS NH4   MG/I   MG	GEN, ORGAN: TOTAL TOTAL (MG/I) AS N 101 0.0 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.	D- GEN, AM MONIA ORGANII TOTAL (MG/L AS N)  11 0.1 0.9 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1	-+ NITTH NIT	N, GEI AL TOT. (/L (MG N) AS N  -2 5 .84 3  -60 2 -6 7 -45 2 -78 3 -74 3	N, PHORUAL TOTAL (MG) AS E	PHORU ORTH- DIS- AL SOLVE (/L (MG/L P) AS P)  00 ND	S PHA O, ORT DI D SOLL (MG AS P 10 0 0 0	TE, HO, S- VED I/L O4)03
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988	GEN, NITRITE TOTAL (MG/L AS N)  ND ND 0.00  ND	GEN, TOTAL (MG/I AS N)  1.07 0.74 0.55 0.33 0.46 0.32	GEN AMMON TOTAL (MG/AS N 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	I, GEN, AMMONI TOTAL (MG/I) AS NH4	GEN, GEN, ORGANIA ORGANIA TOTAL (MG/I4) AS NO 101 0.00 0.00 0.00 0.00 0.00 0.00 0.00	D- GEN, AM MONIA CORGANI TOTAL (MG/L AS N)  11 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0	-+ NITTE C GEN TOTY (MG, AS 1  0 0. 9 0. 6 1. 2 0. 2 0.	N, GEI AL TOT. (/L (MG N) AS No -2 5 .84 3 .660 2 .66 7 .45 2 .78 3 .74 3	N, PHORUAL TOTE (MG) AS E	PHORU ORTH- DIS- AL SOLVE (/L (MG/L P) AS P)  00 ND	S PHA O, ORT DI D SOL (MG AS P 10 0 0 -	TE, HO, S- VED I/L O4)03
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR 07	GEN, NITRITE TOTAL (MG/L AS N)  ND ND 0.00  0.010  ND 0.00  0.00  0.00  0.00	GEN, 102+NC TOTAI (MG/I AS N) 1.0' 0.74 0.52 0.33 0.46 0.32	GEN AMMON TOTAL (MG/AS N 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	GEN   GEN   AMMONT   TOTAL   L	GEN, GEN, ORGAN: TOTAL (MG/I	D- GEN, AM MONIA (MG/L) AS N)  11 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0	-+ NITTE C GEN TOTY (MG, AS t  2 1. 0 0. 9 0. 6 1. 2 0. 2 0. 3 1. 1 0.	N, GEI AL TOT. (/L (MG N) AS N  .2 5 .84 3  .60 2 .66 7  .45 2 .78 3  .74 3  .74 3	N, PHORUAL TOTE (MG/) AS E	PHORUS ORTH- US DIS- ALL SOLVE (MG/L AS P)  D10 ND	S PHA O, ORT DI D SOL (MG AS P 10 0 0 0 0 0	TE, HO, S-, VED (/L) O4)
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR	GEN, NITRITE TOTAL (MG/L AS N)  ND ND 0.00  ND 0.000 0.000	GEN, TOTAL (MG/I AS N)  1.07 0.74 0.52 0.33 0.46 0.32	GEN AMMON TOTAL (MG/AS N 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	GEN   GEN   AMMONT   TOTAL   L	GEN, GEN, ORGAN: TOTAL (MG/I	D- GEN, AM MONIA (MG/L) AS N)  11 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0	-+ NITTE C GEN TOTY (MG, AS t  2 1. 0 0. 9 0. 6 1. 2 0. 2 0. 3 1. 1 0.	N, GEI AL TOT. (/L (MG N) AS N  .2 5 .84 3  .60 2 .66 7  .45 2 .78 3  .74 3  .74 3	N, PHORUAL TOTH (MG/N) AS E	PHORU: ORTH- DIS- S- AL SOLVE (/L (MG/L AS P)  D10 ND N	S PHA O, ORT DI D SOL (MG AS P  10 0 0 0 0 0 - 0 0	TE, HO, S-, VED (/L O4)
APR 1987 16 30 MAY 19 JUN 23 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR 07 21	GEN, NITRITE TOTAL (MG/L AS N)  ND ND 0.00  0.010  ND 0.00  0.00  0.00  0.00	GEN, 102+NC TOTAI (MG/I AS N) 1.0' 0.74 0.52 0.33 0.46 0.32	GEN AMMON TOTA AS N 10 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	GEN   AMMONI   TOTAL   TOTAL   MG/I   AS NH4   MG/I   MG	GEN, GEN, ORGAN: TOTAL TOTAL (MG/I) AS N; O1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	D- GEN, AM MONIA (MG/L)	-+ NITTE C GEN C GEN TOTY (MG/AS N  2 1. 0 0. 9 0. 6 1. 2 0. 2 0. 2 0. 3 1. 1 0. 9 0. 0 0.	N, GEI AL TOT. (/L (MG N) AS N  -2 5 .84 3  .60 2 .66 7  .45 2 .78 3 .74 3  -2 5 .89 3 .99 4	N, PHORUAL TOTE (MG) AS E	PHORUS ORTH- JUS DIS-	S PHA O, ORT DI D SOL (MG AS P 10 0 0 0 0 0 - 0 0 0	TE, HO, S-, VED (/L) O4)
APR 1987 16 30 MAY 19 JUN 23 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR 07 21 MAY 04 19 JUN 27	GEN, NITRITE TOTAL (MG/L AS N)  ND ND 0.00  ND 0.00  ND 0.00  0.00  ND ND	GEN, TOTAL (MG/I AS N)  1.07 0.74 0.52 0.33 0.46 0.32 0.66 0.80 0.76	GEN AMMON TOTA (MG/AS N ) AS N	GEN   AMMONI   TOTAL   CMG / I   AS NH4   CMG / I   CM	GEN, GEN, ORGANIA ORGANIA TOTAL TOTAL (MG/I4) AS N	D- GEN, AM MONIA (MG/L) (MG/L) (AS N)  11 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0	-+ NITTE C GEN TOTY (MG, AS 1  0 0. 9 0. 6 1. 2 0. 2 0. 3 1. 1 0.0 9 0. 5 0.	N, GEI AL TOT. (/L GR N) AS N  -2 5 -84 3  -60 2 -6 7 -45 2 -78 3 -74 32 5 -89 3 -89 3 -89 3 -88 3 -88 3	N, PHORUAL TOTE (MG/N) AS E	PHORU: ORTH- DIS- S- AL SOLVE (/L (MG/L AS P)  D10	S PHA O, ORT DI D SOL (MG AS P  10 0 0 - 0 0 0 0 0 0 0 0 0 0	TE, HO, S-, VED (/L) (O4)
APR 1987 16 30 MAY 19 JUN 23 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR 07 21 MAY 04 19 JUN 27 SEP 08	GEN, NITRITE TOTAL (MG/L AS N)  ND ND 0.00 0.010 ND 0.00 0.00 0.00 0.00 0.00 ND 0.00	GEN, TOTAL MG/I AS N;  1.07 0.77 0.52 0.33 0.46 0.32 0.68 0.86 0.76 0.40	GEN AMMON TOTAL (MG/AS N ) AS N (MG/AS N ) AS	GEN   AMMONT   TOTAL   MAGNITUS   MAGNITUS	GEN, ORGAN: TOTAL TOTAL (MG/I) AS N'  01 0.0  04 0.0  21 0.2  05 0.5  06 0.2  15 0.3  07 0.5  08 0.3  08 0.3  09 0.3  00 0.3  00 0.3	D- GEN, AM MONIA (MG/L) AS N)  11 0.1 0.9 0.1  10 0.3 0.3  10 0.1  27 0.3  30 0.4   30 0.5  15 0.2  18 0.1  19 0.1  10 0.1  10 0.1  10 0.1  10 0.1  10 0.1  10 0.1  10 0.1  10 0.1  10 0.1  10 0.1  10 0.1  10 0.1  10 0.1  10 0.1  10 0.1  10 0.1  10 0.1  10 0.1  10 0.1  10 0.1  10 0.1  10 0.1  10 0.1  10 0.1  10 0.1	-+ NITTE C GEN C GEN TOTY (MG, AS 1  0 0.  9 0.  6 1.  2 0.  2 0.  2 0.  3 1.  1 0.  9 0.  5 0.  8 0.	N, GEI AL TOT. (MG N) AS N  .2 5 .84 3 .60 2 .6 7 .45 2 .78 3 .74 3 .74 3 .79 4 .86 3 .85 3 .23 1	N, PHORUAL TOTH (MG/) AS I	PHORUS ORTHOLOGY ON THE DISSENSE OF THE DISSEN	S PHA O, ORT DI D SOL (MG AS P  10 0 0 - 0 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 - 0 0 0 0	TE, HO, S-VED (/L) O4)
APR 1987 16 30 MAY 19 JUN 23 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR 07 21 MAY 04 19 JUN 27 SEP	GEN, NITRITE TOTAL (MG/L AS N)  ND ND 0.000 0.010 ND 0.000 0.000 0.000 ND 0.000 ND	GEN, 102+NC TOTAI (MG/I AS N) 1.00 0.74 0.52 0.33 0.44 0.33 0.68 0.86 0.86 0.76 0.46 0.19	GEN AMMON TOTA (MG/AS N ) AS N	GEN   AMMONI   TOTAL   CMG / I	GEN, GEN, ORGANIA ORGA	D- GEN, AM MONIA (MG/L) AS N)  11 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0	-+ NITTE C GEN TOTY (MG, AS 1  0 0. 9 0. 6 1. 2 0. 2 0. 2 0. 3 1. 1 0. 9 0. 5 0. 8 0.	N, GEI AL TOT. (MG N) AS N  .2 5 .84 3 .60 2 .6 7 .45 2 .78 3 .74 3 .74 3 .79 4 .86 3 .85 3 .85 3 .23 1 .29 1	N, PHORUAL TOTE (MG) AS E	PHORUS ORTH- DIS- S- AL SOLVE (/L (MG/L AS P)  D10	S PHA O, ORT DI D SOL (MG AS P  10 0 0 0 - 0 0 0 0 - 0 0 - 0 0	TE, HO, S-, VED (/L) (7L) (04) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

## 04213378 CANADA CREEK AT DUNKIRK, NY - continued

DATE	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)
APR 1987											
16			<10		<10		270		<100		10
30 MAY			<10		<10		80		15		20
19			<10		<10		140		<b>&lt;</b> 5		20
JUN 23			<10		<10		2900		<b>&lt;</b> 5		100
JUL 21			<10	1.0	20	1	100		<5	<5	20
OCT 01			<10		10		1300		<100		40
NOV 18			<1		9		4800		7		110
DEC 10			<1		8		3300		<5		80
MAR 1988 24	9800	30	<1	<1.0	8	1	8000	39	<5	<5	160
APR 07	1600		<1		8		2500		<5		50
21	150	10	2	<1.0	2	5	410	34	<5	<5	20
MAY	220		2		_				_		
04 19	230 1100	<10	<1	 <1.0	7 14	2	560 2300	33	6 <b>&lt;</b> 5	 <5	20 50
JUN											
27 SEP	40		<1		3		90		<5		50
08 OCT	30		<1		3		110		<5		20
06 NOV	110	20	1	<1.0	6	2	190	10	<5	<5	20
17	90		<1		2		240		<5		30
DATE	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)	BROMO- FORM TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- DI - BROMO- METHANE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)
	NESE, DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	FORM TOTAL	TETRA- CHLO- RIDE TOTAL	BENZENE TOTAL	DI- BROMO- METHANE TOTAL	ETHANE TOTAL
APR 1987 16	NESE, DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	FORM TOTAL	TETRA- CHLO- RIDE TOTAL	BENZENE TOTAL	DI- BROMO- METHANE TOTAL	ETHANE TOTAL
APR 1987 16 30	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)	TETRA- CHLO- RIDE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	DI- BROMO- METHANE TOTAL (UG/L)	ETHANE TOTAL (UG/L)
APR 1987 16 30 MAY 19	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)	TETRA- CHLO- RIDE TOTAL (UG/L)	BENZENE TOTAL (UG/L) ND	DI- BROMO- METHANE TOTAL (UG/L)	ETHANE TOTAL (UG/L)
APR 1987 16 30 MAY 19 JUN 23	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS 2N) <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L) ND ND	TETRA- CHLO- RIDE TOTAL (UG/L) ND ND	BENZENE TOTAL (UG/L) ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND	ETHANE TOTAL (UG/L) ND ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 9	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND ND	TETRA-CHLO-RIDE TOTAL (UG/L) ND ND	BENZENE TOTAL (UG/L) ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND	ETHANE TOTAL (UG/L) ND ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 9 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 20	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L) ND ND ND	TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND	BENZENE TOTAL (UG/L) ND ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND	ETHANE TOTAL (UG/L)  ND ND ND ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 0.10 <0.10 0.20	TOTAL RECOV- ERABLE (UG/L AS NI)  <100 9  <1 <1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L) ND ND ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND ND ND ND ND	BENZENE TOTAL (UG/L) ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L)  ND ND ND ND	ETHANE TOTAL (UG/L)  ND ND ND ND ND ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 0.10 0.20 0.20 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <100 9 <1 <1 <1 <100	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 <10 <20 <10 10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND ND ND ND ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND ND ND ND ND	BENZENE TOTAL (UG/L)  ND ND ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND	ETHANE TOTAL (UG/L)  ND ND ND ND ND ND ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988 24	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 0.10 <0.10 0.20 0.20 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <100 9 <1 <1 <1 <100 8	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS 2N) <10 <10 <10 <10 <20 <10 <20 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND ND ND ND ND ND ND ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND N	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L)  ND ND ND ND ND ND ND	ETHANE TOTAL (UG/L)  ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 0.10 0.20 0.20 <0.10 <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)  <100 9  <1 <1 <1 <1 <100 8  14	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS ZN)  <10 <10 <10  20  20  20	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND N	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND	ETHANE TOTAL (UG/L)  ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR	NESE, DIS- SOLVED (UG/L AS MN)  40 14	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 0.10 <0.10 0.20 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)  <100 9 <1 <1 <100 8 14 11	DIS- SOLVED (UG/L AS NI)	TOTAL RECOVERABLE (UG/L AS ZN)  <10 <10 <10  20  10  20  20  30  10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND N	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR 07 21 MAY 04	NESE, DIS- SOLVED (UG/L AS MN)  40 14 15	TOTAL RECOVERABLE (UG/L AS HG)  <0.10 0.10 <0.10 0.20 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)  <100 9  <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	DIS- SOLVED (UG/L AS NI)  <1 4 1	TOTAL RECOVERABLE (UG/L AS 2N)  <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN) 10 <3 7	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND N	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR 07 21 MAY 04 19 JUN	NESE, DIS- SOLVED (UG/L AS MN)  40 14 15 13	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 0.10 0.20 0.20 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)  <100 9  <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS ZN)  <10 <10 <10 <10 20 <10 20 30 10 <10 11 10 10 10 10 10 10 10 10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND N	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND
APR 1987 16 30 MAY 19 JUN 23 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR 07 21 MAY 04 19 JUN 27	NESE, DIS- SOLVED (UG/L AS MN)  40 14 15	TOTAL RECOVERABLE (UG/L AS HG)  <0.10 0.10 <0.10 0.20 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)  <100 9  <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	DIS- SOLVED (UG/L AS NI)  <1 4 1	TOTAL RECOVERABLE (UG/L AS 2N)  <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN) 10 <3 7	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND N	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR 07 21 MAY 04 19 JUN	NESE, DIS- SOLVED (UG/L AS MN)  40 14 15 13	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 0.10 0.20 0.20 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)  <100 9  <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	DIS- SOLVED (UG/L AS NI)  <1 4 1	TOTAL RECOV-ERABLE (UG/L AS ZN)  <10 <10 <10 <10 20 <10 20 30 10 <10 11 10 10 10 10 10 10 10 10	DIS- SOLVED (UG/L AS ZN) 10 <3 7	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND N	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR 07 21 MAY 04 19 JUN 27 SEP 08	NESE, DIS- SOLVED (UG/L AS MN)  40 14 15 13	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 0.10 0.20 0.20 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)  <100 9  <1 <1 <1 <100 8  14 11  15 4  10 14	DIS- SOLVED (UG/L AS NI)	TOTAL RECOVERABLE (UG/L AS ZN)  <10 <10 <10  20  20  20  30  10 <10  10 <10  <10  410  410  410  410  410  410  410  4	DIS-SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND N	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 04213378 CANADA CREEK AT DUNKIRK, NY - continued

DATE	CHLORO- FORM TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)
APR 1987 16 30	nd nd	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
MAY 19	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
JUN 23	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
JUL 21	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND
OCT 01	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND
NOV 18					ND	ND	ND	ND	ND	ND	ND
DEC	ND	ND	ND	ND							ND
10 MAR 1988	ND	<b>N</b> D	ND	ND	ND	ND	ND	ND	ND	ND	
24 APR	ND	ND	ND	ND	ND	0.5	ND	ND	ND	ND	ND
07 21	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
MAY 04	0	o	0	0	o	0	0	0	0	0	0
19 JUN	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
27 SEP	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
08 OCT	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
06 NOV	0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
17	0.2	ND	ND	ND	<b>N</b> D	ND	ND	ND	ND	ND	ND
DATE	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)
APR 1987	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
APR 1987 16 30	CHLORO- BENZENE TOTAL	CHLORO- ETHANE WATER WHOLE TOTAL	CHLORO- PROPANE TOTAL	TRANSDI CHLORO- ETHENE TOTAL	CHLORO- BENZENE TOTAL	CHLORO- BENZENE TOTAL	CHLORO- ETHYL- ENE TOTAL	1,3-DI- CHLORO- PROPENE TOTAL	CHLORO- ETHYL- ENE TOTAL	CHLORO- ETHYL- VINYL- ETHER TOTAL	CHLO- RIDE TOTAL
APR 1987 16 30 MAY 19	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
APR 1987 16 30 MAY 19 JUN 23	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND	CHLORO- PROPANE TOTAL (UG/L) ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND	CHLO- RIDE TOTAL (UG/L) ND ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01	CHLORO- BENZENE TOTAL (UG/L) ND ND ND	CHLORO-ETHANE WATER WATER WHOLE TOTAL (UG/L) ND ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND ND ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND	CHLORO-PROPANE TOTAL (UG/L)  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND ND ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND ND	CHLORO-ETHANE WATER WATER WHOLE TOTAL (UG/L) ND ND ND ND ND	CHLORO-PROPANE TOTAL (UG/L)  ND ND ND ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND ND ND ND ND ND ND ND	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND ND ND ND ND ND ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND ND ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND ND ND	CHLORO-PROPANE TOTAL (UG/L)  ND N	TRANSDI CHLORO- ETHENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND N	TRANSDI CHLORO- ETHENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND	CHLO- RIDE TOTAL (UG/L)  ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR 07 21	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND N	TRANSDI CHLORO- ETHENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR 07 21 MAY 04 19	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO- RIDE TOTAL (UG/L)  ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR 07 21 MAY 04 19 JUN 27	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND N	TRANSDI CHLORO- ETHENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO- RIDE TOTAL (UG/L)  ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR 07 21 MAY 04 19 JUN 27 SEP 08	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND N	TRANSDI CHLORO- CHLORO- ETHENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO- RIDE TOTAL (UG/L)  ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR 07 21 MAY 19 JUN 21 MAY 19 JUN 27 SEP	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND N	TRANSDI CHLORO- ETHENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO- RIDE TOTAL (UG/L)  ND

# 04213378 CANADA CREEK AT DUNKIRK, NY - continued

## SUSPENDED SEDIMENT DISCHARGE

		DIS-		SEDI-
		CHARGE,		MENT,
		IN	SEDI-	DIS-
		CUBIC	MENT,	CHARGE,
		FEET	SUS-	SUS-
DATE	TIME	PER	PENDED	PENDED
		SECOND	(MG/L)	(T/DAY)
APR 1987				
16	0815		11	
30	0945		2	
JUN				
23	0945		81	
OCT				
01	1100	110	41	12
DEC				
10	1030	23	99	6.1
MAY 1988				
19	1020	102	49	13
SEP				
08	1050		1	
NOV				
17	1215		3	

## BED MATERIAL ANALYSES

DATE  JUL 1987 21 JUN 1988 27	TIME 1000 2000	SOLIDS, VOLA- TILE IN BOTTOM MA- TERIAL (MG/KG) 55800	FM B TOM TER (UG	JM, REGOV. FM 1 BOT- TOM MA- TEI RIAL (UG	COV. BOT- MA- F RIAL T	CHRO- MIUM, RECOV. TM BOT- TOM MA- TERIAL (UG/G)	REC FM I TOM TEI (UC	COV. RIBOT- FM MA- TOI RIAL TI G/G (I	ECOV.  BOT- FI M MA- TO ERIAL UG/G	LEAD, RECOV. M BOT- DM MA- TERIAL (UG/G AS PB)	(UG	E, REOV. FM OT- TON MA- TE IAL (U/G) AS	CCURY CCOV. BOT- I MA- ERIAL JG/G S HG)	REC FM I TOM TEI (UC	COV. BOT- F MA- T RIAL G/G	ZINC, RECOV. M BOT- OM MA- TERIAL (UG/G AS ZN)
DATE JUL 1987 21 JUN 1988 27	AROCI 1221 IN BOTTO MAT (UG/F	ARO  1  M P  BOT	248 CB MAT KG)	AROCLOR 1254 PCB BOT.MAT (UG/KG)	AROCLC 1260 PCB BOT.MA (UG/KG	IN B TOM TER	PAL HOT- MA- IAL KG)	ALPHA BHC TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ATRA- ZINE, TOTAL IN BOT TOM MA TERIA (UG/KG	BENZ HEX - CHL - ID L BOT.	A- OR- E MAT KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG) ND	CHLOI PYRII IN BO MAT (UG/I	FOS OT.	DELTA BENZEN HEXA- CHLOR IDE BOT.MA (UG/KG	Е - Т
DATE JUL 1987 21 JUN 1988 27	DI- AZINC TOTA IN BC TOM M TERI (UG/M	ON, ELD  NT TO  TO IN  NA- TOM  (AL TE  KG) (UG	MA-	ENDO- SULFAN ALPHA BOT.MAT (UG/KG)	ENDO- SULFAN BETA BOT.MA (UG/KG	SULF SULF T BOT.	FAN ATE MAT KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN ALDE- HYDE BOT.MA' (UG/KG	) (UG/	AL OT- MA- IAL KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEP. CHLA EPOX: TOT. BOT. MA. (UG/I	OR IDE IN IOM IL.	MALA- THION TOTAL IN BOT TOM MA TERIA (UG/KG	- L
DATE	METHOXY-CHLCTOT. BOTH	MIOR, TO IN IN TOM TOM TL. TE		P,P' DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	P, P'DDE, TOTAL IN BOT TOM MA TERIA (UG/KO	DD TOT IN B TOM TER	T, PAL POT- MA- NAL	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE TOTAL IN BOT TOM MA TERIA (UG/KG	FA - DIA - % FI L TH	T. LL M. NER	BED MAT. SIEVE DIAM. % FINER THAN .062 MM	BEI MAT SIEV DIAN * FIN THA	T. VE M. NER AN	BED MAT. SIEVE DIAM. % FINE THAN 2.00 M	R
JUL 1987 21 JUN 1988 27	ND	N	~- D	nd	nd	nd	-	ND	ND	-	5	28 		36 -	10	0

#### 04213500 CATTARAUGUS CREEK AT GOWANDA. NY

LOCATION.--Lat 42 27'50", long 78 56'07", Erie County, Hydrological Unit 04120102, on right bank 380 ft downstream from bridge on State Highways 39 and 62 at Gowanda, 4.2 mi downstream from South Branch, and 17.8 mi upstream from mouth. Water-quality

DRATNAGE AREA. -- 436 mi2.

PERIOD OF RECORD.--Water years 1959,1963-64, 1972 to current year.

CHEMICAL DATA: 1959 (e), 1963 (b), 1972 (a), 1975 (b), 1976-78 (c), 1979-80 (d), 1981-82 (c), 1983-86 (b), 1987-1988 (d), 1989 (b).

MINOR ELEMENTS DATA: 1972-74 (a), 1975 (b), 1976-77 (c), 1978-86 (b), 1987-88 (d), 1989 (b). PESTICIDE DATA: 1987-88 (d), 1989 (a).

ORGANIC DATA: OC--1975 (b), 1976-77 (c), 1978-80 (d), 1981 (c).

PCB--1988 (a).

NUTRIENT DATA: 1975 (b), 1976-77 (c), 1978-80 (d), 1981-82 (c), 1983-86 (b), 1987-88 (d), 1989 (b).

RIOLOGICAL DATA:

Bacterial--1978-80 (d), 1981-82 (c), 1983-88 (b), 1989 (a).
Phytoplankton--1978 (b), 1979-80 (c), 1981 (b).
SEDIMENT DATA: 1964 (b), 1978-82 (c), 1983-86 (b), 1987-88 (c), 1989 (b).

### PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: October 1958 to September 1959, unpublished; January 1978 to September 1981. pH: October 1958 to September 1959, unpublished.
Water Temperatures: October 1958 to September 1959, January 1978 to September 1981.

### EXTREMES FOR PERIOD DAILY RECORD. --

SPECIFIC CONDUCTANCE: Maximum daily, 952 microsiemens Oct. 7, 1958; minimum daily, 150 microsiemens Feb. 19, 1981. WATER TEMPERATURES: Maximum daily, 29.0 C Aug. 19, 1978; minimum daily, 0.0 C on many days during winter periods.

REMARKS .-- Water-discharge data obtained from stream-flow gage at this site.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
APR 1987												
16	1030	792		8.2	9.5	23		14.8	130	42	6.7	
30	1115	629		8.3	6.0	16		11.4	120	37	6.1	
MAY												
19	1045	269	410	8.2	15.0	6.4			180	55	9.2	
JUN	4055	201										
23	1055	986		8.2	11.0			8.8				
JUL 20	1830	272		8.4	32.0	2.0		10.3	150	47	8.9	
SEP	1030	212		8.4	32.0	2.0		10.3	150	4 /	8.9	
29	0915	234	403	8.1	22.0	4.4			170	54	9.5	
NOV	*****	204	•00	0.1	22.0				1,0	٠.	3.3	
02	1105	411		8.1	22.0	9.3		11.6	170	53	8.6	
DEC												
09	0930	1360		8.2	5.0	100		12.2				
MAR 1988												
23	1045	550	349	7.8	4.5	20			150	46	8.0	11
APR 07	1115	1050	279	7.5	12.0	47						
21	1200	516	345	8.3	6.0	0.0			150	47	8.5	8.8
MAY	1200	310	343	0.3	0.0	0.0			130	4,	0.5	0.0
04	1300	522	318	8.4	12.0	8.8		10.8				
19	1300	2060	250	8.0	12.5	230		10.0	100	31	5.4	6.2
JUN												
28	0915	144	458			2.9			190	59	11	19
SEP												
08	0845	174	457	8.2	13.0	7.1			190	57	12	21
ост 0 <b>6</b>	0900	1.61	425	0.4	10.0	15	772	11 0	100	59	10	16
NOV	0900	161	435	8.4	10.0	15	//2	11.0	190	39	10	10
17	0945	406	346	8.0	6.0	13	760	11.8	150	47	8.4	9.9

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 04213500 CATTARAUGUS CREEK AT GOWANDA, NY - continued

					_			,				
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, TOTAL (MG/L)	SOLIDS, VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	RESIDUE TOTAL FIXED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRATE DIS- SOLVEI (MG/L AS N)
APR 1987												
16						156		212	60	158	1.36	
30 MAY						146		187	32	128	0.920	
19		~-				224		241	16	252	1.26	
JUN												0.000
23 JUL								606				0.970
20						197		234	88	152	0.630	
SEP 29						220		288	100	188	1.15	
NOV						220		200	100	100	1.13	
02 DEC						204		211	64	174	0.810	
09					~-	208		404	96	308		
MAR 1988 23	1.3	115	28	17	0.10	188	180	224	48	176	1 62	
APR	1.3		20	17	0.10	100	180	224	40	176	1.63	
07 21	1.3	98 125	28 28	11 14	0.10 0.10	172 20 <b>4</b>	102	256	52	204	1.11	
MAY	1.3	123	28	14	0.10	204	183	216	52	164	1.34	
04		114				204		208	80	128	0.660	
19 JUN	1.3	91	19	9.3	0.30	128	127	600	68	532	0.530	
28	1.8	150	34	28	0.30	298	243	302	107	195	1.26	
SEP 08	1.9	141	47	29	0.10	284	253	312	76	236	0.630	
ост 06	1.9	148	45	20	0.10	280	241	292	68	224	0.710	
NOV				20	0.10		241	232	00	224	0.710	
17	1.7	115	36	14	0.10	200	186	204	80	124	0.760	~-
DATE	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS NO3)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS NO2)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS NH4)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS NO3)	PHOS- PHORUS TOTAL (MG/L AS P)
DATE APR 1987	GEN, NITRATE DIS- SOLVED (MG/L AS NO3)	GEN, NITRITE TOTAL (MG/L	GEN, NITRITE DIS- SOLVED (MG/L	GEN, NO2+NO3 TOTAL (MG/L	GEN, AMMONIA TOTAL (MG/L	GEN, AMMONIA TOTAL (MG/L	GEN, AMMONIA DIS- SOLVED (MG/L	GEN, ORGANIC TOTAL (MG/L	GEN, AM- MONIA + ORGANIC TOTAL (MG/L	GEN, TOTAL (MG/L	GEN, TOTAL (MG/L	PHORUS TOTAL (MG/L
APR 1987 16	GEN, NITRATE DIS- SOLVED (MG/L AS NO3)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NITRITE DIS- SOLVED (MG/L AS NO2)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS NH4)	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS NO3)	PHORUS TOTAL (MG/L AS P)
APR 1987	GEN, NITRATE DIS- SOLVED (MG/L AS NO3)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NITRITE DIS- SOLVED (MG/L AS NO2)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS NH4)	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS NO3)	PHORUS TOTAL (MG/L AS P)
APR 1987 16 30 MAY 19	GEN, NITRATE DIS- SOLVED (MG/L AS NO3)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NITRITE DIS- SOLVED (MG/L AS NO2)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS NH4)	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS NO3)	PHORUS TOTAL (MG/L AS P)
APR 1987 16 30 MAY 19 JUN 23	GEN, NITRATE DIS- SOLVED (MG/L AS NO3)	GEN, NITRITE TOTAL (MG/L AS N) 0.00 0.00	GEN, NITRITE DIS- SOLVED (MG/L AS NO2)	GEN, NO2+NO3 TOTAL (MG/L AS N) 1.36 0.920	GEN, AMMONIA TOTAL (MG/L AS N) 0.080 0.090	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.10 0.12	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N) 0.11	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.19 0.24	GEN, TOTAL (MG/L AS N) 1.5	GEN, TOTAL (MG/L AS NO3) 6.9 5.1	PHORUS TOTAL (MG/L AS P) 0.03( 0.02(
APR 1987 16 30 MAY 19 JUN 23 JUL	GEN, NITRATE DIS- SOLVED (MG/L AS NO3)	GEN, NITRITE TOTAL (MG/L AS N) 0.00 0.00	GEN, NITRITE DIS- SOLVED (MG/L AS NO2) 0.07	GEN, NO2+NO3 TOTAL (MG/L AS N) 1.36 0.920 1.27	GEN, AMMONIA TOTAL (MG/L AS N) 0.080 0.090 0.160 0.150	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.10 0.12 0.21	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.15 0.06	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.19 0.24 0.22	GEN, TOTAL (MG/L AS N) 1.5 1.2	GEN, TOTAL (MG/L AS NO3) 6.9 5.1 6.6	PHORUS TOTAL (MG/L AS P) 0.03( 0.02( 0.01( 0.19(
APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP	GEN, NITRATE DIS- SOLVED (MG/L AS NO3) 4.3	GEN, NITRITE TOTAL (MG/L AS N)  0.00 0.00  0.010  0.00	GEN, NITRITE DIS- SOLVED (MG/L AS NO2)	GEN, NO2+NO3 TOTAL (MG/L AS N) 1.36 0.920 1.27 	GEN, AMMONIA TOTAL (MG/L AS N) 0.080 0.090 0.160 0.150	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.10 0.12 0.21 0.19	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.15 0.06 1.4	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.19 0.24  0.22 1.6 0.16	GEN, TOTAL (MG/L AS N) 1.5 1.2 1.5	GEN, TOTAL (MG/L) AS NO3) 6.9 5.1 6.6	PHORUS TOTAL (MG/L AS P) 0.03( 0.02( 0.01( 0.19( 0.00
APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29	GEN, NITRATE DIS- SOLVED (MG/L AS NO3)	GEN, NITRITE TOTAL (MG/L AS N) 0.00 0.00	GEN, NITRITE DIS- SOLVED (MG/L AS NO2) 0.07	GEN, NO2+NO3 TOTAL (MG/L AS N) 1.36 0.920 1.27	GEN, AMMONIA TOTAL (MG/L AS N) 0.080 0.090 0.160 0.150	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.10 0.12 0.21	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.15 0.06	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.19 0.24 0.22	GEN, TOTAL (MG/L AS N) 1.5 1.2	GEN, TOTAL (MG/L AS NO3) 6.9 5.1 6.6	PHORUS TOTAL (MG/L AS P) 0.03( 0.02( 0.01( 0.19(
APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 NOV 02	GEN, NITRATE DIS- SOLVED (MG/L AS NO3) 4.3	GEN, NITRITE TOTAL (MG/L AS N)  0.00 0.00  0.010  0.00	GEN, NITRITE DIS- SOLVED (MG/L AS NO2)	GEN, NO2+NO3 TOTAL (MG/L AS N) 1.36 0.920 1.27 	GEN, AMMONIA TOTAL (MG/L AS N) 0.080 0.090 0.160 0.150	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.10 0.12 0.21 0.19	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) 0.13	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.15 0.06 1.4	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.19 0.24  0.22 1.6 0.16	GEN, TOTAL (MG/L AS N) 1.5 1.2 1.5	GEN, TOTAL (MG/L) AS NO3) 6.9 5.1 6.6	PHORUS TOTAL (MG/L AS P) 0.03( 0.02( 0.01( 0.19( 0.00
APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 NOV 02 DEC	GEN, NITRATE DIS- SOLVED (MG/L AS NO3)  4.3	GEN, NITRITE TOTAL (MG/L AS N)  0.00 0.00 0.010 0.00 0.00	GEN, NITRITE DIS- SOLVED (MG/L AS NO2)  0.07	GEN, NO2+NO3 TOTAL (MG/L AS N) 1.36 0.920 1.27  0.630 1.15 0.810	GEN, AMMONIA TOTAL (MG/L AS N) 0.080 0.090 0.160 0.150 0.070 0.130	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.10 0.12 0.21 0.19 0.09 0.17	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)  0.13	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.15 0.06 1.4 0.09 0.18	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.19 0.24  0.22 1.6 0.16 0.31 0.21	GEN, TOTAL (MG/L AS N) 1.5 1.2 1.5  0.79 1.5	GEN, TOTAL (MG/L) AS NO3) 6.9 5.1 6.6  3.5 6.5	PHORUS TOTAL (MG/L AS P) 0.03( 0.02( 0.01( 0.19( 0.00 0.00
APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 NOV 02 DEC 09 MAR 1988	GEN, NITRATE DIS- SOLVED (MG/L AS NO3)	GEN, NITRITE TOTAL (MG/L AS N)  0.00 0.00  0.010  0.00 0.00 0.00	GEN, NITRITE DIS- SOLVED (MG/L AS NO2)  0.07	GEN, NO2+NO3 TOTAL (MG/L AS N) 1.36 0.920 1.27  0.630 1.15 0.810	GEN, AMMONIA TOTAL (MG/L AS N) 0.080 0.090 0.160 0.150 0.070 0.130	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.10 0.12  0.21  0.19 0.09 0.17 0.06	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.15 0.06 1.4 0.09 0.18	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.19 0.24  0.22  1.6  0.16  0.31  0.21	GEN, TOTAL (MG/L AS N) 1.5 1.2 1.5  0.79 1.5	GEN, TOTAL (MG/L AS NO3) 6.9 5.1 6.6  3.5 6.5	PHORUS TOTAL (MG/L AS P) 0.03( 0.02( 0.01( 0.19( 0.00 0.00
APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 NOV 02 DEC 09 MAR 1988 23	GEN, NITRATE DIS- SOLVED (MG/L AS NO3)  4.3	GEN, NITRITE TOTAL (MG/L AS N)  0.00 0.00 0.010 0.00 0.00	GEN, NITRITE DIS- SOLVED (MG/L AS NO2)  0.07	GEN, NO2+NO3 TOTAL (MG/L AS N) 1.36 0.920 1.27  0.630 1.15 0.810	GEN, AMMONIA TOTAL (MG/L AS N) 0.080 0.090 0.160 0.150 0.070 0.130	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.10 0.12 0.21 0.19 0.09 0.17	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)  0.13	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.15 0.06 1.4 0.09 0.18	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.19 0.24  0.22 1.6 0.16 0.31 0.21	GEN, TOTAL (MG/L AS N) 1.5 1.2 1.5  0.79 1.5	GEN, TOTAL (MG/L) AS NO3) 6.9 5.1 6.6  3.5 6.5	PHORUS TOTAL (MG/L AS P) 0.03( 0.02( 0.01( 0.19( 0.00 0.00
APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 NOV 02 DEC 09 MAR 1988 23 APR 07	GEN, NITRATE DIS- SOLVED (MG/L AS NO3)  4.3	GEN, NITRITE TOTAL (MG/L AS N)  0.00 0.00 0.010 0.00 0.00 0.00 0.00 0.00	GEN, NITRITE DIS- SOLVED (MG/L AS NO2)  0.07	GEN, NO2+NO3 TOTAL (MG/L AS N)  1.36 0.920 1.27 0.630 1.15 0.810 1.63 1.11	GEN, AMMONIA TOTAL (MG/L AS N)  0.080 0.090 0.160 0.150 0.070 0.130 0.050 0.080 0.120	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.10 0.12  0.21  0.19 0.09 0.17  0.06 0.10 0.15	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)  0.13	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.15 0.06 1.4 0.09 0.18 0.16	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.19 0.24  0.22 1.6 0.16 0.31 0.21 0.21 0.26	GEN, TOTAL (MG/L AS N) 1.5 1.2 1.5  0.79 1.5 1.0	GEN, TOTAL (MG/L AS NO3) 6.9 5.1 6.6  3.5 6.5 4.5	PHORUS TOTAL (MG/L AS P) 0.03( 0.02( 0.01( 0.19( 0.00 0.00 0.01(  0.05( 0.11(
APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 NOV 02 DEC 09 MAR 1988 23 APR 07 21	GEN, NITRATE DIS- SOLVED (MG/L AS NO3)  4.3	GEN, NITRITE TOTAL (MG/L AS N)  0.00 0.00 0.010 0.00 0.00 0.00	GEN, NITRITE DIS- SOLVED (MG/L AS NO2)  0.07	GEN, NO2+NO3 TOTAL (MG/L AS N) 1.36 0.920 1.27  0.630 1.15 0.810  1.63	GEN, AMMONIA TOTAL (MG/L AS N) 0.080 0.090 0.160 0.150 0.070 0.130 0.050	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.10 0.12 0.21 0.19 0.09 0.17	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)  0.13	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.15 0.06 1.4 0.09 0.18 0.16	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.19 0.24  0.22 1.6 0.16 0.31 0.21	GEN, TOTAL (MG/L AS N) 1.5 1.2 1.5  0.79 1.5 1.0	GEN, TOTAL (MG/L AS NO3) 6.9 5.1 6.6  3.5 6.5 4.5	PHORUS TOTAL (MG/L AS P) 0.03( 0.02( 0.01( 0.19( 0.00 0.00 0.01( 
APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 NOV 02 DEC 09 MAR 1988 23 APR 07 21 MAY	GEN, NITRATE DIS- SOLVED (MG/L AS NO3)  4.3	GEN, NITRITE TOTAL (MG/L AS N)  0.00 0.00 0.010 0.00 0.00 0.00 0.00	GEN, NITRITE DIS- SOLVED (MG/L AS NO2)  0.07	GEN, NO2+NO3 TOTAL (MG/L AS N)  1.36 0.920 1.27 0.630 1.15 0.810 1.63 1.11 1.34 0.660	GEN, AMMONIA TOTAL (MG/L AS N) 0.080 0.090 0.160 0.150 0.070 0.130 0.050  0.080 0.120 0.040	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.10 0.12  0.21 0.19 0.09 0.17 0.06 0.10 0.15 0.05	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)  0.13	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.15 0.06 1.4 0.09 0.18 0.16  0.13 0.14 0.10	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.19 0.24  0.22 1.6 0.16 0.31 0.21 0.21 0.26 0.14 0.16	GEN, TOTAL (MG/L AS N) 1.5 1.2 1.5  0.79 1.5 1.0  1.8 1.4 1.5	GEN, TOTAL (MG/L AS NO3) 6.9 5.1 6.6  3.5 6.5 4.5  8.1 6.1 6.6 3.6	PHORUS TOTAL (MG/L AS P) 0.03( 0.02( 0.01( 0.19( 0.00 0.00 0.01(  0.05( 0.11( 0.02( 0.01(
APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 NOV 02 DEC 09 MAR 1988 23 APR 07 21 MAY 04 19	GEN, NITRATE DIS- SOLVED (MG/L AS NO3)  4.3 4.3	GEN, NITRITE TOTAL (MG/L AS N)  0.00 0.00 0.010 0.00 0.00 0.00 0.00	GEN, NITRITE DIS- SOLVED (MG/L AS NO2)  0.07	GEN, NO2+NO3 TOTAL (MG/L AS N)  1.36 0.920 1.27 0.630 1.15 0.810 1.63 1.11 1.34	GEN, AMMONIA TOTAL (MG/L AS N)  0.080 0.090  0.160  0.150  0.070  0.130  0.050   0.080  0.120 0.040	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.10 0.12  0.21  0.19  0.09  0.17  0.06  0.10  0.15 0.05	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)  0.13	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.15 0.06 1.4 0.09 0.18 0.16	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.19 0.24  0.22  1.6 0.16  0.31  0.21  0.21  0.26 0.14	GEN, TOTAL (MG/L AS N) 1.5 1.2 1.5  0.79 1.5 1.0  1.8 1.4 1.5	GEN, TOTAL (MG/L AS NO3) 6.9 5.1 6.6  3.5 6.5 4.5  8.1 6.1 6.6	PHORUS TOTAL (MG/L AS P) 0.03( 0.02( 0.01( 0.19( 0.00 0.00 0.01(  0.05( 0.11( 0.02(
APR 1987 16 30 MAY 19 JUN 23 SEP 29 NOV 02 DEC 09 MAR 1988 23 APR 07 21 MAY 19 JUN 28	GEN, NITRATE DIS- SOLVED (MG/L AS NO3)  4.3	GEN, NITRITE TOTAL (MG/L AS N)  0.00 0.00 0.010 0.00 0.00 0.00 0.00	GEN, NITRITE DIS- SOLVED (MG/L AS NO2)  0.07	GEN, NO2+NO3 TOTAL (MG/L AS N)  1.36 0.920 1.27 0.630 1.15 0.810 1.63 1.11 1.34 0.660	GEN, AMMONIA TOTAL (MG/L AS N) 0.080 0.090 0.160 0.150 0.070 0.130 0.050  0.080 0.120 0.040	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.10 0.12  0.21 0.19 0.09 0.17 0.06 0.10 0.15 0.05	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)  0.13	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.15 0.06 1.4 0.09 0.18 0.16  0.13 0.14 0.10	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.19 0.24  0.22 1.6 0.16 0.31 0.21 0.21 0.26 0.14 0.16	GEN, TOTAL (MG/L AS N) 1.5 1.2 1.5  0.79 1.5 1.0  1.8 1.4 1.5	GEN, TOTAL (MG/L AS NO3) 6.9 5.1 6.6  3.5 6.5 4.5  8.1 6.1 6.6 3.6	PHORUS TOTAL (MG/L AS P) 0.03( 0.02( 0.01( 0.19( 0.00 0.00 0.01(  0.05( 0.11( 0.02( 0.01(
APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 NOV 02 DEC 09 MAR 1988 23 APR 07 21 MAY 19 JUN 28 SEP	GEN, NITRATE DIS- SOLVED (MG/L AS NO3)  4.3 4.3	GEN, NITRITE TOTAL (MG/L AS N)  0.00 0.00 0.010 0.00 0.00 0.00 0.00	GEN, NITRITE DIS- SOLVED (MG/L AS NO2)  0.07	GEN, NO2+NO3 TOTAL (MG/L AS N)  1.36 0.920 1.27 0.630 1.15 0.810 1.63 1.11 1.34 0.660 0.530 1.27	GEN, AMMONIA TOTAL (MG/L AS N)  0.080 0.090  0.160 0.150 0.070 0.130 0.050 0.080 0.120 0.040 0.070 0.310 0.330	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.10 0.12  0.21  0.19 0.09 0.17  0.06 0.10 0.15 0.05 0.09 0.40 0.42	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)  0.13	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.15 0.06 1.4 0.09 0.18 0.16  0.13 0.14 0.10	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.19 0.24  0.22  1.6  0.16  0.31  0.21  0.21  0.26 0.14  0.16 1.2  0.57	GEN, TOTAL (MG/L AS N) 1.5 1.2 1.5  0.79 1.5 1.0  1.8 1.4 1.5 0.82 1.7	GEN, TOTAL (MG/L AS NO3) 6.9 5.1 6.6  3.5 6.5 4.5  8.1 6.1 6.6 3.6 7.7	PHORUS TOTAL (MG/L AS P) 0.03( 0.02( 0.01( 0.19( 0.00 0.01(  0.05( 0.11( 0.02( 0.57( 0.01(
APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 NOV 02 DEC 09 MAR 1988 23 APR 07 21 MAY 04 19 JUN 28 SEP 08 OCT	GEN, NITRATE DIS- SOLVED (MG/L AS NO3)  4.3 4.3	GEN, NITRITE TOTAL (MG/L AS N)  0.00 0.00 0.010 0.00 0.00 0.00 0.00	GEN, NITRITE DIS- SOLVED (MG/L AS NO2)  0.07	GEN, NO2+NO3 TOTAL (MG/L AS N)  1.36 0.920 1.27 0.630 1.15 0.810 1.63 1.11 1.34 0.660 0.530 1.27 0.630	GEN, AMMONIA TOTAL (MG/L AS N)  0.080 0.090  0.160  0.150  0.070  0.130  0.050   0.080  0.120 0.040  0.070  0.310  0.330  0.270	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.10 0.12  0.21 0.19 0.09 0.17 0.06 0.10 0.15 0.05 0.09 0.40 0.42 0.35	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)  0.13	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.15 0.06 1.4 0.09 0.18 0.16  0.13 0.14 0.10 0.89 0.89	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.19 0.24  0.22  1.6 0.16 0.31  0.21 0.21 0.26 0.14 0.16 1.2 0.57	GEN, TOTAL (MG/L AS N) 1.5 1.2 1.5  0.79 1.5 1.0  1.8 1.4 1.5 0.82 1.7 1.8	GEN, TOTAL (MG/L AS NO3) 6.9 5.1 6.6  3.5 6.5 4.5  8.1 6.6 7.7 8.1 5.1	PHORUS TOTAL (MG/L AS P) 0.03( 0.02( 0.01( 0.19( 0.00 0.01(  0.05( 0.11( 0.02( 0.01( 0.57( 0.01( 0.01(
APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 NOV 02 DEC 09 MAR 1988 23 APR 07 21 MAY 04 19 JUN 28 SEP 08	GEN, NITRATE DIS- SOLVED (MG/L AS NO3)  4.3	GEN, NITRITE TOTAL (MG/L AS N)  0.00 0.00 0.010 0.00 0.00 0.00 0.00	GEN, NITRITE DIS- SOLVED (MG/L AS NO2)  0.07	GEN, NO2+NO3 TOTAL (MG/L AS N)  1.36 0.920 1.27 0.630 1.15 0.810 1.63 1.11 1.34 0.660 0.530 1.27	GEN, AMMONIA TOTAL (MG/L AS N)  0.080 0.090  0.160 0.150 0.070 0.130 0.050 0.080 0.120 0.040 0.070 0.310 0.330	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.10 0.12  0.21  0.19 0.09 0.17  0.06 0.10 0.15 0.05 0.09 0.40 0.42	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)  0.13	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.15 0.06 1.4 0.09 0.18 0.16  0.13 0.14 0.10	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.19 0.24  0.22  1.6  0.16  0.31  0.21  0.21  0.26 0.14  0.16 1.2  0.57	GEN, TOTAL (MG/L AS N) 1.5 1.2 1.5  0.79 1.5 1.0  1.8 1.4 1.5 0.82 1.7	GEN, TOTAL (MG/L AS NO3) 6.9 5.1 6.6  3.5 6.5 4.5  8.1 6.1 6.6 3.6 7.7	PHORUS TOTAL (MG/L AS P) 0.03( 0.02( 0.01( 0.19( 0.00 0.01(  0.05( 0.11( 0.02( 0.57( 0.01(

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 04213500 CATTARAUGUS CREEK AT GOWANDA, NY - continued

DATE	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)
APR 1987												
16	ND				<10		<10		1400		<100	
30 MAY	0.00	0.0			<10		<10		640		<5	
19	ND				<10		10		490		<5	
JUN 23	0.020	0.06			<10		20		7900			
JUL 20	0.00	0.0			<10		20		660		<b>&lt;</b> 5	
SEP 29	ND				<10	<1.0	10	1	240		<100	<b>&lt;</b> 5
NOV 02	ND				1		2		660		<b>&lt;</b> 5	
DEC 09					<1		10		7400		8	
MAR 1988 23	0.00	0.0	1200	<10	<1	<1.0	4	1	1800	6	<5	<5
APR 07	0.00	0.0	1700		<1		7		3000		<b>&lt;</b> 5	
21	0.00	0.0	220	<10	2	<1.0	3	3	520	10	<b>&lt;</b> 5	<b>&lt;</b> 5
MAY 04 19	0.00	0.0	270 6500	 40	<1 <1	 <1.0	7 15	3	610 1300	 46	<5 5	<b></b> <5
JUN 28	ND		310		<1		4		280		<b>&lt;</b> 5	
SEP 08	ND		190		1		4		480		<b>&lt;</b> 5	
ост 06	ИД		340	20	1	<1.0	3	<1	640	14	<b>&lt;</b> 5	<b>&lt;</b> 5
NOV 17	ND		410		1		3		760		<b>&lt;</b> 5	
DATE	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)	BROMO- FORM TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)
	NESE, TOTAL RECOV- ERABLE (UG/L	NESE, DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	FORM TOTAL	TETRA- CHLO- RIDE TOTAL	BENZENE TOTAL	DI- BROMO- METHANE TOTAL	ETHANE TOTAL
APR 1987 16	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)	TETRA- CHLO- RIDE TOTAL (UG/L)	BENZENE TOTAL (UG/L) ND	DI- BROMO- METHANE TOTAL (UG/L)	ETHANE TOTAL (UG/L) ND
APR 1987 16 30 MAY	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L) ND ND	TETRA- CHLO- RIDE TOTAL (UG/L) ND	BENZENE TOTAL (UG/L) ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND	ETHANE TOTAL (UG/L) ND ND
APR 1987 16 30 MAY 19 JUN	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 20 20	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)	TETRA- CHLO- RIDE TOTAL (UG/L)	BENZENE TOTAL (UG/L) ND	DI- BROMO- METHANE TOTAL (UG/L)	ETHANE TOTAL (UG/L) ND
APR 1987 16 30 MAY 19	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L) ND ND	TETRA- CHLO- RIDE TOTAL (UG/L) ND	BENZENE TOTAL (UG/L) ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND	ETHANE TOTAL (UG/L) ND ND
APR 1987 16 30 MAY 19 JUN 23	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 20 20	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10  <0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L) ND ND	TETRA- CHLO- RIDE TOTAL (UG/L) ND	BENZENE TOTAL (UG/L) ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND	ETHANE TOTAL (UG/L) ND ND
APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 20 20 20	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 0.10 <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <100 <1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <40	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L) ND ND	TETRA- CHLO- RIDE TOTAL (UG/L) ND	BENZENE TOTAL (UG/L) ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND	ETHANE TOTAL (UG/L) ND ND
APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 NOV 02	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 20 20 20 270 40	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 0.10 <0.10 <0.10 0.20	TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 <1 < <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND ND ND	TETRA- CHLO- RIDE TOTAL (UG/L) ND ND ND	BENZENE TOTAL (UG/L) ND ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND	ETHANE TOTAL (UG/L) ND ND
APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 NOV 02 DEC 09	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 20 20 20 270 40	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <100 <1 <1 <1 <100	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND ND  ND	TETRA- CHLO- RIDE TOTAL (UG/L) ND ND ND ND	BENZENE TOTAL (UG/L) ND ND ND	DI- BROMO- METHANE TOTAL (UG/L)  ND ND ND ND ND	ETHANE TOTAL (UG/L)  ND ND ND ND ND
APR 1987 16 30 MAY 19 JUN 23 SEP 29 NOV 02 DEC 09 MAR 1988 23	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 20 20 270 40 10	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <100 <1 <1 <1 <100 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND ND ND ND  ND	TETRA- CHLO- RIDE TOTAL (UG/L)  ND ND ND ND ND ND	BENZENE TOTAL (UG/L)  ND ND ND ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L)  ND ND ND ND ND ND	ETHANE TOTAL (UG/L)  ND ND ND ND ND ND
APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 NOV 02 DEC 09 MAR 1988 23 APR 07	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 20 20 270 40 10 20 130 40 50	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)  <1000 <1 <1 <1 <1 <1 00 <1 <1 <1 00 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOVERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND	TETRA- CHLO- RIDE TOTAL (UG/L)  ND	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND
APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 NOV 02 DEC 09 MAR 1988 23 APR	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 20 20 270 40 10 20 130 40	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOVERABLE (UG/L AS HG)  <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <100 <1 <1 < <1 <100 <1 8 10	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND ND ND  ND ND ND ND ND	TETRA- CHLO- RIDE TOTAL (UG/L)  ND	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND
APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 NOV 02 DEC 09 MAR 1988 23 APR 07 21 MAY	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 20 20 270 40 10 20 130 40 50	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)  <1000 <1 <1 <1 <1 <1 00 <1 <1 <1 00 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOVERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND	TETRA- CHLO- RIDE TOTAL (UG/L)  ND	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND
APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 NOV 02 DEC 09 MAR 1988 23 APR 07 21 MAY 19 JUN 28	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 20 20 270 40 10 20 130 40 50 10	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOVERABLE (UG/L AS HG)  <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)  <100	DIS- SOLVED (UG/L AS NI)	TOTAL RECOVERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND ND ND  ND ND ND ND ND ND ND ND ND ND ND ND ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND
APR 1987 16 30 MAY 19 JUN 23 SEP 29 NOV 02 DEC 09 MAR 1988 23 APR 07 21 MAY 04 19 JUN 28 SEP 08	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 20 20 270 40 10 20 130 40 50 10 20 360	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)  <100	DIS- SOLVED (UG/L AS NI)	TOTAL RECOVERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND   ND  ND  ND  ND  ND  ND  ND	TETRA- CHLO- RIDE TOTAL (UG/L)  ND	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND
APR 1987 16 30 MAY 19 JUN 23 SEP 29 NOV 02 DEC 09 MAR 1988 23 APR 07 21 MAY 19 JUN 28 SEP	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 20 20 270 40 10 20 130 40 50 10 20 360	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOVERABLE (UG/L AS HG)  <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)  <1000	DIS- SOLVED (UG/L AS NI)	TOTAL RECOVERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)  <10 <3 <3 <5	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE RIDE TOTAL (UG/L)  ND N	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND

# 04213500 CATTARAUGUS CREEK AT GOWANDA, NY - continued

DATE	CHLORO- FORM TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)
APR 1987 16 30	ND <b>N</b> D	ND ND	ND <b>N</b> D	ND ND	ND <b>N</b> D	<b>N</b> D ND	ND ND	ND ND	ND ND	ND ND	<b>ND</b> ND
MAY 19	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
JUN 23											
JUL 20											
SEP 29	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
NOV 02	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DEC 09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MAR 1988 23	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
APR 07	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
21 MAY	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
04 19	0 ND	0 ND	0 ND	0 ND	0 ND	ND O	0 ND	0 ND	0 ND	0 <b>N</b> D	ND
JUN 28	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<b>N</b> D
SEP 08	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
OCT 06	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
NOV 17	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DATE	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)
APR 1987	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
APR 1987 16 30	CHLORO- BENZENE TOTAL	CHLORO- ETHANE WATER WHOLE TOTAL	CHLORO- PROPANE TOTAL	TR <b>AN</b> SDI CHLORO- ETHENE TOTAL	CHLORO- BENZENE TOTAL	CHLORO- BENZENE TOTAL	CHLORO- ETHYL- ENE TOTAL	1,3-DI- CHLORO- PROPENE TOTAL	CHLORO- ETHYL- ENE TOTAL	CHLORO- ETHYL- VINYL- ETHER TOTAL	CHLO- RIDE TOTAL
APR 1987 16 30 MAY 19	CHLORO- BENZENE TOTAL (UG/L) ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
APR 1987 16 30 MAY 19 JUN 23	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND	CHLORO- BENZENE TOTAL (UG/L) ND	CHLORO- BENZENE TOTAL (UG/L) ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND	CHLO- RIDE TOTAL (UG/L) ND ND
APR 1987 16 30 MAY 19 JUN 23 JUL 20	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND	CHLO- RIDE TOTAL (UG/L) ND ND
APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND	CHLO- RIDE TOTAL (UG/L) ND ND
APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 NOV 02	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND ND  ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND
APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 NOV 02 DEC 09	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND	CHLORO-ETHANE WATER WATER WHOLE TOTAL (UG/L) ND ND ND ND ND	CHLORO-PROPANE TOTAL (UG/L)  ND ND ND ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND	CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND ND	CHLORO-BENZEME TOTAL (UG/L)  ND ND ND ND ND ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND ND ND ND ND ND	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND ND ND ND ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND ND ND ND ND ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND ND
APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 NOV 02 DEC 09 MAR 1988 23	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND ND ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND ND ND ND ND ND	CHLORO-PROPANE TOTAL (UG/L)  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND	CHLORO-BENZEME TOTAL (UG/L)  ND ND ND  ND ND  ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND ND ND  ND ND  ND ND	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND ND ND ND ND ND
APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 NOV 02 DEC 09 MAR 1988 23 APR 07	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND	CHLORO-BENZEME TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND N
APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 NOV 02 DEC 09 MAR 1988 23 APR 07 21 MAY	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND  ND ND ND ND ND ND ND ND ND ND ND ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND
APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 NOV 02 DEC 09 MAR 1988 23 APR 07 21 MAY 04 19	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND	CHLORO-BENZEME TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND N
APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 NOV 02 DEC 09 MAR 1988 23 APR 07 21 MAY 04 19 JUN 28	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND N	TRANSDI CHLORO- ETHENE TOTAL (UG/L)  ND	CHLORO-BENZEME TOTAL (UG/L)  ND N	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND N
APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 NOV 02 DEC 09 MAR 1988 23 APR 07 21 MAY 04 19 JUN 28 SEP	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND
APR 1987 16 30 MAY 19 JUN 23 JUL 20 SEP 29 NOV 02 DEC 09 MAR 1988 23 APR 07 21 MAY 19 JUN 28 SEP	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND N

# 04213500 CATTARAUGUS CREEK AT GOWANDA, NY - continued

## SUSPENDED SEDIMENT DISCHARGE

		DIS- CHARGE,		SEDI- MENT,
		INST.	SEDI-	DIS-
		CUBIC	MENT,	CHARGE,
		FEET	SUS-	SUS-
DATE	TIME	PER	PENDED	
		SECOND	(MG/L)	(T/DAY)
APR 1987				
16	1030	792	38	81
30	1115	629	19	32
JUN				
23	1055	986	370	985
NOA				
02	1105	411	14	16
DEC				
09	0930	1360	245	900
MAY 1988		2000		
19	1300	2060	474	2640
JUN	1300	2000	4/4	2040
28	0915	144	9	3.5
	0915	144	9	3.5
SEP				
08	0845	174	11	5.2
OCT				
06	0900	161	15	6.5
NOV				
17	0945	406	16	18

# BED MATERIAL ANALYSES

DATE JUL 1987 20 JUN 1988 28	TIME 1830 0915	(MG/	IA- II IN RI OM FM I- TOI	NUM, RIECOV. FM BOT- TOI M MA- TIERIAL (I		CHRO-MIUM, RECOV. M BOT-TOM MA-TERIAL (UG/G)		7. RE C- FM A- TON AL TE G (U J) AS	ECOV. F BOT- FN MA- TO ERIAL T JG/G		MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G) 380	RE FM TOL TE (U	COV. BOT-	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI) <10	RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)
DATE JUL 1987	AROC 122 IN BOTT MA (UG/	1 OM T.	AROCLOR 1248 PCB BOT.MAT (UG/KG)	AROCLOR 1254 PCB BOT.MAT (UG/KG)	AROCLO 1260 PCB BOT.MA (UG/KG	IN B TOM TER	IN, E AL TO OT- IN MA- TO IAL TE	LPHA BHC OTAL N BOT- DM MA- ERIAL JG/KG)	ATRA- ZINE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DOT.M	NE DA - TO R- IN TOM AT TE	LOR- NE, TAL BOT- MA- RIAL (KG)	CHLOR PYRIF IN BO MAT. (UG/K	BEN - HE OS CH T. I BOT	CLTA IZENE CXA- ILOR- CDE C. MAT G/KG)
20 JUN 1988	-	-				-	-								
28	ND		ND	ND	ND	ND		ND	ND	ND	N	D	ND	N	ID
DATE	DI AZIN TOT IN B TOM I TER (UG/	ON, AL OT- MA- IAL	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN ALPHA BOT.MAT (UG/KG)	ENDO- SULFAN BETA BOT.MA	SULF SULF T BOT.	O- I FAN IN ATE TO MAT I	NDRIN, POTAL N BOT- DM MA- PERIAL UG/KG)	ENDRIN ALDE- HYDE BOT.MAT		N, CH L TO T- IN A- TOM AL TE	PTA- LOR, TAL BOT- MA- RIAL	HEPTI CHLOI EPOXI TOT. BOTTI MATI (UG/K	R THOSE TO	NLA- HION, PTAL BOT- I MA- GRIAL G/KG)
JUL 1987 20	-	-				-	-								
JUN 1988 28	ND		ND	ND	ND	ND		ND	ND	ND	N	D	ND	N	ID
DATE	METTOY. CHLA TOT. BOTT MA' (UG/)	OR, IN IOM TL.	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	P,P' DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	P, P' DDE, TOTAL IN BOT TOM MA TERIA	DD TOT IN B TOM L TER	T, T AL T OT- IN MA- TO IAL T	PARA- THION, TOTAL N BOT- DM MA- TERIAL NG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	FAL DIAM % FIN THA	. M L SI . DI ER % F N T	ED AT. EVE AM. INER HAN 2 MM	BED MAT SIEV DIAM % FIN THAI	. M E SI . DI ER % F N T	BED LAT. EEVE AM. INER HAN
JUL 1987 20 JUN 1988		-				-	-				2	49	1	80	98
28	ND		ND	ND	ND	ND		ND	ND						

### 04214020 CATTARAUGUS CREEK AT IRVING, NY

LOCATION.--Lat 42 33'53", long 79 07'30", Chautauqua County, Hydrologic Unit 04120102, on left bank at downstream side of Conrail railroad bridge, 0.6 mi west of Iriving, and 0.9 mi upstream from mouth.

DRAINAGE AREA. -- 554 mi2.

PERIOD OF RECORD.--Water years 1987 to 1989.

CHEMICAL DATA: 1987 (b), 1988 (d), 1989 (a).

MINOR ELEMENT DATA: 1987 (b), 1988 (d), 1989 (a).

PESTICIDE DATA: 1987 (b), 1988 (d), 1989 (a).

ORGANIC DATA: PCB--1988 (a).

NUTRIENT DATA: 1987 (b), 1988 (c), 1989 (a).

SEDIMENT DATA: 1987-88 (b), 1989 (a).

REMARKS .-- Water-discharge data based on records from stream-flow gage 04213500 Cattaraugus at Gowanda.

DATE	TIME	DIS- CHARGE, IN CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
APR 1987												
16	1145	1000			8.1	10.0	21		14.4	140	44	7.2
30	1215	810			8.2	8.0	16		11.4	140	45	7.3
MAY												
19	1245	340		429	7.9	17.5	12			190	59	9.8
JUN							4.70					
23 JUL	1230	1100			8.2	23.0	170			140	44	7.4
21	1115	400			8.0	27.0	8.2		7.3	160	50	9.5
OCT	1113	400			0.0	27.0	0.2		,.,	100	30	5.5
01	1200	1300		299	8.2	22.0	110			130	41	6.9
NOV					• • •							
18	1000	610			7.9	8.0	18		14.7	160	51	8.6
DEC												
10	1130	2800			8.2	5.0	280		11.4			
MAR 1988												
24	1200	1900		232	7.7	5.0	270			85	26	4.8
APR		1400		293	8.0	12.0	44					
07 21	1200 1115	1400 590		293 357	8.1	7.0	0.0			160	49	9.1
MAY	1113	390		337	0.1	7.0	0.0			100	4.7	3.1
04	0915	720		335	7.7	10.0	5.0		10.8			
19	0915	400		313	7.6	12.0	300		9.8	120	38	6.6
JUN												
28	1100	180	435	435	7.9	19.5	9.0		7.4	190	5 <b>6</b>	11
SEP												
08	1130	230		467			9.2			180	55	11
OCT												
06	1300	196		430	8.0	11.0	7.4	772	10.6	200	60	12
NOV	0000	E14		254	7 7	7.0	10	7/0	10 4	160	48	9.0
17	0900	514		354	7.7	7.0	10	760	10.4	160	48	9.0

# 04214020 CATTARAUGUS CREEK AT IRVING, NY - continued

DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	(MG	CH ATE RI - DI VED SO	LO- 1 DE, 1 S- LVED : G/L	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVEI (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C,	TILE ON IGNI- TION, TOTAL	RESIDUE TOTAL FIXED	NITRO- GEN, NITRATE TOTAL (MG/L AS N)
APR 1987 16				_	_			162		214	. 60	170	1.23
30								148		198			
MAY 19				_	_			220		271	1 16	3 232	1.01
JUN 23				_	_			204		732	112	620	1.17
JUL													
21 ⊙CT				-	-			208		240	) 8	3 232	
01 NOV				-	-			228		416	40	360	0.620
18				-	-			192		234	84	144	0.690
DEC 10				-	-			160		844	112	732	
MAR 1988 24	6.7	1.4	76	31	. 1	1	0.10	140	12	882	2 76	806	0.520
APR 07			100	30		2	0.10	184		260	56	5 204	1.06
21	9.9	1.2	125	32			0.10	212	191				
MAY 04			118	-	_			208		228	3 36	192	0.900
19 JUN	8.1	1.4	111	24	1	2	0.20	160	157	884	124	760	0.710
28	15	1.8	149	3 5	2	1	0.20	298	229	317	127	190	0.710
SEP 08	18	1.7	147	51	. 2	7	0.10	304	252	332	2 76	256	0.700
ост 06	14	2.1	136	52	1	9	0.10	276	241	. 280	) 76	204	0.600
NOV 17	10	1.7	115	39		Λ	0.10		191	. 200	) 56	144	0.690
DAT		, GE FE NO2+ L TOT L (MG	N, G NO3 AMM AL TO	TAL IG/L	NITRO- GEN, AMMONIA TOTAL (MG/L	NITRO GEN, ORGANIO TOTAL (MG/L	MONIA C ORGAN TOTA (MG)	AM- A + NIT NIC GE AL TOT 'L (MC	EN, C PAL TO G/L (!	SEN, PHO TAL TO IG/L ()	PHO HOS- OF DRUS DI DTAL SOI HG/L (MO	ORUS PH RTHO, OR SS- D LVED SO G/L (M	OS- ATE, THO, IS- LVED G/L PO4)
	AS N	) AS	N) AS	(N)	AS NH4)	AS N)	AS 1	I) AS	N) AS	NO3) AS	SP) AS	r) AS	FO4)
APR 198' 16 30	7 0.0 0.0			.050	0.06	0.0			1.3			ID ID	
MAY 19	0.0	20 1.	03 0	.080	0.10	0.0	90.	.17	1.2	5.3	).020 h	ID	
JUN 23	0.0	40 1	21 0	.470	0.61	0.4	4 0	.91 2	2.1	9.4 (	).590 (	0.00	0.0
JUL 21				.010					.67				0.0
OCT					0.01	0.1							
01 NOV	0.0	10 0.	630							(	).300 (	0.00	0.0
18 DEC	0.0	0 0.	690 0	.010	0.01	0.2	0 0.	.21 (	.90	4.0	0.040	0.00	0.0
10		-	-										
MAR 1988 24	0.0	0 0.	520 1	.00	1.3	0.5	0 1.	.5 2	2.0	8.9	.820	0.00	0.0
APR 07	0.0	0 1.	06 0	.110	0.14	0.2	0 0.	.31 :	1.4	6.1	).120	0.00	0.0
21 MAY	0.0	0 1.	20 0	.020	0.03	0.1	1 0.	.13	1.3	5.9	0.010	0.00	0.0
04				.030	0.04	0.1			1.0				0.0
19 JUN	0.0			0.060	0.08	1.4			2.2				0.0
28 SEP	0.0	30 0.	740 0	.030	0.04	0.0	8 0.	.11 (	0.85	3.8	).020 N	D	
08	0.0	40 0.	740 0	.030	0.04	0.2	0 0.	.23	.97	4.3	).020 N	ID	
06	0.0	10 0.	610 0	.030	0.04	0.2	4 0.	. 27	.88	3.9	).010 N	ID	
NOV 17	0.0	10 0.	<b>7</b> 00 0	.270	0.35	0.2	5 0.	.52 1	1.2	5.4	0.020	0.00	0.0

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

## 04214020 CATTARAUGUS CREEK AT IRVING, NY - continued

DATE	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)
APR 1987											
16			<10		<10		1300		<100		40
30 MAY			<10		<10		1300		32		40
19			<10		<10		850		<5		50
JUN 23			<10	<1.0	20	3	12000		29	<b>&lt;</b> 5	420
JUL 21			<10		20		200		<b>&lt;</b> 5		10
ОСТ 01			<10	<1.0	20	4	6900		<100	<5	160
NOV 18			<1		6		1100		<b>&lt;</b> 5		50
DEC 10			<1		26		20000		18		480
MAR 1988 24	12000	150	<1	<1.0	24	2	24000	400	8	<b>&lt;</b> 5	540
APR	1300				7						
07 21	70	<10	<1 1	<1.0	2	<1	2800 250	12	<5 <5	 <b>&lt;</b> 5	70 20
MAY 04	150		<1		5		340		<5		30
19 JUN	11000	20	1	<1.0	21	2	1800	26	10	<5	500
28 SEP	330		<1		4		750		<b>&lt;</b> 5		80
08	240		<1		3		590		<b>&lt;</b> 5		50
06	260	20	<1	<1.0	24	2	430	13	<5	<b>&lt;</b> 5	30
17	350		<1		9		600		<5		40
DATE	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)	BROMO- FORM TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)
APR 1987	NESE, DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L	FORM TOTAL (UG/L)	TETRA- CHLO- RIDE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	DI- BROMO- METHANE TOTAL (UG/L)	ETHANE TOTAL (UG/L)
APR 1987 16 30	NESE, DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	FORM TOTAL	TETRA- CHLO- RIDE TOTAL	BENZENE TOTAL	DI- BROMO- METHANE TOTAL	ETHANE TOTAL
APR 1987 16 30 MAY 19	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)	TETRA- CHLO- RIDE TOTAL (UG/L)	BENZENE TOTAL (UG/L) ND	DI- BROMO- METHANE TOTAL (UG/L)	ETHANE TOTAL (UG/L) ND
APR 1987 16 30 MAY 19 JUN 23	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L) ND ND	TETRA- CHLO- RIDE TOTAL (UG/L) ND ND	BENZENE TOTAL (UG/L) ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND	ETHANE TOTAL (UG/L) ND ND
APR 1987 16 30 MAY 19 JUN	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 5	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L) ND ND	TETRA- CHLO- RIDE TOTAL (UG/L) ND ND	BENZENE TOTAL (UG/L) ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND	ETHANE TOTAL (UG/L) ND ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 0.10 <0.10 <0.10	TOTAL RECCV- ERABLE (UG/L AS NI) <100 5 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L) ND ND ND	TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND	BENZENE TOTAL (UG/L) ND ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND	ETHANE TOTAL (UG/L)  ND ND ND ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 0.10 <0.10 <0.10  0.20	TOTAL RECOV-ERABLE (UG/L AS NI)  <100 5 <1 17 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS 2N) <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L) ND ND ND ND	TETRA- CHLO- RIDE TOTAL (UG/L)  ND ND ND ND	BENZENE TOTAL (UG/L) ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND	ETHANE TOTAL (UG/L)  ND ND ND ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)  <100 5 <1 17 <1 <100	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <40 40	DIS- SOLVED (UG/L AS ZN)  <10 <10	FORM TOTAL (UG/L)  ND ND ND ND ND ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND ND ND ND ND	BENZENE TOTAL (UG/L) ND ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND	ETHANE TOTAL (UG/L)  ND ND ND ND ND ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)  <100 5 <1 17 <100 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS 2N) <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)  <10 <10	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND N	BENZENE TOTAL (UG/L) ND ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L)  ND ND ND ND ND ND ND ND	ETHANE TOTAL (UG/L)  ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOVERABLE (UG/L AS HG)  <0.10 0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)  <100 5 <1 17 <10 <10 <1 <10 <1 <10 <1 <10 <1 <10 <10	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS 2N) <10 <10 <10 <10 <10 <00 <10 <10 <00 <00	DIS- SOLVED (UG/L AS ZN)  <10 <10 8	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND N	BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR 07 21	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 0.10 <0.10 <0.10 -0.10 <0.10 -0.10	TOTAL RECOV-ERABLE (UG/L AS NI)  <100 5 <1 17 <1 <100 <1 24	DIS- SOLVED (UG/L AS NI)  3 2	TOTAL RECOV-ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)  <10 <10	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND N	BENZENE TOTAL (UG/L) ND ND ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR 07 21 MAY 04 19	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)  <100 5 <1 17 <100 <1 24 29 8	DIS- SOLVED (UG/L AS NI)  3 2 2	TOTAL RECOV-ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS 2N)  <10 <10 8	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTTAL (UG/L)  ND N	BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR 07 21 MAY 04 19 JUN 28	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOVERABLE (UG/L AS HG)  <0.10 0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)  <100 5 <1 17 <10 <10 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOVERABLE (UG/L AS 2N)  <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)  <10 8 <3	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND N	BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR 07 21 MAY 04 19 JUN 28 SEP 08	NESE, DIS- SOLVED (UG/L AS MN)  160 17 19 8	TOTAL RECOVERABLE (UG/L AS HG)  <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)  <100 5 <1 17 <1 <100 <1 24 29 8 4 7 24	DIS- SOLVED (UG/L AS NI)  3 2 2 1	TOTAL RECOVERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS 2N)  <10 <10 8 <3	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND N	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR 07 21 MAY 19 JUN 23 MAY 19 JUN 28 SEP	NESE, DIS- SOLVED (UG/L AS MN)  160 17 19 8	TOTAL RECOVERABLE (UG/L AS HG)  <0.10	TOTAL RECOVERABLE (UG/L AS NI)  <100 5 <1 17 <100 <1 24 29 8 4 7 24 6	DIS- SOLVED (UG/L AS NI)  3 2 1 1	TOTAL RECOVERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)  <10 <10 8 <3 9	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTTAL (UG/L)  ND N	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 04214020 CATTARAUGUS CREEK AT IRVING, NY - continued

DATE	CHLORO- FORM TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)
APR 1987 16 30	nd nd	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
MAY 19	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
JUN 23	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
JUL 21	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ОСТ 01	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
NOV 18	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ИD
DEC 10	ND	ND	ND	ИD	ND	ND	ИD	ИD	ND	ND	ND
MAR 1988 24	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
APR 07	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
21 MAY	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
04 19	0 <b>N</b> D	0 И <b>D</b>	ND 0	ND ND	ND O	ND ND	0 <b>ND</b>	0 ND	0 ND	ND ND	<b>N</b> D
JUN 28 SEP	ND	ИĎ	ND	ND	ND	ND	ND	ND	ND	ND	ND
08 OCT	0.1	МD	ND	ND	ND	ND	ND	ND	ND	ND	ND
06	ND	ЙN	ND	ND	ND	ND	ND	ND	ND	ND	ND
17	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DATE	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)
APR 1987	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
APR 1987 16 30	CHLORO- BENZENE TOTAL	CHLORO- ETHANE WATER WHOLE TOTAL	CHLORO- PROPANE TOTAL	TRANSDI CHLORO- ETHENE TOTAL	CHLORO- BENZENE TOTAL	CHLORO- BENZENE TOTAL	CHLORO- ETHYL- ENE TOTAL	1,3-DI- CHLORO- PROPENE TOTAL	CHLORO- ETHYL- ENE TOTAL	CHLORO- ETHYL- VINYL- ETHER TOTAL	CHLO- RIDE TOTAL
APR 1987 16 30 MAY 19	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
APR 1987 16 30 MAY 19 JUN 23	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND	CHLORO- PROPANE TOTAL (UG/L) ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND	CHLO- RIDE TOTAL (UG/L) ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND	CHLO- RIDE TOTAL (UG/L) ND ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND	CHLORO- BENZENE TOTAL (UG/L)  ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND ND ND 2.0  ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND ND ND ND ND ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND	CHLORO-PROPANE TOTAL (UG/L)  ND ND ND ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988 24	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND	CHLORO-PROPANE TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND ND ND 10 ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND	CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND ND 2.0  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND N
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR 07 21 MAY	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND N
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR 07 21 MAY 04 19 JUN 28	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND N
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR 07 21 MAY 04 19 JUN 28 SEP 08	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND ND 2.0  ND N	1,3-DI-CHLORO-PROPERE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND
APR 1987 16 30 MAY 19 JUN 23 JUL 21 OCT 01 NOV 18 DEC 10 MAR 1988 24 APR 07 21 MAY 19 JUN 28 SEP	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L) ND

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

## 04214020 CATTARAUGUS CREEK AT IRVING, NY - continued

# SUSPENDED SEDIMENT DISCHARGE

		CHA:	BIC ME	M EDI- ENT, CH	EDI- ENT, DIS- ARGE, SUS-
DAT	re TI	ME P	ER PE	ENDED P	ENDED (DAY)
APR 198	37		,.		,
16	. 11-	45 100	0	43 1	16
30	. 12	15 81	0	63 1	38
JUN					
23	. 12	30 110	0	6 <b>18</b> 18	40
OCT					
01	. 12	00 130	0	230 8	107
DEC			_		
10		30 280	U	831 62	80
MAY 198		15 40	0	702 7	81
JUN	. 09	15 40	U	723 7	81
28	. 11	00 18	n	24	12
SEP		10	·	24	12
08	. 11	30 23	0	15	9.3
OCT			-		•
06	. 13	00 19	6	11	5.8
NOV					
17	. 09	00 51	4	14	19

# BED MATERIAL ANALYSES

		SOLI VOI TILI	-A-	ALUM- INUM, RECOV.	RE	COV.	CHR MIU	JM,	COPP REC	ov.	RON, RECOV.	RE	AD, COV. BOT-	NE	NGA- SE, COV.	RE	CURY COV. BOT-		KEL, COV. BOT-	ZINC, RECOV. FM BOT-	
		BOTT	I MOT	M BOT-					TOM		M MA-				BOT-	TOM	MA-	TOM	MA-	TOM MA-	
DATE	TIME		RIAL	TERIAL	, (U	IG/G	TER	MA- RIAL	(UG	G/G	TERIAL (UG/G	( 0	IG/G	TE	MA- RIAL	(U	RIAL G/G	(U	RIAL G/G	TERIAL (UG/G	
JUL 1987		(MG)	/KG)	(UG/G)	AS	CD)	(UG	G/G)	AS	CU)	AS FE)	AS	PB)	(00	G/G)	AS	HG)	AS	NI)	AS ZN)	
21 JUN 1988	1115	53	3700			<1		250		20	12000		20		530	<	0.10		10	60	
28	1100	1	7500	4800	)	<10	-			20	13000		10		3 <b>4</b> 0 <b>0</b>		0.24		20	80	
										ALPHA		RA-	BET	'A	CHL				DEL		
	AROC 122		AROCLO	אם אם	CLOR	AROCLO		ALDRI		BHC TOTAL		NE, TAL	BENZE HEXA		DAN!		CHLO	D_	BENZ HEX		
	IN		1248		254	1260	<b>,</b>	IN BO		IN BOT		BOT-	CHLC		IN B		PYRI		CHL		
	BOTT		PCB		СВ	PCB	_	TOM M.		TOM MA		MA-	IDE		TOM		IN B		ID		
DATE	MA (UG/		BOT.MA		MAT (KG)	BOT.MA		TERI.		TERIAL (UG/KG		RIAL /KG)	BOT.M (UG/K		TER		MAT (UG/		BOT.		
JUL 1987	(00)	,	(00)10	, (00	,,,	(007110	• •	(00/10	٠,	(007110	(00	,,	(00/1	,	(00)	,	(00)	,	,,,,,,	,,	
21 JUN 1988	-	-													-	-	-	-	-	-	
28	ND	)	ND	ì	ID	ND		ND		ND	N	D	ND		ND		ND		ND		
	DI AZIN TOT IN B TOM	ON, 'AL OT-	DI- ELDRII TOTAI IN BO	. En	IDO - JFAN JPHA	ENDO- SULFAN BETA		ENDO SULFA	AN	ENDRIN TOTAL IN BOT TOM MA	END - AL	RIN DE- YDE	ETHIC TOTA IN BC	L T-	HEP CHLC TOT. IN BO	OR, AL OT-	HEP CHL EPOX TOT. BOT	OR IDE	MAL THIOT TOT IN BO	ON, AL OT-	
DATE	TER (UG/	(IAL (KG)	TERIA (UG/K		MAT (KG)	BOT.MA		BOT.M.		TERIA (UG/KG		.MAT /KG)	TERI (UG/K		TER		MA (UG/	TL. KG)	TER (UG/		
JUL 1987 21	_	_													_	_	-	-	_	_	
JUN 1988												_									
28	ND	)	ND	ı	ID	ND		ND		ND	N	D	ND		ND		ND		ND		
	MET OXY CHL TOT. BOT	oR,	MIRE: TOTAL IN BO	(, I . T( - IN	P,P' DDD, DTAL BOT-	P,P'DDE, TOTAL IN BOT		P,P DDT TOTA IN BO	, L T-	PARA- THION TOTAL IN BOT TOM MA	, РН ТО - IN	XA- ENE, TAL BOT- MA-	BEI MAT FAL DIAM % FIN	L L	BE MA' SIE' DIA	T. VE M.	BE MA SIE DIA % FI	T. VE M.	BE MA SIE DIA % FI	T. VE M.	
DATE	MA	TL.	TERI	AL TI	ERIAL	TERIA	AL.	TERI	AL	TERIA	L TE	RIAL	THA	ιN	TH.	AN	TH	AN	TH	AN	
TIT 1007	(UG/	KG)	(UG/K	3) (U	S/KG)	(UG/K	3)	(UG/K	G)	(UG/KG	(UG	/KG)	.004	MM	.062	MM	.125	MM	2.00	MM	
JUL 1987 21	-	-												9		84		98		100	
JUN 1988 28	NE	)	ND	1	<b>1</b> D	ND		ND		ND	N	D			-	-	-	-	-	-	

### 04214240 EIGHTEENMILE CREEK AT HIGHLAND-ON-THE-LAKE, NY

LOCATION.--Lat 42 42'44", long 78 58'00", Erie County, Hydrologic Unit 04120103, at bridge on Lake Shore Road, 0.6 mi (.96 km) northeast of highland on the lake.

DRAINAGE AREA. -- 119 mi2.

PERIOD OF RECORD.--Water years 1987 to 1989. CHEMICAL DATA: 1987-88 (c), 1989 (a). MINOR ELEMENT DATA: 1987-88 (c), 1989 (a). PESTICIDE DATA: 1987-88 (c), 1989 (a). ORGANIC DATA: PCB--1988 (a). NUTRIENT DATA: 1987-88 (c), 1989 (a). SEDIMENT DATA: 1987-88 (b), 1989 (a).

REMARKS.--Water-discharge data obtained from a discharge rating developed for this site.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
APR 1987												
16	1330				8.6	10.5	1.4		15. <b>4</b>	120	37	6.6
27	1400	19			8.3	17.0	0.70		10.0	150	48	8.4
MAY												
19	1700			512	8.5	21.0	0.60			190	59	11
JUN												
24	0830	86			7.6	19.0	16			160	50	8.3
JUL												
21	1300				8.4	31.0	2.5		8.8	150	43	9.3
SEP												
28	1310	201		418	8.3	19.0	2.5					
NOV	1130				7.8	7.0	84		15.8	100	31	5.7
18 DEC	1130				7.8	7.0	84		15.8	100	31	5.7
10	1205	802			8.2	5.0	56		12.0			
MAR 1988	1203	802			0.2	3.0	30		12.0			
23	1200	115		443	7.7	5.0	4.1			150	45	8.6
APR	-200	113		445		3.0	•••			100	••	
04	0900	~-		222,	8.1	11.0	280					
19	0900	115		389	7.1	4.0	1.3			140	44	8.4
MAY												
05	1000			378	8.2	12.0	1.3		10.4			
17	0900	250		427	7.8	14.5	1.8		8.8	150	47	8.7
JUN												
28	1315	97	490	479	7.8	21.5	1.9		9.6	160	46	12
SEP												
09	0900	40		587	8.0	15.0				210	60	14
OCT	1420	2.0		<b>50</b> .				7.64	40.0	212		1.2
05 NOV	1130	22		534	8.2	11.5	1.8	764	10.0	210	63	13
16	1140			372	8.1	9.0	2.4	759	11.2	140	43	8.3

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

CHLO-

RIDE,

SOLVED

(MG/L

AS CL)

DIS-

SULFATE

SOLVED

(MG/L

AS SO4)

DIS-

POTAS-

SIUM,

DIS-

SOLVED

(MG/L

AS K)

SODIUM,

DIS-

SOLVED

(MG/L

AS NA)

DATE

ALKA-

LAB

(MG/L

CACO3)

AS

LINITY

### STREAMS TRIBUTARY TO LAKE ERIE

### 04214240 EIGHTEENMILE CREEK AT HIGHLAND-ON-THE-LAKE, NY - continued

FLUO-

RIDE,

DIS-

SOLVED

(MG/L

AS F)

WATER-QUALITY DATA (continued)

SOLIDS,

RESIDUE

DEG. C

DIS-

SOLVED

(MG/L)

AT 180

SOLIDS,

CONSTI-

TUENTS,

DIS-

SOLVED

(MG/L)

SOLIDS,

RESIDUE

AT 105

DEG. C,

TOTAL

(MG/L)

SUM OF

SOLIDS,

VOLA-

TILE ON

IGNI-

TION,

TOTAL

(MG/L)

RESIDUE

(MG/L)

TOTAL

FIXED

NITRO-

NITRATE

TOTAL

(MG/L

AS N)

APR 1987 16							184		199	76	128	1.02
27							234		239	66	198	0.990
MAY 19							332		348	44	304	0.980
JUN											272	2.46
2 <b>4</b> JUL				~-			264		316	104	272	2.46
21 SEP							244		304	44	260	
28							256		274	82	192	0.590
NOV 18							196		290	80	2 <b>72</b>	0.540
DEC					- <i>-</i> -				296	100	196	
10 MAR 1988							188					
23 APR	28	1.8 85	5 4	4 5	5	0.10	262	234	274	66	208	1.01
04		53				0.10	168		1110	80	1030	0.490
19 MAY	20	1.7 92	2 4	4 3	ь	0.10	256	209	260	44	216	0.920
05 17	 25	91 2.3 103			0	0.30	2 <b>44</b> 288	227	252 296	60 96	192 200	0.530 0.500
JUN												
28 SEP	29	3.0 100				0.20	312	257	342	109	233	
09 OCT	40	3.1 102	10	0 5	8	0.10	348	336	380	88	292	0.520
05 NOV	30	3.4 113	8	2 4	5	0.10	312	304	320	60	260	
16	18	2.4 76	5 5	6 2	7	0.10	196	200	200	76	124	1.25
	NITRO- GEN,	NITRO-	NITRO-	NITRO-	NITRO-	NITRO- GEN, AM-				PHOS- PHORUS	PHOS	E,
	NITRITE	GEN, NO2+NO3	GEN, AMMONIA		GEN, ORGANIC	MONIA + ORGANIC	GEN,	MITRO- GEN,	PHOS- PHORUS	ORTHO, DIS-	ORTHO DIS-	-
DATE	NITRITE TOTAL (MG/L	NO2+NO3 TOTAL (MG/L	AMMONIA TOTAL (MG/L	AMMONIA TOTAL (MG/L	ORGANIC TOTAL (MG/L	ORGANIC TOTAL (MG/L	GEN, TOTAL (MG/L	GEN, TOTAL (MG/L	PHORUS TOTAL (MG/L	DIS- SOLVED (MG/L	DIS SOLV (MG/	ED L
DATE	NITRITE TOTAL	NO2+NO3 TOTAL	AMMONIA TOTAL	AMMONIA TOTAL	ORGANIC TOTAL	ORGANIC TOTAL	GEN, TOTAL	GEN, TOTAL	PHORUS TOTAL	DIS- SOLVED	DIS- SOLV	ED L
APR 1987	NITRITE TOTAL (MG/L AS N)	NO2+NO3 TOTAL (MG/L AS N)	AMMONIA TOTAL (MG/L AS N)	AMMONIA TOTAL (MG/L AS NH4)	ORGANIC TOTAL (MG/L AS N)	ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS NO3)	PHORUS TOTAL (MG/L AS P)	DIS- SOLVED (MG/L AS P)	DIS- SOLVI (MG/) AS PO-	ED L
	NITRITE TOTAL (MG/L	NO2+NO3 TOTAL (MG/L	AMMONIA TOTAL (MG/L	AMMONIA TOTAL (MG/L	ORGANIC TOTAL (MG/L	ORGANIC TOTAL (MG/L	GEN, TOTAL (MG/L	GEN, TOTAL (MG/L	PHORUS TOTAL (MG/L	DIS- SOLVED (MG/L	DIS SOLV (MG/	ED L
APR 1987 16 27 MAY	NITRITE TOTAL (MG/L AS N) 0.00 0.00	NO2+NO3 TOTAL (MG/L AS N) 1.02 0.990	AMMONIA TOTAL (MG/L AS N) 0.00 0.020	AMMONIA TOTAL (MG/L AS NH4) 0.0 0.03	ORGANIC TOTAL (MG/L AS N) 0.13 0.06	ORGANIC TOTAL (MG/L AS N) 0.13 0.08	GEN, TOTAL (MG/L AS N) 1.2 1.1	GEN, TOTAL (MG/L AS NO3) 5.1 4.7	PHORUS TOTAL (MG/L AS P) 0.010 0.00	DIS- SOLVED (MG/L AS P) ND	DIS- SOLVI (MG/) AS PO-	ED L
APR 1987 16 27 MAY 19 JUN	NITRITE TOTAL (MG/L AS N) 0.00 0.00	NO2+NO3 TOTAL (MG/L AS N) 1.02 0.990	AMMONIA TOTAL (MG/L AS N) 0.00 0.020	AMMONIA TOTAL (MG/L AS NH4) 0.0 0.03	ORGANIC TOTAL (MG/L AS N) 0.13 0.06	ORGANIC TOTAL (MG/L AS N) 0.13 0.08	GEN, TOTAL (MG/L AS N) 1.2 1.1	GEN, TOTAL (MG/L AS NO3) 5.1 4.7	PHORUS TOTAL (MG/L AS P) 0.010 0.00	DIS- SOLVED (MG/L AS P) ND ND	DIS- SOLVI (MG/) AS PO-	- ED L 4)
APR 1987 16 27 MAY 19	NITRITE TOTAL (MG/L AS N) 0.00 0.00	NO2+NO3 TOTAL (MG/L AS N) 1.02 0.990	AMMONIA TOTAL (MG/L AS N) 0.00 0.020	AMMONIA TOTAL (MG/L AS NH4) 0.0 0.03	ORGANIC TOTAL (MG/L AS N) 0.13 0.06	ORGANIC TOTAL (MG/L AS N) 0.13 0.08	GEN, TOTAL (MG/L AS N) 1.2 1.1	GEN, TOTAL (MG/L AS NO3) 5.1 4.7	PHORUS TOTAL (MG/L AS P) 0.010 0.00	DIS- SOLVED (MG/L AS P) ND	DIS- SOLVI (MG/) AS PO-	- ED L 4)
APR 1987 16 27 MAY 19 JUN 24	NITRITE TOTAL (MG/L AS N) 0.00 0.00	NO2+NO3 TOTAL (MG/L AS N) 1.02 0.990	AMMONIA TOTAL (MG/L AS N) 0.00 0.020	AMMONIA TOTAL (MG/L AS NH4) 0.0 0.03	ORGANIC TOTAL (MG/L AS N) 0.13 0.06	ORGANIC TOTAL (MG/L AS N) 0.13 0.08	GEN, TOTAL (MG/L AS N) 1.2 1.1	GEN, TOTAL (MG/L AS NO3) 5.1 4.7	PHORUS TOTAL (MG/L AS P) 0.010 0.00	DIS- SOLVED (MG/L AS P) ND ND	DIS- SOLVI (MG/) AS PO-	ED L 4)
APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28	NITRITE TOTAL (MG/L AS N) 0.00 0.00 0.010	NO2+NO3 TOTAL (MG/L AS N) 1.02 0.990 0.990 2.49	AMMONIA TOTAL (MG/L AS N) 0.00 0.020 0.010	AMMONIA TOTAL (MG/L AS NH4) 0.0 0.03 0.01	ORGANIC TOTAL (MG/L AS N) 0.13 0.06 0.09	ORGANIC TOTAL (MG/L AS N) 0.13 0.08 0.10	GEN, TOTAL (MG/L AS N) 1.2 1.1 2.7	GEN, TOTAL (MG/L AS NO3) 5.1 4.7 4.8	PHORUS TOTAL (MG/L AS P) 0.010 0.00 0.00	DIS- SOLVED (MG/L AS P) ND ND ND	DISSOLVI (MG/) AS PO-	ED L 4)
APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV 18	NITRITE TOTAL (MG/L AS N) 0.00 0.00 0.010 0.030	NO2+NO3 TOTAL (MG/L AS N) 1.02 0.990 0.990 2.49	AMMONIA TOTAL (MG/L AS N) 0.00 0.020 0.010 0.040	AMMONIA TOTAL (MG/L AS NH4) 0.0 0.03 0.01 0.05	ORGANIC TOTAL (MG/L AS N) 0.13 0.06 0.09 0.17	ORGANIC TOTAL (MG/L AS N) 0.13 0.08 0.10 0.21	GEN, TOTAL (MG/L AS N) 1.2 1.1 2.7	GEN, TOTAL (MG/L AS NO3) 5.1 4.7 4.8 12 2.1	PHORUS TOTAL (MG/L AS P) 0.010 0.00 0.00 0.060	DIS- SOLVED (MG/L AS P) ND ND ND	DIS- SOLVI (MG/: AS PO-	ED L 4)
APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV 18 DEC 10	NITRITE TOTAL (MG/L AS N) 0.00 0.010 0.030	NO2+NO3 TOTAL (MG/L AS N) 1.02 0.990 0.990 2.49 0.220 0.590	AMMONIA TOTAL (MG/L AS N) 0.00 0.020 0.010 0.040 0.020	AMMONIA TOTAL (MG/L AS NH4) 0.0 0.03 0.01 0.05 0.03	ORGANIC TOTAL (MG/L AS N) 0.13 0.06 0.09 0.17 0.23	ORGANIC TOTAL (MG/L AS N) 0.13 0.08 0.10 0.21 0.25	GEN, TOTAL (MG/L AS N) 1.2 1.1 1.1 2.7 0.47	GEN, TOTAL (MG/L AS NO3) 5.1 4.7 4.8 12 2.1 3.9	PHORUS TOTAL (MG/L AS P) 0.010 0.00 0.00 0.060 0.00 0.010	DIS- SOLVED (MG/L AS P) ND ND 0.00 0.00	DIS- SOLVI (MG/X AS PO-	0 0 0
APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV 18 DEC 10 MAR 1988	NITRITE TOTAL (MG/L AS N) 0.00 0.010 0.030  0.00 0.00	NO2+NO3 TOTAL (MG/L AS N) 1.02 0.990 0.990 2.49 0.220 0.590	AMMONIA TOTAL (MG/L AS N) 0.00 0.020 0.010 0.040 0.020 0.020	AMMONIA TOTAL (MG/L AS NH4) 0.0 0.03 0.01 0.05 0.03 0.03	ORGANIC TOTAL (MG/L AS N) 0.13 0.06 0.09 0.17 0.23 0.26	ORGANIC TOTAL (MG/L AS N) 0.13 0.08 0.10 0.21 0.25 0.28	GEN, TOTAL (MG/L AS N) 1.2 1.1 2.7 0.47 0.87	GEN, TOTAL (MG/L AS NO3) 5.1 4.7 4.8 12 2.1 3.9 5.8	PHORUS TOTAL (MG/L AS P) 0.010 0.00 0.00 0.060 0.010 0.280	DIS- SOLVED (MG/L AS P) ND ND 0.00 0.00	DIS-SOLVI (MG/: AS PO: 0	0 0 0
APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV 18 DEC 10 MAR 1988 23 APR	NITRITE TOTAL (MG/L AS N)  0.00 0.00 0.010 0.030 0.00 0.00	NO2+NO3 TOTAL (MG/L AS N) 1.02 0.990 0.990 2.49 0.220 0.590 	AMMONIA TOTAL (MG/L AS N) 0.00 0.020 0.010 0.040 0.020 0.020	AMMONIA TOTAL (MG/L AS NH4) 0.0 0.03 0.01 0.05 0.03 0.03 0.19	ORGANIC TOTAL (MG/L AS N)  0.13 0.06 0.09 0.17 0.23 0.26 0.62	ORGANIC TOTAL (MG/L AS N)  0.13 0.08  0.10 0.21 0.25 0.28 0.77 0.14	GEN, TOTAL (MG/L AS N) 1.2 1.1 2.7 0.47 0.87 1.3	GEN, TOTAL (MG/L AS NO3) 5.1 4.7 4.8 12 2.1 3.9 5.8	PHORUS TOTAL (MG/L AS P) 0.010 0.00 0.00 0.060 0.010 0.280	DIS- SOLVED (MG/L AS P) ND ND 0.00 0.00 0.00	DIS SOLV! (MG/:) AS PO:  0.  0.  0.	0 0 0 0
APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV 18 DEC 10 MAR 1988 23 APR 04 19	NITRITE TOTAL (MG/L AS N) 0.00 0.010 0.030  0.00 0.00	NO2+NO3 TOTAL (MG/L AS N) 1.02 0.990 0.990 2.49 0.220 0.590 0.540	AMMONIA TOTAL (MG/L AS N) 0.00 0.020 0.010 0.040 0.020 0.020	AMMONIA TOTAL (MG/L AS NH4) 0.0 0.03 0.01 0.05 0.03 0.03	ORGANIC TOTAL (MG/L AS N) 0.13 0.06 0.09 0.17 0.23 0.26	ORGANIC TOTAL (MG/L AS N) 0.13 0.08 0.10 0.21 0.25 0.28	GEN, TOTAL (MG/L AS N) 1.2 1.1 1.1 2.7 0.47 0.87 1.3	GEN, TOTAL (MG/L AS NO3) 5.1 4.7 4.8 12 2.1 3.9 5.8	PHORUS TOTAL (MG/L AS P) 0.010 0.00 0.00 0.060 0.00 0.010 0.280	DIS- SOLVED (MG/L AS P) ND ND 0.00 0.00 0.00	DIS- SOLVI (MG/: AS PO-	0 0 0 0
APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV 18 DEC 10 MAR 1988 23 APR 04 19 MAY	NITRITE TOTAL (MG/L AS N)  0.00 0.00 0.010 0.030 0.00 0.00 0.00 0.00 0.00 0.00	NO2+NO3 TOTAL (MG/L AS N) 1.02 0.990 0.990 2.49 0.220 0.590  1.01 0.490 0.920 0.530	AMMONIA TOTAL (MG/L AS N) 0.00 0.020 0.010 0.040 0.020 0.150  ND 0.800 ND	AMMONIA TOTAL (MG/L AS NH4) 0.0 0.03 0.01 0.05 0.03 0.03 0.19  1.0 	ORGANIC TOTAL (MG/L AS N)  0.13 0.06 0.09 0.17 0.23 0.26 0.62 0.90 0.14	ORGANIC TOTAL (MG/L AS N)  0.13 0.08  0.10  0.21  0.25  0.28  0.77   0.14  1.7  0.15  0.15	GEN, TOTAL (MG/L AS N) 1.2 1.1 2.7 0.47 0.87 1.3  1.2 2.2 1.1	GEN, TOTAL (MG/L AS NO3) 5.1 4.7 4.8 12 2.1 3.9 5.8  5.1 9.7 4.7	PHORUS TOTAL (MG/L AS P)  0.010 0.00 0.000 0.000 0.010 0.280 0.010 0.570 0.010 0.010	DIS- SOLVED (MG/L AS P) ND ND 0.00 0.00 0.00  0.00 0.00 ND ND	DIS SOLVI (MG/: AS PO: 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0 0 0 0 0
APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV 18 DEC 10 MAR 1988 23 APR 04 19 MAY 05 17 JUN	NITRITE TOTAL (MG/L AS N)  0.00 0.00 0.010 0.030 0.00 0.00 0.00 0.00 0.00 0.00	NO2+NO3 TOTAL (MG/L) AS N) 1.02 0.990 0.990 2.49 0.220 0.590  1.01 0.490 0.920 0.530 0.500	AMMONIA TOTAL (MG/L AS N) 0.00 0.020 0.010 0.020 0.020 0.150  ND 0.800 ND	AMMONIA TOTAL (MG/L AS NH4) 0.0 0.03 0.01 0.05 0.03 0.19  1.0  0.01 0.0	ORGANIC TOTAL (MG/L AS N)  0.13 0.06  0.09 0.17 0.23 0.26  0.62 0.90 0.14 0.25	ORGANIC TOTAL (MG/L AS N)  0.13 0.08  0.10 0.21 0.25 0.28 0.77 0.14 1.7 0.15 0.15 0.25	GEN, TOTAL (MG/L AS N)  1.2 1.1 1.1 2.7 0.47 0.87 1.3 1.2 2.2 1.1 0.68 0.75	GEN, TOTAL (MG/L AS NO3) 5.1 4.7 4.8 12 2.1 3.9 5.8  5.1 9.7 4.7	PHORUS TOTAL (MG/L AS P)  0.010 0.00  0.060  0.010  0.280   0.010  0.570  0.010  0.010  0.010	DIS- SOLVED (MG/L AS P) ND ND 0.00 0.00 0.00 0.00 0.00 0.00 ND ND	DIS SOLVI (MG/: AS POOR	0 0 0 0 0
APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV 18 DEC 10 MAR 1988 23 APR 04 19 MAY 17 JUN 28 SEP	NITRITE TOTAL (MG/L AS N)  0.00 0.00 0.010 0.030 0.00 0.00 0.00 0.00 0.00 0.00	NO2+NO3 TOTAL (MG/L AS N) 1.02 0.990 0.990 2.49 0.220 0.590  1.01 0.490 0.920 0.530	AMMONIA TOTAL (MG/L AS N) 0.00 0.020 0.010 0.040 0.020 0.150  ND 0.800 ND	AMMONIA TOTAL (MG/L AS NH4) 0.0 0.03 0.01 0.05 0.03 0.03 0.19  1.0 	ORGANIC TOTAL (MG/L AS N)  0.13 0.06 0.09 0.17 0.23 0.26 0.62 0.90 0.14	ORGANIC TOTAL (MG/L AS N)  0.13 0.08  0.10  0.21  0.25  0.28  0.77   0.14  1.7  0.15  0.15	GEN, TOTAL (MG/L AS N) 1.2 1.1 2.7 0.47 0.87 1.3  1.2 2.2 1.1	GEN, TOTAL (MG/L AS NO3) 5.1 4.7 4.8 12 2.1 3.9 5.8  5.1 9.7 4.7	PHORUS TOTAL (MG/L AS P)  0.010 0.00 0.000 0.000 0.010 0.280 0.010 0.570 0.010 0.010	DIS- SOLVED (MG/L AS P) ND ND 0.00 0.00 0.00  0.00 0.00 ND ND	DIS SOLVI (MG/: AS PO: 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	0 0 0 0 0
APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV 18 DEC 10 MAR 1988 23 APR 04 19 MAY 05 17 JUN 28 SEP 09	NITRITE TOTAL (MG/L AS N)  0.00 0.00 0.010 0.030 0.00 0.00 0.00 0.00 0.00 0.00	NO2+NO3 TOTAL (MG/L) AS N) 1.02 0.990 0.990 2.49 0.220 0.590  1.01 0.490 0.920 0.530 0.500	AMMONIA TOTAL (MG/L AS N) 0.00 0.020 0.010 0.020 0.020 0.150  ND 0.800 ND	AMMONIA TOTAL (MG/L AS NH4) 0.0 0.03 0.01 0.05 0.03 0.19  1.0  0.01 0.0	ORGANIC TOTAL (MG/L AS N)  0.13 0.06  0.09 0.17 0.23 0.26  0.62 0.90 0.14 0.25	ORGANIC TOTAL (MG/L AS N)  0.13 0.08  0.10 0.21 0.25 0.28 0.77 0.14 1.7 0.15 0.15 0.25	GEN, TOTAL (MG/L AS N)  1.2 1.1 1.1 2.7 0.47 0.87 1.3 1.2 2.2 1.1 0.68 0.75	GEN, TOTAL (MG/L AS NO3) 5.1 4.7 4.8 12 2.1 3.9 5.8  5.1 9.7 4.7	PHORUS TOTAL (MG/L AS P)  0.010 0.00  0.060  0.010  0.280   0.010  0.570  0.010  0.010  0.010	DIS- SOLVED (MG/L AS P) ND ND 0.00 0.00 0.00 0.00 0.00 0.00 ND ND	DIS SOLVI (MG/: AS POOR	0 0 0 0 0
APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV 18 DEC 10 MAR 1988 23 APR 04 19 MAY 05 17 JUN 28 SEP 09 OCT	NITRITE TOTAL (MG/L AS N)  0.00 0.010 0.030 0.00 0.00 0.00 0.00 0.00 0.00	NO2+NO3 TOTAL (MG/L AS N) 1.02 0.990 0.990 2.49 0.220 0.590 	AMMONIA TOTAL (MG/L AS N) 0.00 0.020 0.010 0.020 0.150  ND 0.800 ND 0.010 0.010	AMMONIA TOTAL (MG/L AS NH4) 0.0 0.03 0.01 0.05 0.03 0.03 0.19  1.0  0.01 0.0	ORGANIC TOTAL (MG/L AS N)  0.13 0.06  0.09  0.17  0.23  0.26  0.62   0.90   0.14  0.25  0.18	ORGANIC TOTAL (MG/L AS N)  0.13 0.08  0.10  0.21  0.25  0.28  0.77   0.14  1.7  0.15  0.15  0.25  0.19	GEN, TOTAL (MG/L AS N) 1.2 1.1 1.1 2.7 0.47 0.87 1.3  1.2 2.2 1.1 0.68 0.75	GEN, TOTAL (MG/L AS NO3) 5.1 4.7 4.8 12 2.1 3.9 5.8  5.1 9.7 4.7 3.0 3.3 1.4	PHORUS TOTAL (MG/L AS P)  0.010 0.00 0.000 0.000 0.010 0.280 0.010 0.570 0.010 0.010 0.010 0.010	DIS- SOLVED (MG/L AS P) ND ND 0.00 0.00 0.00  0.00 ND ND ND	DIS SOLVI (MG/: AS POOR	0 0 0 0 0
APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV 18 DEC 10 MAR 1988 23 APR 04 19 MAY 05 JUN 28 SEP 09 OCT	NITRITE TOTAL (MG/L AS N)  0.00 0.00 0.010 0.030 0.00 0.00 0.00 0.00 0.00 0.00	NO2+NO3 TOTAL (MG/L) AS N) 1.02 0.990 0.990 2.49 0.220 0.590 0.540  1.01 0.490 0.920 0.530 0.500 0.130	AMMONIA TOTAL (MG/L AS N) 0.00 0.020 0.010 0.020 0.150  ND 0.800 ND 0.010 0.001 0.001	AMMONIA TOTAL (MG/L AS NH4) 0.0 0.03 0.01 0.05 0.03 0.19  1.0  0.01 0.0 0.01	ORGANIC TOTAL (MG/L AS N)  0.13 0.06 0.09 0.17 0.23 0.26 0.62 0.90 0.14 0.25 0.18 0.32	ORGANIC TOTAL (MG/L AS N)  0.13 0.08  0.10  0.21  0.25  0.28  0.77   0.14  1.7 0.15  0.15  0.25  0.19  0.34	GEN, TOTAL (MG/L AS N) 1.2 1.1 1.1 2.7 0.47 0.87 1.3  1.2 2.2 1.1 0.68 0.75 0.32	GEN, TOTAL (MG/L AS NO3)  5.1 4.7 4.8 12 2.1 3.9 5.8 5.1 9.7 4.7 3.0 3.3 1.4 3.8	PHORUS TOTAL (MG/L AS P)  0.010 0.00  0.000  0.060  0.010  0.280   0.010  0.570  0.010  0.010  0.010  0.010  0.010  0.010	DIS- SOLVED (MG/L AS P) ND ND 0.00 0.00 0.00 0.00 0.00 0.00 ND ND ND ND	DIS SOLVI (MG/: AS POOR	0 0 0 0 0

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 04214240 EIGHTEENMILE CREEK AT HIGHLAND-ON-THE-LAKE, NY - continued

	ALUM- INUM,	ALUM-	CADMIUM		COPPER,		IRON,		LEAD,		MANGA- NESE,
	TOTAL RECOV- ERABLE	INUM, DIS- SOLVED	TOTAL RECOV- ERABLE	CADMIUM DIS- SOLVED	TOTAL RECOV- ERABLE	COPPER, DIS- SOLVED	TOTAL RECOV- ERABLE	IRON, DIS- SOLVED	TOTAL RECOV- ERABLE	LEAD, DIS- SOLVED	TOTAL RECOV- ERABLE
DATE	(UG/L AS AL)	(UG/L AS AL)	(UG/L AS CD)	(UG/L AS CD)	(UG/L AS CU)	(UG/L AS CU)	(UG/L AS FE)	(UG/L AS FE)	(UG/L AS PB)	(UG/L AS PB)	(UG/L AS MN)
APR 1987											
16 27			<10 <10		<10 <10		80 100		<100 9		<10 <10
MAY 19			<10		10		90		<5		10
JUN 24			<10		<10		730		13		40
JUL 21 SEP			<10	1.0	20	4	200		<5	<5	10
28			<10	~-	<10		360		<100		20
NOV 18			1		12		5400		7		130
DEC 10			<1		11		3600		7		80
MAR 1988 23	110	<10	<1	<1.0	3	1	260	12	<5	<b>&lt;</b> 5	30
APR 04	17000		<1		31		35000		14		690
19 MAY	<10	20	1	<1.0	2	3	110	16	<5	<5	12
05 17	30 70	 10	2 6	 <1.0	<b>4</b> 9	 3	110 220	 25	16 <b>&lt;</b> 5	 <5	10 10
JUN 28	90		1		4		200		<b>&lt;</b> 5		50
SEP 09	140		<1		4		280		<b>&lt;</b> 5		20
ОСТ 05	90	<10	1	<1.0	10	1	160	21	<5	<5	20
NOV 16	50		<1		3		260		<5		30
10	30		~1		3		200		\3		50
	MANGA-	MERCURY	NICKEL.		ZINC.			CARBON-		CHI.ORO-	
	MANGA- NESE,	MERCURY TOTAL	NICKEL, TOTAL	NICKEL,	ZINC, TOTAL	ZINC,	BROWO -	CARBON- TETRA-	CHI OBO-	CHLORO- DI-	כעו ספס.
2200	NESE, DIS- SOLVED	TOTAL RECOV- ERABLE	TOTAL RECOV- ERABLE	DIS- SOLVED	TOTAL RECOV- ERABLE	DIS- SOLVED	BROMO- FORM	TETRA- CHLO- RIDE	CHLORO- BENZENE	DI- BROMO- METHANE	CHLORO- ETHANE
DATE	NESE, DIS-	TOTAL RECOV-	TOTAL RECOV-	DIS-	TOTAL RECOV-	DIS-		TETRA- CHLO-		DI- BROMO-	
APR 1987	NESE, DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L	FORM TOTAL (UG/L)	TETRA- CHLO- RIDE TOTAL	BENZENE TOTAL (UG/L)	DI- BROMO- METHANE TOTAL (UG/L)	ETHANE TOTAL (UG/L)
	NESE, DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	FORM TOTAL	TETRA- CHLO- RIDE TOTAL (UG/L)	BENZENE TOTAL	DI- BROMO- METHANE TOTAL	ETHANE TOTAL
APR 1987 16	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L) ND	TETRA- CHLO- RIDE TOTAL (UG/L)	BENZENE TOTAL (UG/L) ND	DI- BROMO- METHANE TOTAL (UG/L)	ETHANE TOTAL (UG/L) ND
APR 1987 16 27 MAY	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L) ND ND	TETRA- CHLO- RIDE TOTAL (UG/L) ND	BENZENE TOTAL (UG/L) ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND	ETHANE TOTAL (UG/L) ND ND
APR 1987 16 27 MAY 19 JUN 24	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND ND ND ND	TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND	BENZENE TOTAL (UG/L) ND ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND	ETHANE TOTAL (UG/L)  ND ND ND ND
APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 0.10 <0.10 <0.10 0.20	TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 <1 <1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND ND ND ND	TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND ND ND ND	BENZENE TOTAL (UG/L) ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND	ETHANE TOTAL (UG/L)  ND ND ND ND ND
APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 0.10 <0.10 <0.10 0.20 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <100 <1 <1 <1 <1 <1 <100	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND ND ND ND ND ND	TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND ND ND ND ND	BENZENE TOTAL (UG/L) ND ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND	ETHANE TOTAL (UG/L)  ND ND ND ND ND ND ND
APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV 18 DEC	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 0.10 <0.10 <0.10 <0.10 <0.10 -0.10	TOTAL RECOV-ERABLE (UG/L AS NI)  <100 <1 <1 <1 <1 <1 <1 <1 <5	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS ZN)  <10 <10 <10  10  <10  410  410  410  410  410  410  410  4	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND ND ND ND ND ND ND	TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND ND	BENZENE TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND	ETHANE TOTAL (UG/L)  ND
APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV 18 DEC 10 MAR 1988	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 0.10 <0.10 <0.10 <0.10 -0.10 <0.10 <0.10	TOTAL RECOVERABLE (UG/L AS NI)  <100 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND	BENZENE TOTAL (UG/L) ND ND ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L)  ND ND ND ND ND ND ND ND	ETHANE TOTAL (UG/L)  ND
APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV 18 DEC 10 MAR 1988 23 APR	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)  <100 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOVERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTAL (UG/L) ND	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND	ETHANE TOTAL (UG/L)  ND
APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV 18 DEC 10 MAR 1988 23	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 0.10 <0.10 <0.10 <0.10 -0.10 <0.10 <0.10	TOTAL RECOVERABLE (UG/L AS NI)  <100 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND	BENZENE TOTAL (UG/L) ND ND ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L)  ND ND ND ND ND ND ND ND	ETHANE TOTAL (UG/L)  ND
APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV 18 DEC 10 MAR 1988 23 APR 04 19 MAY	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)  <100 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND
APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV 18 DEC 10 MAR 1988 23 APR 04 19 MAY 05 17	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)  <100 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOVERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND
APR 1987 16 27 MAY 19 JUN 24 SEP 28 NOV 18 DEC 10 MAR 1988 23 APR 04 19 MAY 05 17 JUN 28	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOVERABLE (UG/L AS HG)  <0.10 0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)  <100 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOVERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND	BENZENE TOTAL (UG/L) ND ND ND ND ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND	ETHANE TOTAL (UG/L)  ND
APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV 18 DEC 10 MAR 1988 23 APR 04 19 MAY 05 17 JUN 28 SEP 09	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)  <100 <1 <1 <1 <1 <1 <1 <1 <1 <4 <1 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	DIS-SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE RIDE TOTAL (UG/L)  ND	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND
APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV 18 DEC 10 MAR 1988 23 APR 04 19 MAY 05 17 JUN 28 SEP	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOVERABLE (UG/L AS HG)  <0.10	TOTAL RECOVERABLE (UG/L AS NI)  <100 <1 <1 <1 <1 <1 <1 <1 <4 <1 <1 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4 <4	DIS- SOLVED (UG/L AS NI)	TOTAL RECOVERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	DIS-SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND N	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 04214240 EIGHTEENMILE CREEK AT HIGHLAND-ON-THE-LAKE, NY - continued

DATE	CHLORO- FORM TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)
APR 1987 16 27	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
MAY 19	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
JUN 24	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
JUL 21	1.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SEP 28	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
NOV 18	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DEC 10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MAR 1988 23	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
APR 04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
19	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ИD
MAY 05 17 JUN	0 ND	0 ND	0 ND	0 ND	0 ND	0 ND	0 ND	0 ND	0 ND	0 ND	0 ND
28	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SEP 09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
OCT 05	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
NOV 16	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DATE	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	TRI - CHLORO- ETHYL- ENE TOTAL (UG/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)
APR 1987	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
	CHLORO- BENZENE TOTAL	CHLORO- ETHANE WATER WHOLE TOTAL	CHLORO- PROPANE TOTAL	TRANSDI CHLORO- ETHENE TOTAL	CHLORO- BENZENE TOTAL	CHLORO- BENZENE TOTAL	CHLORO- ETHYL- ENE TOTAL	1,3-DI- CHLORO- PROPENE TOTAL	CHLORO- ETHYL- ENE TOTAL	CHLORO- ETHYL- VINYL- ETHER TOTAL	CHLO- RIDE TOTAL
APR 1987 16	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
APR 1987 16 27 MAY	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND	CHLORO- PROPANE TOTAL (UG/L) ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND	CHLO- RIDE TOTAL (UG/L) ND
APR 1987 16 27 MAY 19 JUN 24 JUL	CHLORO- BENZENE TOTAL (UG/L) ND ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND	CHLO- RIDE TOTAL (UG/L) ND ND
APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND ND ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND ND ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND ND ND ND ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND	CHLORO-ETHYL-ENETOTAL (UG/L)  ND ND ND ND ND	CHLORO-ETHYL-VINYL-ETHER TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND ND
APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)  ND ND ND ND ND ND	CHLORO-PROPANE TOTAL (UG/L)  ND ND ND ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND ND ND	CHLO-RIDE TOTAL (UG/L)  ND ND ND ND ND
APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV 18 DEC	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND ND ND ND ND ND ND ND	CHLORO-PROPANE TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-VINYL-ETHER TOTAL (UG/L)  ND N	CHLO-RIDE TOTAL (UG/L)  ND ND ND ND ND ND ND
APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV 18 DEC 10 MAR 1988	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND
APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV 18 DEC 10 MAR 1988 23 APR	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND
APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV 18 DEC 10 MAR 1988 23 APR 04 19	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND
APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV 18 DEC 10 MAR 1988 23 APR 04 19 MAY 05	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-ETHANE WHOLE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND
APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV 18 DEC 10 MAR 1988 23 APR 04 19 MAY	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-VINYL-ETHER TOTAL (UG/L)  ND N	CHLO-RIDE TOTAL (UG/L)  ND
APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV 18 DEC 10 MAR 1988 23 APR 04 19 MAY 05 17	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-ETHANE WHOLE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND
APR 1987 16 27 MAY 19 JUN 24 JUL 21 SEP 28 NOV 18 DEC 10 MAR 1988 23 APR 04 19 MAY 05 17 JUN 28	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND
APR 1987 16 27 MAY 19 JUN 24 JUN 21 SEP 28 NOV 18 DEC 10 MAR 1988 23 APR 04 19 MAY 05 17 JUN 28 SEP	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND ND ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 04214240 EIGHTEENMILE CREEK AT HIGHLAND-ON-THE-LAKE, NY - continued

## SUSPENDED SEDIMENT DISCHARGE

		DIS- CHARGE, INST. CUBIC FEET	SEDI- MENT, SUS-	SEDI- MENT, DIS- CHARGE, SUS-
DATE	TIME	PER SECOND	PENDED (MG/L)	PENDED (T/DAY)
APR 1987		5555115	(11072)	( , , , , , , , , , , , , , , , , , , ,
16	1330		10	
27	1400	19	3	0.15
JUN				
24	0830	86	22	5.1
JUL				
21	1300		6	
SEP			_	
28	1310	201	6	3.3
DEC				
10	1205	802	92	199
MAY 1988	0900	250	15	10
17 JUN	0900	250	15	10
28	1315	97	7	1.8
SEP	1313	31	,	1.0
09	0900	40	10	1.1
OCT		••	**	
05	1130	22	4	0.24
NOV			-	0.2.
16	1140		2	

# BED MATERIAL ANALYSES

DATE JUL 1987 21 JUN 1988 28	TIME 1300 1315	VO TIL BOT M TE (MG		ALUM- INUM, RECOV. FM BOT- FOM MA- TERIAL (UG/G) 8000	FM F TOM TEF (UC	COV. N BOT- F MA- FN RIAL TO	CHRO- MIUM, RECOV. M BOT- DM MA- TERIAL (UG/G)	RE FM TOM TE (U	COV. I BOT- FI MA- TO RIAL '	IRON, RECOV. M BOT- DM MA- TERIAL (UG/G AS FE) 20000	RE FM TOM TE (U	COV. BOT- MA- F CRIAL T	MANGA- NESE, RECOV M BOT- OM MA- TERIAI (UG/G	RE R	RCURY ECOV. BOT- I MA- ERIAL JG/G S HG) (0.10	FM E TOM TER (UC	COV. BOT- MA- RIAL	ZINC, RECOV. FM BOT- IOM MA- TERIAL (UG/G AS ZN) 110
DATE JUL 1987 21 JUN 1988 28	AROC: 122 IN BOTTY MA' (UG/)	OM T. KG)	AROCLI 124 PCB BOT.M (UG/K	B 1: PC AT BOT G) (UG	CLOR 254 CB .MAT /KG)	AROCLOF 1260 PCB BOT.MAT (UG/KG)	IN B TOM	AL OT- MA- IAL KG)	ALPHA BHC TOTAL IN BOT- TOM MA TERIAL (UG/KG	TOM TEI (UG)	NE, FAL BOT- MA- RIAL /KG)	BETA BENZEN HEXA- CHLOR IDE BOT.MA (UG/KG	E D. TO TO TO (U)	HLOR- ANE, OTAL BOT- M MA- ERIAL G/KG)	CHLOF PYRIE IN BC MAT. (UG/F	FOS OT.	DELT. BENZE HEXA CHLO. IDE BOT.M. (UG/K	NE - R-
DATE JUL 1987 21 JUN 1988 28	DI AZING TOT: IN B TOM: TER (UG/	ON, AL OT- MA- IAL KG)	DI- ELDRI TOTA IN BO TOM M TERI (UG/K	L ENI T- SULI A- ALI AL BOT G) (UG	PHA .MAT /KG)	ENDO- SULFAN BETA BOT.MAT (UG/KG)		FAN ATE MAT KG)	ENDRIN TOTAL IN BOT TOM MA TERIAL (UG/KG	ENDI - ALI - HY L BOT	DE- YDE .MAT /KG)	ETHION TOTAL IN BOT TOM MA TERIA (UG/KG	. CI - IN - TO L TI	EPTA- HLOR, OTAL BOT- M MA- ERIAL G/KG)	HEPTICHLC EPOXITOT. BOTTIMATI (UG/F	OR IDE IN IOM I'L.	MALA THIOI TOTA IN BO' TOM M. TERI (UG/K)	N, L Γ- A- AL
DATE JUL 1987 21 JUN 1988 28	METTOXY CHLOTOT. BOTTOMAY (UG/	OR, IN TOM TL. KG)	MIRE TOTA IN BO TOM M TERI (UG/K	X, Di L TO' I- IN I A- TOM AL TEI G) (UG	, P' DD, FAL BOT- MA- RIAL /KG)	P,P' DDE, TOTAL, IN BOT- TOM MA- TERIAL (UG/KG)	TOM	T, AL OT- MA- IAL KG)	PARA- THION TOTAL IN BOT TOM MA TERIA: (UG/KG	PHI TOT IN I TOM TEI (UG,	BOT- MA- RIAL /KG)	BED MAT. FALL DIAM. % FINE THAN .004 M	S D R &	BED MAT. IEVE IAM. FINER THAN 62 MM	BEI MAT SIEV DIAN % FIN THA	r. /e 1. Ner An	BED MAT SIEVI DIAM % FINI THAI 2.00 1	E ER N

### 04214480 BUFFALO CREEK NEAR BLOSSOM, NY

LOCATION.--Lat 42 50'41", long 78 58'00", Erie County, Hydrologic Unit 04120103, at bridge on Pound Road, 1.5 mi (2.4 km) upstream from bridge in Blossom, and 2.3 mi (3.7 km) downstream from bridge on Bowen Road in Elma.

DRAINAGE AREA. -- 135 mi2.

PERIOD OF RECORD.--April to December 1987. CHEMICAL DATA: 1987 (c), 1988 (a). MINOR ELEMENT DATA: 1987 (c), 1988 (a). PESTICIDE DATA: 1987 (c), 1988 (a). NUTRIENT DATA: 1987 (c), 1988 (a). SEDIMENT DATA: 1987 (b), 1988 (a).

REMARKS.--Water-discharge data based on records from stream-flow gage 04214500 Buff. Creek at Gardenville. Sampling site move to 04214500 Buff. Creek at Gardenville in 1988.

DATE	TIME	DIS- CHARGE, IN CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)
APR 1987												
15	1500	157		9.0	15.5	2.0	17.1	150	47	9.0		188
29	1030	327		8.1	7.0	13	12.4	130	41	7.6		164
MAY												
20	1830	44	445	8.4	20.0	1.0		200	58	13		260
JUN												
24	1010	172		8.2	20.0	20		150	48	8.2		216
JUL												
21	1600	76		8.6	32.0	18	8.6	110	35	6.6		168
SEP	1045		407	0.6	22.0						0.00	220
29 NOV	1045	64	407	8.6	22.0	1.6					0.20	228
18	1300	357		8.0	7.0	35	16.0	130	39	7.7		184
DEC	1300	331		0.0	7.0	23	10.0	130	33	,.,		104
09	1115	530		8.0	5.5	36	12.4					228

DATE	SOLIDS, RESIDUE AT 105 DEG. C, TOTAL (MG/L)	SOLIDS, VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	RESIDUE TOTAL FIXED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS NH4)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)
APR 1987											
15	202	22	180	0.890	0.00	0.890	0.010	0.01	0.17	0.18	1.1
29	204	34	170		ND	0.620	0.020	0.03	0.18	0.20	0.82
MAY											
20	308	100	208	0.550	0.00	0.550	0.020	0.03	0.08	0.10	0.65
JUN											
24	300	112	188	2.60	0.020	2.62	0.050	0.06	0.22	0.27	2.9
JUL											
21	192	16	176			0.610	0.030	0.04	0.43	0.46	1.1
SEP											
29	264	100	164		ND	0.050	0.030	0.04	0.30	0.33	0.38
NOV											
18	252	76	176	0.440	0.00	0.440	0.040	0.05	0.30	0.34	0.78
DEC											
09	264	144	120								

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

## 04214480 BUFFALO CREEK NEAR BLOSSOM, NY - continued

DATE	NITRO- GEN, TOTAL (MG/L AS NO3)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)
APR 1987											
15 29	4.7 3.6	0.010 0.030	ND ND		<10 <10		<10 <10		120 560	<100 <5	
MAY 20 JUN	2.9	0.010	ND		<10	<1.0	<10	4	80	<5	<5
24 JUL	13	0.080	0.00	0.0	<10		<10		630	<5	
21 SEP	4.7	0.040	0.00	0.0	<10		30		1000	<5	
29 NOV	1.7	0.010	ND		<10		<10		120	<100	
18 DEC	3.5	0.120	0.00	0.0	1		9		2000	<b>&lt;</b> 5	
09					<1		8		2300	<5	
DATE	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)	BROMO- FORM TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)
APR 1987 15	10	<0.10	<100		<10		ND	ND	ND	ND	ND
29 May	30	0.10	2		<10		ND	ND	ND	ND	ND
20 Jun	<10	<0.10	<1	5	10	<10	ND	ИD	ND	ND	ND
24 JUL	50	<0.10	<1		10		ИD	ND	ИD	ND	ND
21 SEP	40	0.20	3		20		ND	ND	ND	ND	ИD
29 NOV	10	<0.10	<100		<10		ИD	ND	ND	ND	ND
18 DEC	70		3		20		ИD	ИD	ND	ND	ND
09	60	<0.10	2		20		ND	ND	ND	ND	ND
DATE	CHLORO- FORM TOTAL	CIS 1,3-DI- CHLORO- PROPENE TOTAL	DI- CHLORO- BROMO- METHANE TOTAL	METHYL- BROMIDE TOTAL	METHYL- CHLO- RIDE TOTAL	METHYL- ENE CHLO- RIDE TOTAL	1,1,1- TRI- CHLORO- ETHANE TOTAL	1,1-DI- CHLORO- ETHANE TOTAL	1,1-DI- CHLORO- ETHYL- ENE TOTAL	1,1,2- TRI- CHLORO- ETHANE TOTAL	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL
	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)	(UG/L)
APR 1987 15	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
29 MAY	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
20 JUN	ND	ND	ND	ND	ND	ND	ND	ND	ND	ИD	ND
24 JUL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
21 SEP	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
29 NOV	ND	ИD	ND	ND	ND	ND	ND	ИD	ND	ND	ND
18 DEC	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

## 04214480 BUFFALO CREEK NEAR BLOSSOM, NY - continued

# WATER-QUALITY DATA (continued)

DATE	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)
APR 1987											
15	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
29	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MAY											
20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
JUN											
24	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
JUL											
21	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SEP 29	ND	MD	MD	ND.	ND	ND.	ND.	MD		110	ND
NOV	ND	ND	ND	ND	עא	ND	ND	ND	ND	ND	ND
18	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DEC						1.0	1.0		ND	1.0	
09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

### SUSPENDED SEDIMENT DISCHARGE

DATE	TIME	DIS- CHARGE, IN CUBIC FEET PER SECOND	SEDI ~ MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)
APR 1987				
15	1500	157	8	3.4
29	1030	327	21	19
JUN				
24	1010	172	35	16
DEC				
0 <b>9</b>	1115	530	63	90

# BED MATERIAL ANALYSES

DATE	TIME	SOLIDS, VOLA- TILE IN BOTTOM MA- TERIAL (MG/KG)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	MIUM, RECOV. FM BOT-		IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
JUL 1987								
21	1600	66200	1	130	10	9900	20	620
DATE	MERC' REC' FM B TOM   TER (UG AS	OV. REG OT- FM I MA- TOM IAL TEI /G (UG	COV. RE BOT- FM MA- TOM RIAL TE G/G (U	COV. M BOT- F MA- DI RIAL % F G/G T	AT. MA ALL SIE AM. DIA INER % FI HAN TE	EVE SIE AM. DIA INER % FI HAN TH	AT. MA EVE SIE AM. DIA	T. VE M. NER AN
JUL 1987 21	<0	.10	10	60	85	60	82	100

## 04214500 BUFFALO CREEK AT GARDENVILLE NY

LOCATION.--Lat 42 51' 17", long 78 45'19", Erie County, Hydrologic Unit 04120103, on left bank 300 ft downstream from bridge on Union Road in Gardenville, 2 mi upstream from Cayuga Creek, and 10.1 mi upstream from mouth.

DRAINAGE AREA .-- 142 mi2.

PERIOD OF RECORD.--Water years 1988 to 1989. CHEMICAL DATA: 1988 (c), 1989 (a). MINOR ELEMENT DATA: 1988 (c) 1989 (a). SEDIMENT DATA: 1988 (b), 1989 (a).

REMARKS.--Water-discharge data obtained from stream-flow gage at this site.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	WATE	ME PR R- S E (	MM I	S YGEN, ( DIS- OLVED S	OLVED NI PER- TO CENT (1 ATUR- )	ARD- ESS OTAL MG/L AS ACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
MAR 1988 21	1400	97	399	9 414							160	49	10
APR							_						
05	1025	380	298								180	53	
20 MAY	1100	106	404	4 410	8.4	, ,	. 0				180	53	11
02	1015	149	344	4 353	8.6	11.	. 0		11.8	~-			
18	1115	89	408						10.4		180	53	11
JUN													
28	1730	15	35:	1 357	8.6	25	. 0		7.6		140	33	13
SEP 06	1045	37	560	562	7.9	14	0				220	63	16
OCT	1043	37	201	3 362	/	14	. 0				220	03	10
04 NOV	1040	17	47	7 488	8.1	. 14	.0	763	10.2	99	210	60	15
15	0950	125	399	9 411	8.2	5	. 0	763	14.0	110	180	54	10
DATE	SODI DIS SOLV (MG AS	UM, S: - D: ED SOI :/L (MG	IUM, LII IS- I LVED (I G/L /	LAB DI MG/L SC AS (M	FATE RI S-' DI LVED SC G/L (N	DE, I S- DLVED S IG/L	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	AT 105 DEG. C,	SOLID VOLA TILE ( IGNI TION TOTA (MG/)	- ON - RESI , TOTA L FIXE	
MAR 1988													
21	18		1.7 12	3	4 3	3	0.10	244	223	266	1	68	198
APR 05	_		9 [,]	7 )	7 1	.8	0 10	200		248		36	212
20	14		1.6 14:			13	0.10 0.10	224	219			56	192
MAY	14		1.0 14.				0.10	224	219	240		30	192
02	_	_	12	3				204	~-	208		40	168
18	15		2.0 15:		7 2	23	0.30	228	222			92	184
JUN													
28	16		2.6 99	9 3	9 2	16	0.30	226	189	243		91	152
SEP 06	29		2.6 14!		5 4	4	0 10	276	217	400		96	304
oct	29	•	2.6 14!	, ,	4 ر	. 4	0.10	376	317	400		<b>7</b> 0	304
04	20		3.0 148	3 5	6 3	1	0.10	288	274	312	•	76	236
NOA													
15	16		2.4 118	3 5	3 2	23	0.10	256	229	276	!	92	184

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 04214500 BUFFALO CREEK AT GARDENVILLE NY - continued

DATE	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS NH4)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS NO3)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)
21 APR			1.01	0.060	0.08	0.26	0.32	1.3	5.9	0.00	0.0
05 20 MAY	0.670 0.850	0.00 0.00	0.670 0.850	0.050 0.010	0.06 0.01	0.41 0.12	0.46 0.13	1.1 0.98	5.0 4.3	0.00 ND	0.0
02 18 JUN	0.390 0.480	0.00 0.00	0.390 0.480	0.00 0.020	0.0 0.03	0.21 0.52	0.21 0.54	0.60 1.0	2.7 4.5	0.00 0.00	0.0 0.0
28		ND	ND	0.010	0.01	0.28	0.29			ND	
SEP 06		ND	0.080				0.23	0.31	1.4	ND	
04		ND	0.070	0.010	0.01	0.25	0.26	0.33	1.5	ND	
NOV 15		ND	0.310	0.020	0.03	0.31	0.33	0.64	2.8	ND	
DATE MAR 1988	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)
21	80	<10	<1	<1.0	3	1	200	14	<b>&lt;</b> 5	<b>&lt;</b> 5	20
APR 05	960		<1		10		1800		<5		50
20 May	<10	10	2	<1.0	2	<1	140	26	<b>&lt;</b> 5	<5	<10
02 18	70 20	 <10	1 5	 <1.0	5 9	4	180 140	 19	5 <b>&lt;</b> 5	 <b>&lt;</b> 5	20 10
JUN											
28 SEP	90		<1		4		170		<b>&lt;</b> 5		40
06 OCT	30		<1		3		150		<b>&lt;</b> 5		20
04 NOV	60	<10	2	<1.0	6	1	140	13	<5	<5	10
15	40		1		4		180		<b>&lt;</b> 5		30
DATE	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS~ SOLVED (UG/L AS NI)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)	BROMO- FORM TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)
MAR 1988 21	19	<0.10	6	3	80	<3	<0.3	<0.1	<0.30	<0.1	<0.4
APR 05		<0.10	6				0		0.0	0	0
20 May	12	<0.10	6	2	20 <10	3	<0.5	0 <0.5	<0.50	<0.5	<0.5
02 18	6	<0.10 <0.10	5 5	4	20 <10	4	0 <0.5	0 <0.5	0.0 <0.50	0 <0.5	0 <0.5
JUN 28 SEP		1.7	8		10		<0.5	<0.5	<0.50	<0.5	<0.5
06		<0.10	3		<10		<0.3	<0.1	<0.30	<0.1	<0.4
OCT 04 NOV	5	<0.10	3	2	<10	5	<0.3	<0.1	<0.30	<0.1	<0.4
15		<0.10	2		<10		<0.3	<0.1	<0.30	<0.1	<0.4

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 04214500 BUFFALO CREEK AT GARDENVILLE NY - continued

## WATER-QUALITY DATA (continued)

DATE	CHLORO- FORM TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)
MAR 1988											
21 APR	<0.1	<0.3	<0.2	<1.2	<0.2		<0.2	<0.2	<0.1	<0.1	<0.1
05 20 MAY	0 <0.5	0 <0.5	0 <0.5	0 <0.5	0 <0.5	0 <0.5	0 <0.5	0 <0.5	0 <0.5	0 <0.5	0 <0.5
02 18 JUN	0 <0.5	0 <0.5	0 <0.5	0 <0.5	0 <0.5	0 <0.5	0 <0.5	0 <0.5	0 <0.5	0 <0.5	0 <b>&lt;</b> 0.5
28 SEP	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
06	<0.1	<0.3	<0.2	<1.2	<0.2	<0.5	<0.2	<0.2	<0.1	<0.1	<0.1
04	<0.1	<0.3	<0.2	<1.2	<0.2	<0.5	<0.2	<0.2	<0.1	<0.1	<0.1
NOV 15	<0.1	<0.3	<0.2	<1.2	<0.2	<0.5	<0.2	<0.2	<0.1	<0.1	<0.1
DATE	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)
MAR 1988	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
	CHLORO- BENZENE TOTAL	CHLORO- ETHANE WATER WHOLE TOTAL	CHLORO- PROPANE TOTAL	TRANSDI CHLORO- ETHENE TOTAL	CHLORO- BENZENE TOTAL	CHLORO- BENZENE TOTAL	CHLORO- ETHYL- ENE TOTAL	1,3-DI- CHLORO- PROPENE TOTAL	CHLORO- ETHYL- ENE TOTAL	CHLORO- ETHYL- VINYL- ETHER TOTAL	CHLO- RIDE TOTAL
MAR 1988 21 APR 05	CHLORO- BENZENE TOTAL (UG/L) <0.2	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) <0.300	CHLORO- PROPANE TOTAL (UG/L) <0.2	TRANSDI CHLORO- ETHENE TOTAL (UG/L) <0.3	CHLORO-BENZENE TOTAL (UG/L) <0.4	CHLORO- BENZENE TOTAL (UG/L) <0.3	CHLORO- ETHYL- ENE TOTAL (UG/L) <0.2	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L) <0.1	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) <0.2	CHLO- RIDE TOTAL (UG/L) <0.3
MAR 1988 21 APR	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
MAR 1988 21 APR 05 20 MAY 02	CHLORO-BENZENE TOTAL (UG/L)  <0.2 0 <0.5	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) <0.300 0.00 <0.500 0.00	CHLORO-PROPANE TOTAL (UG/L)  <0.2 0 <0.5 0	TRANSDI CHLORO- ETHENE TOTAL (UG/L) <0.3 0 <0.5	CHLORO-BENZENE TOTAL (UG/L)  <0.4 0 <0.5 0	CHLORO-BENZENE TOTAL (UG/L)  <0.3 0 <0.5	CHLORO-ETHYL-ENE TOTAL (UG/L)  <0.2 0.0 <0.5 0.0	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) <0.3 0 <0.5	CHLORO-ETHYL-ENE TOTAL (UG/L) <0.1 0 <0.5	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) <0.2 0 <0.5	CHLO- RIDE TOTAL (UG/L) <0.3 0 <0.5
MAR 1988 21 APR 05 20	CHLORO-BENZENE TOTAL (UG/L) <0.2 0 <0.5	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) <0.300 0.00 <0.500	CHLORO-PROPANE TOTAL (UG/L)  <0.2 0 <0.5	TRANSDI CHLORO- ETHENE TOTAL (UG/L) <0.3	CHLORO-BENZENE TOTAL (UG/L)	CHLORO-BENZENE TOTAL (UG/L)	CHLORO-ETHYL-ENE TOTAL (UG/L) <0.2 0.0 <0.5	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) <0.3	CHLORO-ETHYL-ENE TOTAL (UG/L) <0.1 0 <0.5	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) <0.2 0 <0.5	CHLO- RIDE TOTAL (UG/L) <0.3 0 <0.5
MAR 1988 21 APR 05 20 MAY 02 18 JUN 28	CHLORO-BENZENE TOTAL (UG/L)  <0.2 0 <0.5	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) <0.300 0.00 <0.500 0.00	CHLORO-PROPANE TOTAL (UG/L)  <0.2 0 <0.5 0	TRANSDI CHLORO- ETHENE TOTAL (UG/L) <0.3 0 <0.5	CHLORO-BENZENE TOTAL (UG/L)  <0.4 0 <0.5 0	CHLORO-BENZENE TOTAL (UG/L)  <0.3 0 <0.5	CHLORO-ETHYL-ENE TOTAL (UG/L)  <0.2 0.0 <0.5 0.0	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) <0.3 0 <0.5	CHLORO-ETHYL-ENE TOTAL (UG/L) <0.1 0 <0.5	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) <0.2 0 <0.5	CHLO- RIDE TOTAL (UG/L) <0.3 0 <0.5
MAR 1988 21 APR 05 20 MAY 02 18 JUN 28 SEP 06	CHLORO-BENZENE TOTAL (UG/L)  <0.2 0 <0.5 0 <0.5	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) <0.300 0.00 <0.500 0.00 <0.500	CHLORO-PROPANE TOTAL (UG/L)  <0.2  0 <0.5  0 <0.5	TRANSDI CHLORO- ETHENE TOTAL (UG/L) <0.3 0 <0.5	CHLORO-BENZENE TOTAL (UG/L)  <0.4  0 <0.5  0 <0.5	CHLORO-BENZENE TOTAL (UG/L)  <0.3  0 <0.5	CHLORO-ETHYL-ENE TOTAL (UG/L)  <0.2  0.0 <0.5  0.0 <0.5	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) <0.3 0 <0.5	CHLORO-ETHYL-ENE TOTAL (UG/L)  <0.1  0 <0.5  0 <0.5	CHLORO-ETHYL-VINYL-ETHER TOTAL (UG/L)  <0.2 0 <0.5 0 <0.5	CHLO- RIDE TOTAL (UG/L) <0.3 0 <0.5
MAR 1988 21 APR 05 20 MAY 02 18 JUN 28 SEP	CHLORO-BENZENE TOTAL (UG/L)  <0.2 0 <0.5 0 <0.5 <0.5	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  <0.300  0.00 <0.500  0.00 <0.500 <0.500	CHLORO-PROPANE TOTAL (UG/L)  <0.2 0 <0.5 0 <0.5 <0.5	TRANSDI CHLORO- ETHENE TOTAL (UG/L) <0.3 0 <0.5 0 <0.5	CHLORO-BENZENE TOTAL (UG/L)  <0.4  0 <0.5  0 <0.5  <0.5	CHLORO-BENZENE TOTAL (UG/L)  <0.3  0 <0.5  0 <0.5	CHLORO-ETHYL-ENE TOTAL (UG/L)  <0.2 0.0 <0.5 0.0 <0.5 <0.5	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  <0.3 0 <0.5 0 <0.5 <0.5	CHLORO-ETHYL-ENE TOTAL (UG/L)  <0.1 0 <0.5 0 <0.5 <0.5	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  <0.2 0 <0.5 0 <0.5	CHLO- RIDE TOTAL (UG/L) <0.3 0 <0.5 0 <0.5

# SUSPENDED SEDIMENT DISCHARGE

		DIS-		SEDI-
		CHARGE,		MENT,
		INST.	SEDI-	DIS-
		CUBIC	MENT,	CHARGE,
		FEET	SUS-	sus-
DATE	TIME	PER	PENDED	PENDED
		SECOND	(MG/L)	(T/DAY)
MAY 1988				
18	1115	89	4	0.96
JUN				
28	1730	15	5	0.20
SEP				
06	1045	37	5	0.50
OCT				
04	1040	17	6	0.28

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 04214500 BUFFALO CREEK AT GARDENVILLE NY - continued

## BED MATERIAL ANALYSES

DATE	TIME	SOLIDS, VOLA- TILE IN BOTTOM MA- TERIAL (MG/KG)	ALUM- INUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)
JUN 1988 28	1730	31100	3100	<1	10	7300	<10	240	<0.10	10
DATE	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	AROCLOR 1221 IN BOTTOM MAT. (UG/KG)	AROCLOR 1248 PCB BOT.MAT (UG/KG)	AROCLOR 1254 PCB BOT.MAT (UG/KG)	AROCLOR 1260 PCB BOT.MAT (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALPHA BHC TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ATRA- ZINE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	BETA BENZENE HEXA- CHLOR- IDE BOT.MAT (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
JUN 1988 28	50	ND	ND	ND	ND	ND	ND	ND	ND	ND
DATE	CHLOR- PYRIFOS IN BOT. MAT. (UG/KG)	DELTA BENZENE HEXA- CHLOR- IDE BOT.MAT (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN ALPHA BOT.MAT (UG/KG)	ENDO- SULFAN BETA BOT.MAT (UG/KG)	ENDO- SULFAN SULFATE BOT.MAT (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN ALDE- HYDE BOT.MAT (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
JUN 1988 28	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DATE	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	P, P'DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	P, P' DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	P, P' DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
JUN 1988 28	ND	ND	ND	ND	ND	ND	ND	ND	ND	MD
∠8	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

## 04214740 CAYUGA CREEK NEAR ALDEN, NY

LOCATION. -- Lat 42 52'48, long 78 31'19", Erie County, Hydrologic Unit 04120104, at bridge on Three Rod Road, 1,8 mi southwest of

DRAINAGE AREA. -- 55.1 mi2.

PERIOD OF RECORD.--April to December 1987 (discontinued).

CHEMICAL DATA: 1987 (c), 1988 (a).

MINOR ELEMENT DATA: 1987 (c), 1988 (a).

PESTICIDE DATA: 1987 (c), 1988 (a).

NUTRIENT DATA: 1987 (c), 1988 (a).

SEDIMENT DATA: 1987 (b), 1988 (a).

REMARKS.--Water-discharge data based on records from stream-flow gage 04215000 Cayuga Creek near Lancaster. Sampling Site moved 0445000 Cayuga Creek near Lancaster in 1988.

DATE	TIME	DIS- CHARGE, IN CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)
APR 1987												
15	1400	74		8.7	14.5	1.0	14.8	120	37	6.7		152
29 MAY	1130	179		8.2	6.0	7.3	11.6	82	25	4.7		134
20 JUN	1200	13	416	8.3	16.0	1.0		180	55	9.7		240
24 JUL	1100	90		8.1	18.0	5.0		130	40	7.0		184
21 SEP	1730	71		8.2	29.5	7.1	7.4	120	37	6.3		176
29 NOV	1140	14	362	8.4	22.0	1.7					0.30	204
18	1430	100		8.1	7.0	13	16.3	120	37	6.9		164
09	1215	183		8.2	6.0	8.5	11.2					180
DATE	SOLIDS, RESIDUE AT 105 DEG. C, TOTAL (MG/L)	SOLIDS, VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	RESIDUE TOTAL FIXED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS NH4)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS NO3)
APR 1987	RESIDUE AT 105 DEG. C, TOTAL (MG/L)	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L)	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS NO3)
APR 1987 15 29	RESIDUE AT 105 DEG. C, TOTAL (MG/L)	VOLA- TILE ON IGNI- TION, TOTAL	TOTAL FIXED	GEN, NITRATE TOTAL (MG/L	GEN, NITRITE TOTAL (MG/L	GEN, NO2+NO3 TOTAL (MG/L	GEN, AMMONIA TOTAL (MG/L	GEN, AMMONIA TOTAL (MG/L	GEN, ORGANIC TOTAL (MG/L	GEN, AM- MONIA + ORGANIC TOTAL (MG/L	GEN, TOTAL (MG/L	GEN, TOTAL (MG/L
APR 1987 15 29 MAY 20	RESIDUE AT 105 DEG. C, TOTAL (MG/L)	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L)	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS NO3)
APR 1987 15 29 MAY 20 JUN 24	RESIDUE AT 105 DEG. C, TOTAL (MG/L) 170 140	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L) 144 108	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N) 0.00 ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.660 0.380	GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.020	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01	GEN, ORGANIC TOTAL (MG/L AS N) 0.23 0.20	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N) 0.90 0.60	GEN, TOTAL (MG/L AS NO3) 4.0 2.7
APR 1987 15 29 MAY 20 JUN 24 JUL 21	RESIDUE AT 105 DEG. C, TOTAL (MG/L) 170 140 248	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  26 32	TOTAL FIXED (MG/L) 144 108	GEN, NITRATE TOTAL (MG/L AS N)  0.660 0.430	GEN, NITRITE TOTAL (MG/L AS N) 0.00 ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.660 0.380	GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.020	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.03	GEN, ORGANIC TOTAL (MG/L AS N) 0.23 0.20	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.24 0.22	GEN, TOTAL (MG/L AS N) 0.90 0.60	GEN, TOTAL (MG/L AS NO3) 4.0 2.7
APR 1987 15 29 MAY 20 JUN 24 JUL 21 SEP 29	RESIDUE AT 105 DEG. C, TOTAL (MG/L) 170 140 248 228	VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 26 32 100	TOTAL FIXED (MG/L) 144 108 148	GEN, NITRATE TOTAL (MG/L AS N) 0.660  0.430 2.71	GEN, NITRITE TOTAL (MG/L AS N) 0.00 ND 0.00	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.660 0.380 0.430 2.72	GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.020 0.020	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.03 0.03	GEN, ORGANIC TOTAL (MG/L AS N) 0.23 0.20 0.05	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.24 0.22 0.07	GEN, TOTAL (MG/L AS N) 0.90 0.60 0.50 3.0	GEN, TOTAL (MG/L AS NO3) 4.0 2.7 2.2
APR 1987 15 29 MAY 20 JUN 24 JUL 21 SEP	RESIDUE AT 105 DEG. C, TOTAL (MG/L) 170 140 248 228 188	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  26 32 100 92 8	TOTAL FIXED (MG/L) 144 108 148 136	GEN, NITRATE TOTAL (MG/L AS N) 0.660  0.430 2.71	GEN, NITRITE TOTAL (MG/L AS N) 0.00 ND 0.00 0.010	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.660 0.380 0.430 2.72	GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.020 0.020 0.020	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.03 0.03 0.03	GEN, ORGANIC TOTAL (MG/L AS N) 0.23 0.20 0.05 0.23	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.24 0.22 0.07 0.25	GEN, TOTAL (MG/L AS N) 0.90 0.60 0.50 3.0	GEN, TOTAL (MG/L AS NO3) 4.0 2.7 2.2 13

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 04214740 CAYUGA CREEK NEAR ALDEN, NY - continued

				WA	TEK-QUALIT	II DATA (	continued	,			
DATE	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)
APR 1987											
15 29	0.010 0.030	0.00 0.00	0.0	<10 <10		<10 <10		80 380	<100 11		<10 20
MAY 20 JUN	0.00	ND		<10	1.0	<10	2	90	<b>&lt;</b> 5	<b>&lt;</b> 5	20
24 JUL	0.030	0.00	0.0	<10		<10		340	<100		<10
21 SEP	0.020	0.00	0.0	<10		20		450	<b>&lt;</b> 5		20
29 NOV	0.010	0.00	0.0	<10		<10		120	<100		10
18 DEC	0.050	0.00	0.0	<1		4		750	<b>&lt;</b> 5		20
09				<1		5		510	<5		30
DATE	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)	BROMO- FORM TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)
APR 1987											
15		<0.10	<100		<10		ND	ND	ND	ND	ND
29		0.10	<1		<10		ND	ND	ND	ND	ND
MAY 20 JUN		<0.10	<1	2	<10	10	ND	ND	ND	ND	ND
24 JUL		<0.10	<100		30		ND	ND	ND	ND	ND
21 SEP		0.20	<1		30		ND	ND	ND	ND	ND
29 NOV	10	<0.10	<100		<10		ND	ND	ND	ND	ND
18 DEC			3		10		ND	ND	ND	ND	ND
09		<0.10	<1		<10		ND	ND	ND	ND	ND
DATE	CHLORO- FORM TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	DI - CHLORO- BROMO- METHANE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)
APR 1987	MD	ND	MP	ND	NP	MP	MP	MD	MP	ND	MO
15 29	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
MAY 20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<b>N</b> D
JUN 24	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
JUL 21 SEP	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
29 NOV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
18 DEC	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

## 04214740 CAYUGA CREEK NEAR ALDEN, NY - continued

## WATER-QUALITY DATA (continued)

DATE	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	TRI - CHLORO- ETHYL - ENE TOTAL (UG/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)
APR 1987											
15	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
29	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MAY											
20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
JUN 24	***	110	MD	ND	N.D.	ND	ND	N.	ND	ND	ND
JUL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
21	NĎ	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SEP									110		
29	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
NOV											
18	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DEC											
09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

# SUSPENDED SEDIMENT DISCHARGE

		DIS-		SEDI-
		CHARGE,		MENT,
		IN	SEDI-	DIS-
		CUBIC	MENT,	CHARGE,
		FEET	SUS-	sus-
DATE	TIME	PER	PENDED	PENDED
		SECOND	(MG/L)	(T/DAY)
APR 1987				
15	1400	74	6	1.2
29	1130	179	9	4.3
JUN				
24	1100	90	7	1.7
DEC				
09	1215	183	17	8.4

## BED MATERIAL ANALYSES

DATE	TIME	SOLIDS, VOLA- TILE IN BOTTOM MA- TERIAL (MG/KG)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
JUL 1987 21	1730	31900	<1	110	10	7400	20	330
DATE	MERCU RECO FM BO TOM I TER: (UG,	OV. RECOT- FM EMA- TOMINAL TER	COV. REG SOT- FM I MA- TOM RIAL TEI G/G (UG	BOT- FA MA- DIA RIAL % FI G/G TH	AT. MA ALL SIE AM. DIA INER % FI	T. MA VE SIE M. DIA NER % FI	T. MA VE SIE M. DIA NER % FI AN TH	T. VE M. NER AN
JUL 1987 21	<0	.10	10	40	1	9	22	10 <b>0</b>

### 04215000 CAYUGA CREEK NEAR LANCASTER, NY

LOCATION.--Lat 42 53'24", long 78 38'43", Erie County, Hydrologic Unit 04120103, on right bank 150 ft upstream fromlow dam in Como Lake Park, 700 ft downstream from bridge on Bowen Road, 800 ft downtream from Little Buffalo Creek, 2 mi southeast of Lancaster, and 8.7 mi upstream from mouth.

DRAINAGE AREA. -- 96.4 mi2.

PERIOD OF RECORD: Water years 1988-89.
CHEMICAL DATA: 1988 (c), 1989 (a).
MINOR ELEMENT DATA: 1988 (c), 1989 (a).
PESTICIDE DATA: 1988 (c), 1989 (a).
ORGANIC DATA: PCB--1988 (a).
NUTRIENT DATA: 1988 (c), 1989 (a).
SEDIMENT DATA: 1988 (b), 1989 (a).

REMARKS.--Water-discharge data obtained from stream-flow gage at this site.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
MAR 1988												
23	0830	72		382	7.8	1.0	3.4			160	50	8.9
APR 04	1040	1440		221	7.9	11.0	160					
19	1100	68		374	7.1	6.0	1.6			160	50	9.0
MAY												
05	1145	58		361	8.2	14.0	2.5	12.2		1.00		
17 JUN	1015	84		377	7.9	16.0	2.7	8.8		160	50	9.2
29 SEP	1600	6.9	393	435	8.4	21.5	2.0	9.6		180	54	12
09	1000	5.0		471	8.2	16.0				190	56	13
ОСТ 05	1000	12		460	8.1	12.0		10.0	764	200	59	12
NOV	1000	12		400	0.1	12.0		10.0	,,,	200	33	
16	0945	70		404	7.8	7.0	2.1	11.6	759	170	53	9.3
DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, TOTAL (MG/L)	SOLIDS, VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	RESIDUE TOTAL FIXED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)
DATE MAR 1988	DIS- SOLVED (MG/L AS NA)	SIUM, DIS- SOLVED (MG/L	LINITY LAB (MG/L AS	DIS- SOLVED (MG/L	RIDE, DIS- SOLVED (MG/L	RIDE, DIS- SOLVED (MG/L	RESIDUE AT 180 DEG. C DIS- SOLVED	SUM OF CONSTI- TUENTS, DIS- SOLVED	RESIDUE AT 105 DEG. C, TOTAL	VOLA- TILE ON IGNI- TION, TOTAL	TOTAL FIXED	GEN, NITRATE TOTAL (MG/L
MAR 1988 23	DIS- SOLVED (MG/L AS NA)	SIUM, DIS- SOLVED (MG/L	LINITY LAB (MG/L AS	DIS- SOLVED (MG/L	RIDE, DIS- SOLVED (MG/L	RIDE, DIS- SOLVED (MG/L	RESIDUE AT 180 DEG. C DIS- SOLVED	SUM OF CONSTI- TUENTS, DIS- SOLVED	RESIDUE AT 105 DEG. C, TOTAL	VOLA- TILE ON IGNI- TION, TOTAL	TOTAL FIXED	GEN, NITRATE TOTAL (MG/L
MAR 1988 23 APR	DIS- SOLVED (MG/L AS NA)	SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB (MG/L AS CACO3)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	RESIDUE AT 105 DEG. C, TOTAL (MG/L)	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L)	GEN, NITRATE TOTAL (MG/L AS N)
MAR 1988 23 APR 04	DIS- SOLVED (MG/L AS NA)	SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB (MG/L AS CACO3)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F) 0.10	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 228	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	RESIDUE AT 105 DEG. C, TOTAL (MG/L) 230 532	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L) 172 484	GEN, NITRATE TOTAL (MG/L AS N)  1.13
MAR 1988 23 APR	DIS- SOLVED (MG/L AS NA)	SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB (MG/L AS CACO3)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	RESIDUE AT 105 DEG. C, TOTAL (MG/L)	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L)	GEN, NITRATE TOTAL (MG/L AS N)
MAR 1988 23 APR 04 19 MAY 05	DIS- SOLVED (MG/L AS NA)	SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB (MG/L AS CACO3) 123 72 126	DIS- SOLVED (MG/L AS SO4) 30 27 33	RIDE, DIS- SOLVED (MG/L AS CL) 26 12 23	RIDE, DIS- SOLVED (MG/L AS F) 0.10 0.10	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 228 152 256 240	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 204	RESIDUE AT 105 DEG. C, TOTAL (MG/L) 230 532 260 244	VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 58 48 24	TOTAL FIXED (MG/L) 172 484 236 192	GEN, NITRATE TOTAL (MG/L AS N) 1.13 0.410
MAR 1988 23 APR 04 19 MAY 05 17	DIS- SOLVED (MG/L AS NA) 14	SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB (MG/L AS CACO3) 123 72 126	DIS- SOLVED (MG/L AS SO4) 30 27 33	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F) 0.10 0.10	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 228 152 256	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 204	RESIDUE AT 105 DEG. C, TOTAL (MG/L) 230 532 260	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  58 48 24	TOTAL FIXED (MG/L) 172 484 236	GEN, NITRATE TOTAL (MG/L AS N) 1.13
MAR 1988 23 APR 04 19 MAY 05 17 JUN	DIS- SOLVED (MG/L AS NA) 14  13	SIUM, DIS- SOLVED (MG/L AS K) 1.7  1.5	LINITY LAB (MG/L AS CACO3) 123 72 126 131	DIS- SOLVED (MG/L AS SO4) 30 27 33	RIDE, DIS- SOLVED (MG/L AS CL) 26 12 23	RIDE, DIS- SOLVED (MG/L AS F) 0.10 0.10 0.30	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 228 152 256 240 244	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 204  205	RESIDUE AT 105 DEG. C, TOTAL (MG/L) 230 532 260 244 256	VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 58 48 24 52 92	TOTAL FIXED (MG/L) 172 484 236 192	GEN, NITRATE TOTAL (MG/L AS N) 1.13 0.410
MAR 1988 23 APR 04 19 MAY 05 17	DIS- SOLVED (MG/L AS NA)  14  13  14  16	SIUM, DIS- SOLVED (MG/L AS K)	LINITY LAB (MG/L AS CACO3) 123 72 126	DIS- SOLVED (MG/L AS SO4) 30 27 33	RIDE, DIS- SOLVED (MG/L AS CL) 26 12 23	RIDE, DIS- SOLVED (MG/L AS F) 0.10 0.10	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 228 152 256 240	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 204	RESIDUE AT 105 DEG. C, TOTAL (MG/L) 230 532 260 244 256 303	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  58 48 24 52 92	TOTAL FIXED (MG/L) 172 484 236 192 164	GEN, NITRATE TOTAL (MG/L AS N) 1.13 0.410
MAR 1988 23 APR 04 19 MAY 05 17 JUN 29 SEP 09 OCT	DIS- SOLVED (MG/L AS NA) 14  13	SIUM, DIS- SOLVED (MG/L AS K) 1.7  1.5	LINITY LAB (MG/L AS CACO3) 123 72 126 131	DIS- SOLVED (MG/L AS SO4) 30 27 33	RIDE, DIS- SOLVED (MG/L AS CL) 26 12 23	RIDE, DIS- SOLVED (MG/L AS F) 0.10 0.10 0.30	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 228 152 256 240 244	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 204  205	RESIDUE AT 105 DEG. C, TOTAL (MG/L) 230 532 260 244 256	VOLA- TILE ON IGNI- TION, TOTAL (MG/L) 58 48 24 52 92	TOTAL FIXED (MG/L) 172 484 236 192 164	GEN, NITRATE TOTAL (MG/L AS N) 1.13 0.410
MAR 1988 23 APR 04 19 MAY 05 17 JUN 29 SEP 09	DIS- SOLVED (MG/L AS NA)  14  13  14  16	SIUM, DIS- SOLVED (MG/L AS K) 1.7  1.5	LINITY LAB (MG/L AS CACO3) 123 72 126 131 135	DIS- SOLVED (MG/L AS SO4) 30 27 33  25	RIDE, DIS- SOLVED (MG/L AS CL) 26 12 23	RIDE, DIS- SOLVED (MG/L AS F) 0.10 0.10 0.10	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 228 152 256 240 244	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 204  205  202 235	RESIDUE AT 105 DEG. C, TOTAL (MG/L) 230 532 260 244 256 303	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)  58 48 24 52 92	TOTAL FIXED (MG/L) 172 484 236 192 164 206	GEN, NITRATE TOTAL (MG/L AS N) 1.13 0.410  0.420 0.170

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 04215000 CAYUGA CREEK NEAR LANCASTER, NY - continued

				""	IBN QUABI	II DAIA (	concinaco	.,			
DATE	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS NH4)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS NO3)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)
MAR 1988											
23 APR	0.00	1.13	0.010	0.01	0.28	0.29	1.4	6.3	0.010	0.00	0.0
04	0.00	0.410	0.510	0.66	0.99	1.5	1.9	8.5	0.220	0.010	0.03
19 May	ND	0.830	0.010	0.01	0.17	0.18	1.0	4.5	0.00	ND	
05 17	ND 0.00	0.470 0.420	0.020 0.010	0.03 0.01	0.11 0.36	0.13 0.37	0.60 0.79	2.7 3.5	0.010 0.010	0.00 0.00	0.0
JUN 29	0.00	0.170	0.010	0.01	0.20	0.21	0.38	1.7	0.020	ND	
SEP 09	ND	0.100	0.010	0.01	0.29	0.30	0.40	1.8	0.010	ND	
OCT											
05 NOV	ND	0.060	0.010	0.01	0.35	0.36	0.42	1.9	0.010	ND	
16	ND	0.390	0.020	0.03	0.28	0.30	0.69	3.1	0.010	0.00	0.0
DATE	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)
MAR 1988 23	120	<10	<1	<1.0	2	<1	340	16	<b>&lt;</b> 5	<b>&lt;</b> 5	20
APR											
04 19 MAY	8900 10	10	<1 <1	<1.0	20 3	6	15000 140	35	10 <5	<b>&lt;</b> 5	360 20
05	60		1	:,	3		210		<5 		30
17 JUN	70	<10	5	<1.0	8	3	270	22	<5	<b>&lt;</b> 5	20
29 SEP	90		<1		4		260		<5		70
09	60		<1		3		190		<5		20
ОСТ 05	40	<10	<1	<1.0	3	1	80	20	<5	<b>&lt;</b> 5	10
NOA		710		11.0		•		20		~3	
16	20		1		2		210		<5		30
DATE	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)	BROMO- FORM TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)
MAR 1988 23	22	<0.10	6	<1	<10	<3	ND	ND	ND	ND	ND
APR	22			<1		<3					
04 19 MAY	17	<0.10 <0.10	25 2	1	70 <10	8	ND ND	ND ND	nd nd	ND ND	<b>N</b> D <b>N</b> D
05 17 JUN	10	<0.10 <0.10	6 5	1	<10 <10	 <3	0 ND	0 ND	0.0 ND	0 ND	0 <b>N</b> D
29		0.70	4		10		ND	ND	ND	ND	ND
SEP 09 ⊙CT		<0.10	2		<10		ND	ND	ND	ND	ND
05	13	<0.10	3	1	<10	<3	ND	ND	ND	ND	ND
NOV 16		<0.10	2		<10		ND	ND	ND	ND	<b>N</b> D

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 04215000 CAYUGA CREEK NEAR LANCASTER, NY - continued

## WATER-QUALITY DATA (continued)

DATE	CHLORO- FORM TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)
MAR 1988											
23	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
APR 04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
19	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MAY 05	0	0	0	0	0	0	0	0	0	0	0
17	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
JUN 29	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SEP	NO	ND	ND	ND	ND	ND	ND	NU	NU	ND	ND
09 OCT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
05	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
NOV 16	ND									***	
16,	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
		1,2-DI-								2-	
DATE	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)
MAR 1988	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
MAR 1988 23	CHLORO- BENZENE TOTAL	CHLORO- ETHANE WATER WHOLE TOTAL	CHLORO- PROPANE TOTAL	TRANSDI CHLORO- ETHENE TOTAL	CHLORO- BENZENE TOTAL	CHLORO- BENZENE TOTAL	CHLORO- ETHYL- ENE TOTAL	1,3-DI- CHLORO- PROPENE TOTAL	CHLORO- ETHYL- ENE TOTAL	CHLORO- ETHYL- VINYL- ETHER TOTAL	CHLO- RIDE TOTAL
MAR 1988	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
MAR 1988 23 APR 04 19	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
MAR 1988 23 APR 04	CHLORO- BENZENE TOTAL (UG/L) ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L) ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND	CHLORO- BENZENE TOTAL (UG/L) ND	CHLORO- BENZENE TOTAL (UG/L) ND	CHLORO- ETHYL- ENE TOTAL (UG/L) 0.3	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND	CHLO- RIDE TOTAL (UG/L) ND
MAR 1988 23 APR 04 19 MAY 05	CHLORO- BENZENE TOTAL (UG/L) ND ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) 0.3 0.3 ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND	CHLO- RIDE TOTAL (UG/L) ND ND
MAR 1988 23 APR 04 19 MAY 05 17 JUN 29	CHLORO- BENZENE TOTAL (UG/L) ND ND ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  O	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  O	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  O	CHLORO-ETHYL-ENE TOTAL (UG/L)  0.3  0.3  ND  0.0	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND  ND  ND  ND  O	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND 0	CHLO- RIDE TOTAL (UG/L) ND ND ND ND
MAR 1988 23 APR 04 19 MAY 05 17 JUN 29 SEP 09	CHLORO- BENZEME TOTAL (UG/L) ND ND ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  0.3  0.3  ND  0.0  ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND ND ND ND ND ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND ND ND
MAR 1988 23 APR 04 19 MAY 05 17 JUN 29	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND	CHLORO-ETHANE WATER WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  0.3  0.3  ND  0.0  ND	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND ND ND ND ND ND ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND

# SUSPENDED SEDIMENT DISCHARGE

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)
MAY 1988				
17	1015	84	19	4.3
JUN				
29	1600	6.9	8	0.15
SEP				
09	1000	5.0	6	0.08
OCT				
05	1000	12	2	0.06
NOV				
16	0945	70	4	0.76

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 04215000 CAYUGA CREEK NEAR LANCASTER, NY - continued

# BED MATERIAL ANALYSES

DATE	TIME	SOLIDS, VOLA- TILE IN BOTTOM MA- TERIAL (MG/KG)	ALUM- INUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)
JUN 1988 29	1600	24600	3000	<10	10	8800	<100	230	<0.10	10
DATE	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	AROCLOR 1221 IN BOTTOM MAT. (UG/KG)	AROCLOR 1248 PCB BOT.MAT (UG/KG)	AROCLOR 1254 PCB BOT.MAT (UG/KG)	AROCLOR 1260 PCB BOT.MAT (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALPHA BHC TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ATRA- ZINE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	BETA BENZENE HEXA- CHLOR- IDE BOT.MAT (UG/KG)	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
JUN 1988 29	40	ND	ND	ND	ND	ND	ND	ND	ND	ND
DATE	CHLOR- PYRIFOS IN BOT. MAT. (UG/KG)	DELTA BENZENE HEXA- CHLOR- IDE BOT.MAT (UG/KG)	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN ALPHA BOT.MAT (UG/KG)	ENDO- SULFAN BETA BOT.MAT (UG/KG)	ENDO- SULFAN SULFATE BOT.MAT (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN ALDE- HYDE BOT.MAT (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
JUN 1988 29	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DATE	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA-CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	P, P' DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	P, P' DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	P, P' DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
JUN 1988 29	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

### 04215790 BUFFALO RIVER AT OHIO STREET AT BUFFALO, NY

LOCATION.--Lat 42 51'42", long 78 52'04", Erie County, Hydrologic Unit 04120103, at Ohio Street bridge, 1.0 mi upstream of mouth.

DRAINAGE AREA. -- 427 mi2.

PERIOD OF RECORD.--Water years 1971-74, 1987 to current year.

CHEMICAL DATA: 1987-88 (c), 1989 (a).

MINOR ELEMENT DATA: 1972 (b), 1973-74 (a), 1987-88 (c), 1989 (a).

PESTICIDE DATA: 1987 (b), 1988 (c), 1989 (a).

NUTRIENT DATA: 1987-88 (c), 1989 (a).

SEDIMENT DATA:1987-88 (b), 1989 (a).

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)
APR 1987												
16	1445		8.2	12.0	32		13.0	140	43	7.6		
27	1245		7.7	14.0	16		6.5	150	44	9.0		
MAY												
19	1200	443	7.5	16.0	18			170	50	9.8		
JUN												
25	1130		7.7	23.0	38							
JUL 27	0830		7 7	23.5	110			100	2.0	- 4		
SEP	0830		7.7	23.5	110			100	32	5 <b>.4</b>		
28	1200	338	8.0	22.0	20							
NOV	1200	330	0.0	22.0	20							
09	0930		7.6	8.5	14		8.0	180	53	11		
DEC												
07	1400		7.9	2.0	7.3		12.2					
MAR 1988												
21	1215	429	8.0	1.0	6.7			140	42	8.9	26	2.1
APR												
05	0830	249	7.7	10.0	120							
20	0830	431	7.8	8.5	0.0			160	49	10	21	2.2
MAY 02	0845	275	7.6	9.0	38		10.6					
18	0900	436	7.4	14.0	38 16		10.6 5.2	170	50	10	22	2.6
JUN	0900	436	1.4	14.0	16		3.2	170	50	10	22	2.6
29	1000	423	8.0	20.0	17			160	44	11	21	3.0
SEP	1000	423	0.0	20.0	1,			100	**	11	21	3.0
06	0845	482	7.6	19.0	16			160	45	12	34	3.9
<b>○</b> CT												
04	0915	458	7.4	16.0	13	763	5.6	170	48	11	27	3.5
NOV												
15	0800	372	8.0	6.0	2 <b>0</b>	763	10.8	140	44	8.4	17	2.7

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

## 04215790 BUFFALO RIVER AT OHIO STREET AT BUFFALO, NY - continued

DATE	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, TOTAL (MG/L)	SOLIDS, VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	RESIDUE TOTAL FIXED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)
APR 1987											
16 27					18 <b>4</b> 206		289 272	<b>4</b> 2 66	234 210	0.650 0.410	0.010 0.020
MAY 19					256		280	84	196	0.270	0.040
JUN 25					188		220	56	164	0.860	0.040
JUL 27					168		347	148	184	0.430	0.010
SEP 28					208		232	68	162	0.250	0.010
NOV 09					232		267	78	198	0.170	0.010
DEC 07					292		301	112	204	0.650	0.00
MAR 1988 21	113	32	42	0.10	236	221	272	50	222		
APR 05	71	29	18	0.10	188		352	48	304	0.440	0.00
20 MAY	128	36	34	0.20	244	229	296	52	244	0.620	0.010
02 18	82 129	33	33	0.30	172 22 <b>4</b>	228	22 <b>4</b> 236	40 48	184 188	0.420 0.390	0.00 0.020
JUN 29	124	32	32	0.30	276	218	296	80	216	0.220	0.020
06	110	51	51	0.20	312	263	320	56	264	0.360	0.080
04	109	57	40	0.10	264	252	300	64	236	0.310	0.030
NOV 15	96	47	25	0.10	236	202	296	72	224	0.390	0.00
DATE	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS NH4)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS NO3)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)
APR 1987	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS NO3)	PHORUS TOTAL (MG/L AS P)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)
APR 1987 16 27	GEN, NO2+NO3 TOTAL (MG/L	GEN, AMMONIA TOTAL (MG/L	GEN, AMMONIA TOTAL (MG/L	GEN, ORGANIC TOTAL (MG/L	GEN, AM- MONIA + ORGANIC TOTAL (MG/L	GEN, TOTAL (MG/L	GEN, TOTAL (MG/L	PHORUS TOTAL (MG/L	PHORUS ORTHO, DIS- SOLVED (MG/L	PHATE, ORTHO, DIS- SOLVED (MG/L	INUM, TOTAL RECOV- ERABLE (UG/L
APR 1987 16 27 MAY 19	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS NO3)	PHORUS TOTAL (MG/L AS P)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)
APR 1987 16 27 MAY 19 JUN 25	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.660 0.430	GEN, AMMONIA TOTAL (MG/L AS N) 0.090 0.320	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.12 0.41	GEN, ORGANIC TOTAL (MG/L AS N) 0.32 0.30	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.41 0.62	GEN, TOTAL (MG/L AS N) 1.1 1.0	GEN, TOTAL (MG/L AS NO3) 4.7 4.6	PHORUS TOTAL (MG/L AS P) 0.090 0.070	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)
APR 1987 16 27 MAY 19 JUN 25 JUL 27	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.660 0.430	GEN, AMMONIA TOTAL (MG/L AS N) 0.090 0.320	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.12 0.41	GEN, ORGANIC TOTAL (MG/L AS N) 0.32 0.30	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.41 0.62	GEN, TOTAL (MG/L AS N) 1.1 1.0	GEN, TOTAL (MG/L AS NO3) 4.7 4.6	PHORUS TOTAL (MG/L AS P) 0.090 0.070	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.00 0.00	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) 0.0 0.0	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)
APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.660 0.430 0.310	GEN, AMMONIA TOTAL (MG/L AS N) 0.090 0.320 0.360	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.12 0.41 0.46	GEN, ORGANIC TOTAL (MG/L AS N) 0.32 0.30 0.56	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.41 0.62 0.92 0.46	GEN, TOTAL (MG/L AS N) 1.1 1.0 1.2	GEN, TOTAL (MG/L AS NO3) 4.7 4.6 5.4 6.0	PHORUS TOTAL (MG/L AS P) 0.090 0.070 0.070	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.00 0.00 0.00	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) 0.0 0.0	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)
APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.660 0.430 0.310 0.900	GEN, AMMONIA TOTAL (MG/L AS N) 0.090 0.320 0.360 0.180	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.12 0.41 0.46 0.23	GEN, ORGANIC TOTAL (MG/L AS N) 0.32 0.30 0.56	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.41 0.62 0.92 0.46	GEN, TOTAL (MG/L AS N) 1.1 1.0 1.2 1.4	GEN, TOTAL (MG/L AS NO3) 4.7 4.6 5.4 6.0	PHORUS TOTAL (MG/L AS P) 0.070 0.070 0.070 0.020	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.00 0.00 0.00	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) 0.0 0.0 0.0	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)
APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.660 0.430 0.310 0.900 0.440	GEN, AMMONIA TOTAL (MG/L AS N) 0.090 0.320 0.360 0.180 0.440	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.12 0.41 0.46 0.23 0.57	GEN, ORGANIC TOTAL (MG/L AS N) 0.32 0.30 0.56 0.28 0.56	GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N)  0.41 0.62 0.92 0.46 1.0 0.71	GEN, TOTAL (MG/L AS N) 1.1 1.0 1.2 1.4 1.4	GEN, TOTAL (MG/L AS NO3) 4.7 4.6 5.4 6.0 6.4	PHORUS TOTAL (MG/L AS P) 0.090 0.070 0.070 0.020 0.360 0.090	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.00 0.00 0.00 0.00 0.00	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) 0.0 0.0 0.0 0.06	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)
APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.660 0.430 0.310 0.900 0.440 0.260 0.180	GEN, AMMONIA TOTAL (MG/L AS N) 0.090 0.320 0.360 0.180 0.440 0.190	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.12 0.41  0.46  0.23  0.57  0.23	GEN, ORGANIC TOTAL (MG/L AS N) 0.32 0.30 0.56 0.28 0.56	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.41 0.62 0.92 0.46 1.0 0.71	GEN, TOTAL (MG/L AS N) 1.1 1.0 1.2 1.4 1.4 0.97	GEN, TOTAL (MG/L AS NO3) 4.7 4.6 5.4 6.0 6.4 4.3	PHORUS TOTAL (MG/L AS P) 0.070 0.070 0.020 0.360 0.090 0.060	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.00 0.00 0.00 0.00 0.020 0.020 0.020	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) 0.0 0.0 0.0 0.0 0.0	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)
APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR 05	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.660 0.430 0.310 0.900 0.440 0.260 0.180 0.650 0.850	GEN, AMMONIA TOTAL (MG/L AS N)  0.090 0.320 0.360 0.180 0.440 0.170 0.050 0.520 0.250	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.12 0.41 0.23 0.57 0.23 0.22 0.06 0.67	GEN, ORGANIC TOTAL (MG/L AS N) 0.32 0.30 0.56 0.28 0.56 0.53 0.24 0.32 0.25	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.41 0.62 0.92 0.46 1.0 0.71 0.41 0.37 0.77	GEN, TOTAL (MG/L AS N)  1.1 1.0 1.2 1.4 1.4 0.97 0.59 1.0 1.6 1.3	GEN, TOTAL (MG/L AS NO3) 4.7 4.6 5.4 6.0 6.4 4.3 2.6 4.5 7.2	PHORUS TOTAL (MG/L AS P) 0.090 0.070 0.020 0.360 0.090 0.060 0.030 0.020	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.00 0.00 0.020 0.020 0.010 0.00 0.00	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) 0.0 0.0 0.0 0.06 0.06 0.03 0.0	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)  220 4600
APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR 05 20 MAY	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.660 0.430 0.310 0.900 0.440 0.260 0.180 0.650 0.850 0.440 0.630	GEN, AMMONIA TOTAL (MG/L AS N) 0.090 0.320 0.360 0.180 0.180 0.170 0.050 0.520 0.250 0.130	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.12 0.41  0.46  0.23  0.57  0.23  0.22  0.06  0.67  0.32  0.17	GEN, ORGANIC TOTAL (MG/L AS N) 0.32 0.30 0.56 0.28 0.56 0.53 0.24 0.32 0.25	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.41 0.62 0.92 0.46 1.0 0.71 0.41 0.37 0.77 0.85 0.38	GEN, TOTAL (MG/L AS N) 1.1 1.0 1.2 1.4 0.97 0.59 1.0 1.6	GEN, TOTAL (MG/L AS NO3) 4.7 4.6 5.4 6.0 6.4 4.3 2.6 4.5 7.2 5.7	PHORUS TOTAL (MG/L AS P) 0.090 0.070 0.020 0.360 0.090 0.060 0.030 0.020 0.160 0.040	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.00 0.00 0.020 0.010 0.00 0.000 0.000	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) 0.0 0.0 0.0 0.0 0.06 0.03 0.0 0.0	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)  220 4600 480
APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR 05 20 MAY 02 18	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.660 0.430 0.310 0.900 0.440 0.260 0.180 0.650 0.850	GEN, AMMONIA TOTAL (MG/L AS N)  0.090 0.320 0.360 0.180 0.440 0.170 0.050 0.520 0.250	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.12 0.41 0.23 0.57 0.23 0.22 0.06 0.67	GEN, ORGANIC TOTAL (MG/L AS N) 0.32 0.30 0.56 0.28 0.56 0.53 0.24 0.32 0.25	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.41 0.62 0.92 0.46 1.0 0.71 0.41 0.37 0.77	GEN, TOTAL (MG/L AS N)  1.1 1.0 1.2 1.4 1.4 0.97 0.59 1.0 1.6 1.3	GEN, TOTAL (MG/L AS NO3) 4.7 4.6 5.4 6.0 6.4 4.3 2.6 4.5 7.2	PHORUS TOTAL (MG/L AS P) 0.090 0.070 0.020 0.360 0.090 0.060 0.030 0.020	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.00 0.00 0.020 0.020 0.010 0.00 0.00	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) 0.0 0.0 0.0 0.06 0.06 0.03 0.0	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)  220 4600
APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR 05 20 MAY 21 APR 198 21 APR 21 APR 21 APR 21 APR 220 MAY 29	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.660 0.430 0.310 0.900 0.440 0.260 0.180 0.650 0.0850 0.440 0.630 0.420	GEN, AMMONIA TOTAL (MG/L AS N)  0.090 0.320 0.360 0.180 0.440 0.180 0.170 0.050 0.520 0.250 0.130 0.090	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.12 0.41  0.46  0.23  0.57  0.23  0.22  0.06  0.67  0.32  0.17	GEN, ORGANIC TOTAL (MG/L AS N) 0.32 0.30 0.56 0.28 0.56 0.53 0.24 0.32 0.25 0.60 0.25	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.41 0.62 0.92 0.46 1.0 0.71 0.41 0.37 0.77 0.85 0.38 0.49	GEN, TOTAL (MG/L AS N) 1.1 1.0 1.2 1.4 1.4 0.97 0.59 1.6 1.3 1.0 0.91	GEN, TOTAL (MG/L AS NO3) 4.7 4.6 5.4 6.0 6.4 4.3 2.6 4.5 7.2 5.7 4.5	PHORUS TOTAL (MG/L AS P) 0.090 0.070 0.020 0.360 0.090 0.060 0.030 0.020 0.160 0.040	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.00 0.00 0.020 0.00 0.020 0.010 0.00 0.0	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) 0.0 0.0 0.0 0.06 0.06 0.03 0.0 0.0 0.0	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)  220 4600 480 1100
APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR 05 20 MAY 29 SEP 06	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.660 0.430 0.310 0.900 0.440 0.260 0.180 0.650 0.850 0.420 0.410	GEN, AMMONIA TOTAL (MG/L AS N)  0.090 0.320 0.360 0.180 0.440 0.170 0.050 0.520 0.520 0.130 0.090 0.210	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.12 0.41  0.46  0.23  0.57  0.23  0.22  0.06  0.67  0.32  0.17  0.12  0.27	GEN, ORGANIC TOTAL (MG/L AS N) 0.32 0.30 0.56 0.28 0.56 0.53 0.24 0.32 0.25 0.60 0.25	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.41 0.62 0.92 0.46 1.0 0.71 0.41 0.37 0.77 0.85 0.38 0.49 0.71	GEN, TOTAL (MG/L AS N) 1.1 1.0 1.2 1.4 0.97 0.59 1.0 1.6 1.3 1.0 0.91	GEN, TOTAL (MG/L AS NO3) 4.7 4.6 5.4 6.0 6.4 4.3 2.6 4.5 7.2 5.7 4.5	PHORUS TOTAL (MG/L AS P) 0.070 0.070 0.020 0.360 0.090 0.060 0.030 0.020 0.160 0.040	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.00 0.00 0.020 0.010 0.00 0.000 0.020 ND 0.000	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) 0.0 0.0 0.0 0.0 0.06 0.03 0.0 0.0 0.06	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)  220 4600 480 1100 450
APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR 05 20 MAY 02 18 JUN 29 SEP	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.660 0.430 0.310 0.900 0.440 0.260 0.180 0.650 0.850 0.420 0.410	GEN, AMMONIA TOTAL (MG/L AS N) 0.320 0.360 0.180 0.440 0.170 0.520 0.520 0.250 0.130 0.090 0.210	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.12 0.41  0.46 0.23 0.57 0.23 0.22 0.06 0.67 0.32 0.17 0.12 0.27	GEN, ORGANIC TOTAL (MG/L AS N) 0.32 0.30 0.56 0.28 0.56 0.24 0.32 0.25 0.60 0.25 0.40 0.50	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.41 0.62 0.92 0.46 1.0 0.71 0.41 0.37 0.77 0.85 0.38 0.49 0.71 0.38	GEN, TOTAL (MG/L AS N)  1.1 1.0 1.2 1.4 1.4 0.97 0.59 1.0 1.6 1.3 1.0 0.91 1.1	GEN, TOTAL (MG/L AS NO3) 4.7 4.6 5.4 6.0 6.4 4.3 2.6 4.5 7.2 5.7 4.5	PHORUS TOTAL (MG/L AS P) 0.090 0.070 0.020 0.360 0.090 0.060 0.030 0.020 0.160 0.040 0.100 0.060	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.00 0.00 0.020 0.010 0.00 0.00 0.00 0.0	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) 0.0 0.0 0.0 0.06 0.0 0.06 0.0 0.0 0.0	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)  220 4600 480 1100 450 540

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 04215790 BUFFALO RIVER AT OHIO STREET AT BUFFALO, NY - continued

# WATER-QUALITY DATA (continued)

MANGA-

DATE	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
APR 1987											
16 27		<10 <10		<10 10		2700 1 <b>4</b> 00		<100 28		110 110	
MAY 19 JUN	<1	<10		10		1600		9		110	
25		<10		10	~-	1500				70	
JUL 27 SEP		<10	1.0	20	4	1100		<b>&lt;</b> 5	<5	100	
28		<10		<10		1100		<100		50	
NOV 09		<1		7		1100		<5		70	
DEC 07		<1	<1.0	7	5	470		7	<5	50	
MAR 1988 21	<10	<1	<1.0	4	2	570	29	<5	<b>&lt;</b> 5	70	53
APR 05		<1		18		7600		<b>&lt;</b> 5		130	
20 MAY	10	2	<1.0	5	4	1100	45	<b>&lt;</b> 5	<b>&lt;</b> 5	120	110
02 18	 <10	1 6	<1.0	11 10	2	1900 960	27	9 <b>&lt;</b> 5	 <b>&lt;</b> 5	70 130	 7 <b>4</b>
JUN 29		1		6		1200		<b>&lt;</b> 5		140	
SEP 06		<1		8		780		<b>&lt;</b> 5		80	
OCT 04	10	<1	<1.0	9	1	830	17	<5	<5	50	7
NOV 15	~-	<1		7		1300		<b>&lt;</b> 5		70	
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)	PHENOL (C6H- 5OH) TOTAL (UG/L)	BROMO- FORM TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- DI - BROMO- METHANE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)
APR 1987	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L AS ZN)	(C6H- 5OH) TOTAL (UG/L)	FORM TOTAL (UG/L)	TETRA- CHLO- RIDE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	DI- BROMO- METHANE TOTAL (UG/L)	ETHANE TOTAL (UG/L)
APR 1987 16 27	TOTAL RECOV- ERABLE (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	(C6H- 5OH) TOTAL	FORM TOTAL	TETRA- CHLO- RIDE TOTAL	BENZENE TOTAL	DI - BROMO- METHANE TOTAL	ETHANE TOTAL
APR 1987 16 27 MAY 19	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L AS ZN)	(C6H- 5OH) TOTAL (UG/L)	FORM TOTAL (UG/L)	TETRA- CHLO- RIDE TOTAL (UG/L)	BENZENE TOTAL (UG/L) ND	DI- BROMO- METHANE TOTAL (UG/L)	ETHANE TOTAL (UG/L) ND
APR 1987 16 27 MAY 19 JUN 25	TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  20 <10	DIS- SOLVED (UG/L AS ZN)	(C6H- 5OH) TOTAL (UG/L)	FORM TOTAL (UG/L) ND ND	TETRA- CHLO- RIDE TOTAL (UG/L) ND ND	BENZENE TOTAL (UG/L) ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND	ETHANE TOTAL (UG/L) ND ND
APR 1987 16 27 MAY 19 JUN 25 JUL 27	TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 2	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  20 <10	DIS- SOLVED (UG/L AS ZN)	(C6H- 5OH) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND ND ND	TETRA-CHLO-RIDE TOTAL (UG/L) ND ND	BENZENE TOTAL (UG/L) ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND	ETHANE TOTAL (UG/L)  ND ND ND
APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10  <0.10  <0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 2	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN) 20 <10 40	DIS- SOLVED (UG/L AS ZN)	(C6H- 5OH) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND ND ND	TETRA-CHLO-RIDE TOTAL (UG/L) ND ND	BENZENE TOTAL (UG/L) ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND	ETHANE TOTAL (UG/L)  ND ND ND ND
APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 2  3	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  20 <10  40  30 <10	DIS- SOLVED (UG/L AS ZN)	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND ND ND ND	TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND	BENZENE TOTAL (UG/L) ND ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND	ETHANE TOTAL (UG/L)  ND ND ND ND
APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 0.10 <0.10 <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <100 2 3 <100	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  20 <10 40 30 <10 10	DIS- SOLVED (UG/L AS ZN)	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND ND ND ND ND ND	TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND ND ND ND ND	BENZENE TOTAL (UG/L)  ND ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L)  ND ND ND ND ND	ETHANE TOTAL (UG/L)  ND ND ND ND ND ND ND ND
APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21	TOTAL RECOV- RABLE (UG/L AS HG)  <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <100 2 3 <100 4	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  20 <10  40  30 <10  10 <10	DIS- SOLVED (UG/L AS ZN)	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE RIDE TOTAL (UG/L)  ND N	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L)  ND ND ND ND ND ND ND	ETHANE TOTAL (UG/L)  ND
APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR 05	TOTAL RECOV- REABLE (UG/L AS HG)  <0.10	TOTAL RECOVERABLE (UG/L AS NI)  <100 2 3 <100 4 <1 2 10	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS ZN)  20 <10 40 30 <10 10 10 40 410 40 40 40 40	DIS- SOLVED (UG/L AS ZN)	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE RIDE TOTAL (UG/L)  ND	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND
APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR 05 20 MAY	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)  <100 2 3 <100 4 <1 2 10 12	DIS- SOLVED (UG/L AS NI)  <1 1 5 1	TOTAL RECOV-ERABLE (UG/L AS ZN)  20 <10  40  30  <10  10  40  20  10  20  10  20  10  40  20  10  40  20  10  40  20  40  20  40  20  40  40  20  40  40  20  40  40  20  40  40  40  40  40  40  40  40  40  4	DIS- SOLVED (UG/L AS ZN)	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND
APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR 05 20 MAY 02 18	TOTAL RECOV- REABLE (UG/L AS HG)  <0.10	TOTAL RECOVERABLE (UG/L AS NI)  <100 2 3 <100 4 <1 2 10	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS ZN)  20 <10 40 30 <10 10 10 40 410 40 40 40 40	DIS- SOLVED (UG/L AS ZN)	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE RIDE TOTAL (UG/L)  ND	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND
APR 1987 16 27 MAY 19 JUN 25 Z7 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR 05 APR 05 APR 198 JUN 20 MAY 20 MAY 29	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10	TOTAL RECOVERABLE (UG/L AS NI)  <100 2 3 <100 4 <1 2 10 12 10 12	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS ZN)  20 <10 40 30 <10 10 10 40 20 10 40 20 20 20	DIS- SOLVED (UG/L AS ZN)	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE RIDE TOTAL (UG/L)  ND	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND
APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR 05 20 MAY 02 MAY 02 18 JUN 29 SEP 06	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)  <100 2 3 <100 4 <1 10 12 10 6	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS ZN)  20 <10 40 30 <10 10 40 20 10 20 10 40 20 10	DIS- SOLVED (UG/L AS ZN)	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE RIDE TOTAL (UG/L)  ND N	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND
APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR 05 20 MAY 02 18 JUN 29 SEP	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10	TOTAL RECOVERABLE (UG/L AS NI)  <100 2 3 <100 4 <1 2 10 12 10 6 8	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  20 <10 40 30 <10 10 <10 20 10 20 10 10 10 10	DIS- SOLVED (UG/L AS ZN)	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND N	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

## STREAMS TRIBUTARY TO LAKE ERIE

### 04215790 BUFFALO RIVER AT OHIO STREET AT BUFFALO, NY - continued

DATE	CHLORO- FORM TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)
APR 1987 16 27	ND ND	ND ND	ND ND	ND ND	ИD	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
MAY 19	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
JUN 25	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
JUL 27											
SEP 28	ND	ND	ND	ND	<b>N</b> D	ND	ND	ND	ND	ND	ND
NOV 09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DEC 07						ND			-	-	ND
MAR 1988	ND	ND	ND	ND	ND		ND	ND	ND	ND	
21 APR	ND	ND	ND	ND	ND	0.5	ND	ND	ND	ND	ND
05 20 May	ND 0	0 ND	ND ND	ND ND	ND ND	<b>и</b> р	0 ND	0 ND	ND ND	0 ND	<b>N</b> D 0
02 18 JUN	ND 0	0 ND	ND 0	ND 0	ND O	<b>N</b> D	0 ND	0 ND	ND 0	0 ND	<b>N</b> D
29	0.1	ND	ND	ND	ND	ND	0.2	ND	ND	ND	ND
06	0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
OCT 04	ND	ND	ND	ND	ND	ND	ND	ND	ИD	ND	ND
NOV 15	0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DATE	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)
APR 1987	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
APR 1987 16 27	CHLORO- BENZENE TOTAL	CHLORO- ETHANE WATER WHOLE TOTAL	CHLORO- PROPANE TOTAL	TRANSDI CHLORO- ETHENE TOTAL	CHLORO- BENZENE TOTAL	CHLORO- BENZENE TOTAL	CHLORO- ETHYL- ENE TOTAL	1,3-DI- CHLORO- PROPENE TOTAL	CHLORO- ETHYL- ENE TOTAL	CHLORO- ETHYL- VINYL- ETHER TOTAL	CHLO- RIDE TOTAL
APR 1987 16 27 MAY 19	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
APR 1987 16 27 MAY 19 JUN 25	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND	CHLORO- PROPANE TOTAL (UG/L) ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND	CHLO- RIDE TOTAL (UG/L) ND
APR 1987 16 27 MAY 19 JUN 25 JUL 27	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND	CHLO- RIDE TOTAL (UG/L) ND ND
APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND ND	TRANSDI CHLORO- E'THENE TOTAL (UG/L) ND ND ND	CHLORO-BENZENE TOTAL (UG/L) ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND
APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV	CHLORO- BENZENE TOTAL (UG/L)  ND ND ND ND ND ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND ND ND ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND	CHLORO-BENZENE TOTAL (UG/L) ND ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND	CHLO- RIDE TOTAL (UG/L) ND ND ND
APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC	CHLORO- BENZENE TOTAL (UG/L) ND ND ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND ND ND ND ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND ND ND
APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND	CHLORO-PROPANE TOTAL (UG/L)  ND N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENETOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO- RIDE TOTAL (UG/L)  ND ND ND ND ND ND
APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR	CHLORO- BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO- RIDE TOTAL (UG/L)  ND
APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR 05 20	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND	CHLORO-PROPANE TOTAL (UG/L)  ND N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENETOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO- RIDE TOTAL (UG/L)  ND
APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR 05 20 MAY	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO- RIDE TOTAL (UG/L)  ND
APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR 05 20 MAY 02 18 JUN 29	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO- RIDE TOTAL (UG/L)  ND
APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR 05 20 MAY 02 18 JUN 29 SEP 06	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND
APR 1987 16 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR 05 20 MAY 02 18 JUN 29 SEP	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- ENE ENE TOTAL (UG/L)  ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO- RIDE TOTAL (UG/L)  ND

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

### STREAMS TRIBUTARY TO LAKE ERIE

### 04215790 BUFFALO RIVER AT OHIO STREET AT BUFFALO, NY - continued

### SUSPENDED SEDIMENT DISCHARGE

DATE	TIME	SEDI- MENT, SUS- PENDED (MG/L)
APR 1987		
16	1445	48
27	1245	54
MAY		
19	1200	65
JUN		
25	1130	52
NOV 09	0930	30
DEC	0930	30
07	1400	10
MAY 1988	1400	10
18	0900	33
JUN		
29	1000	40
SEP		
06	0845	23
oct •	0015	20
04 NOV	0915	28
15	0800	32
10	0300	26

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

#### ST. LAWRENCE RIVER MAIN STEM

### 04216060 NIAGARA RIVER AT ANDERSON PARK, BUFFALO, NY

LOCATION.--Lat 42 54'53", long 78 54'12", Erie Coutny, Hydrologic Unit 04120104, at Anderson Park (Broderick Park) dock at foot of Ferry Street on Squaw Island, Buffalo, 0.6 mi downstream from Peace Bridge.

DRAINAGE AREA. -- 263,700 mi2.

PERIOD OF RECORD.--Water years 1987 to 1989. CHEMICAL DATA: 1987-88 (c), 1989 (a). MINOR ELEMENT DATA: 1987-88 (c), 1989 (a). PESTICIDE DATA: 1987 (b), 1988 (c), 1989 (a). NUTRIENT DATA: 1987-88 (c), 1989 (a). SEDIMENT DATA: 1987-88 (b), 1989 (a).

REMARKS--Water-discharge records obtained from daily discharge furnished by Detroit District Corp. of Engineers and Canada Department of the Environment.

DATE	TIME	DIS- CHARGE, IN CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
APR 1987												
14	1500	246000		8.0	11.0	5.3		14.1	190	60	10	
27	1100	248000		8.3	7.0	1.5		12.4	130	39	8.5	
MAY												
19	1030	234000	301	8.1	11.0	2.8			130	37	8.4	
JUN												
25	1030	236000		8.3	21.0	7.6			130	37	8.4	
JUL	0045	0.40000								• •		
27	0915	243000		8.1	24.5	10			130	38	8.3	
SEP	1110	227000	202	0.6	22.0							
28 NOV	1110	227000	292	8.6	22.0							
09	1020	214000		8.0	8.5	4.8		10.6	130	37	8.2	
DEC	1020	214000		0.0	0.5	4.0		10.6	130	31	0.2	
07	0945	207000		8.4	5.0	3.8		11.4	100	31	6.5	
MAR 1988		20,		• • •	3.0	3.0			100	J.	0.5	
21	1115	208000	285	8.5	0.5	2.5			120	35	8.0	9.8
APR												
06	0830	212000	272	7.7	3.0	16						
18	1040	211000	262		1.0	3.8			110	32	7.3	9.4
MAY												
03	1015	217000	283	8.2	9.0	4.6		11.2				
16	1020	223000	300	8.4	11.0	2.5		11.0	130	37	8.7	10
JUN												
29	0900	203 <b>0</b> 00	295	8.4	19.0	3.9			120	36	8.5	9.5
SEP 07	1015	203000	285	8.2	20.0	2.2			100	33	0.6	0.0
OCT	1015	203000	285	8.2	20.0	2.2			120	33	8.6	9.0
03	0830	192000	294	8.2	17.0	2.0	763	7.6	130	38	9.0	9.8
NOV	0030	132000	234	0.2	17.0	2.0	763	7.6	130	36	3.0	9.0
14	0830	205000	302	8.3	8.0	8.0	763	10.2	130	38	9.1	10

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

#### ST. LAWRENCE RIVER MAIN STEM

### 04216060 NIAGARA RIVER AT ANDERSON PARK, BUFFALO, NY - continued

#### WATER-QUALITY DATA (continued)

DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	DIS- SOLV (MG/	, RID DI ED SOL L (MG	O- RE E, AT S- D VED	SIDUE SU 180 CC DEG. C TU DIS- SOLVED S	NSTI- ENTS,	SOLIDS, RESIDUE AT 105 DEG. C, TOTAL (MG/L)	SOLIDS, VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	RESIDUE TOTAL FIXED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)
APR 1987													
14					_	_	168		174	54	148		ND
27					_	_	156		172	50	126		ND
MAY													
19				~-	-	-	168		192	60	132		ND
JUN							1.00		175		144	0 220	0.00
25 JUL				~-	-	-	166		175	52	144	0.230	0.00
27					_	_	164		185	116	52		ND
SEP									•••				
28					-	-			162			0.090	0.00
NOV							160		170	5.0	110		
09 DEC					-	-	160		170	56	118		ND
07					_	_	176		196	80	116		ND
MAR 1988													
21	1.4	97	25	17	0	.20	162	155	170	46	124		
APR		07	20	1.0	^	20	1.00		222	44	100	0 200	0.00
06 18	1.2	87 82	28 2 <b>4</b>	16 16		.20 .20	168 176	139	232 1 <b>84</b>	44 32	188 152	0.290	0.00 ND
MAY	1.2	02	4.4	10	U	.20	170	133	104	32	132		ND
03		94			-	-	180		196	28	168	0.300	0.00
16	1.4	97	21	15	0	.20	188	151	200	96	104	0.320	0.00
JUN			25		•	20		150	200	0.4	11.	0 250	
29 SEP	1.4	100	25	15	U	.30	188	156	200	84	116	0.250	0.00
07	1.2	95	25	15	0	.10	164	149	180	60	120	0.240	0.00
OCT					_								
03	1.4	96	30	15	0	.10	176	161	192	80	112	0.210	0.00
NOV 14	1.6	98	30	15	•	.10	180	163	192	76	116		ND
14	1.0	36	30	13	U	.10	180	103	192	76	110		ND
DATE	NIT GE NO2+ TOT (MG AS	N, GI NO3 AMMO AL TO: /L (MO	EN, G ONIA AMM FAL TO G/L (M	EN, ONIA O TAL ' G/L	GEN,	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO-	NITR GEN TOTA (MG/ AS NO	, PHORU L TOTA L (MG)	JS DIS- NL SOLVI 'L (MG/I	JS PHATHO, ORTHOUGH DISCOURTS SOLVED SOLVED.	TE, INU HO, TOT. S- REC' /ED ERAI /L (UG	M, AL OV- BLE /L
APR 1987		200 0	020	0 02	0.26	0.20	0 67	,		110 110			
14 27				0.03 0.04	0.26 0.11	0.28							
MAY													
19	0.	140 0	.040	0.05	0.08	0.12	0.26	1.	2 0.0	10 ND		-	-
JUN 25	0.	230 0.	.030	0.04	0.15	0.18	0.41	1.	8 0.0	20 ND			_
JUL													
27 SEP	0.	120 0.	.040	0.05	0.14	0.18					0.	.0	-
28						0.10	0.30	1.	3 0.0	0.0			
11011	0.	090 0	.020	0.03	0.29	0.31					00 0	.0	-
NOV						0.31	0.40	1.	8 0.0	010 0.0			
09				0.03	0.29		0.40	1.	8 0.0	010 0.0			
09 DEC 07	o. o.	200 0.	.020			0.31	0.40	1.	8 0.0 7 0.0	010 0.0	00 0	.0	-
09 DEC 07 MAR 1988	0.	200 0. 210 0.	.020	0.03	0.16	0.31 0.18 0.17	0.40 0.38 0.38	1. 1.	8 0.0 7 0.0 7 0.0	010 0.0 010 0.0 020 0.0	00 0	.0	-
09 DEC 07 MAR 1988 21	0.	200 0. 210 0.	.020	0.03	0.16	0.31	0.40 0.38 0.38	1. 1.	8 0.0 7 0.0 7 0.0	010 0.0 010 0.0 020 0.0	00 0	.0	-
09 DEC 07 MAR 1988 21 APR	0. 0.	200 0. 210 0. 250 0.	.020 .00	0.03	0.16	0.31 0.18 0.17	0.40 0.38 0.38 0.46	1. 1. 1.	8 0.0 7 0.0 7 0.0 0 0.0	010 0.0 010 0.0 020 0.0 010 0.0	00 0	0	-
09 DEC 07 MAR 1988 21 APR 06 18	0. 0. 0.	200 0. 210 0. 250 0. 290 0.	.020 .00 .010	0.03 0.0 0.01	0.16 0.17 0.20	0.31 0.18 0.17 0.21	0.40 0.38 0.38 0.46	1. 1. 2.	8 0.0 7 0.0 7 0.0 0 0.0 5 0.0	010 0.0 010 0.0 020 0.0 010 0.0	00 0.	0	- - 60
09 DEC 07 MAR 1988 21 APR 06 18 MAY	0. 0. 0.	200 0. 210 0. 250 0. 290 0. 270 0.	.020 .00 .010 .270	0.03 0.0 0.01 0.35 0.03	0.16 0.17 0.20 0.46 0.16	0.31 0.18 0.17 0.21 0.73 0.18	0.40 0.38 0.38 0.46 1.0	1. 1. 2. 4.	8 0.0 7 0.0 7 0.0 0 0.0 5 0.0	010 0.0 010 0.0 020 0.0 010 0.0	00 0.00 0.00 0.00 0.00	0	- - 60 400 130
09 DEC 07 MAR 1988 21 APR 06 18 MAY 03	0. 0. 0. 0.	200 0. 210 0. 250 0. 290 0. 270 0.	.020 .00 .010 .270 .020	0.03 0.0 0.01 0.35 0.03	0.16 0.17 0.20 0.46 0.16	0.31 0.18 0.17 0.21 0.73 0.18	0.40 0.38 0.38 0.46 1.0 0.45	1. 1. 2. 4. 2.	8 0.0 7 0.0 7 0.0 0 0.0 5 0.0 5 0.0	010 0.0 010 0.0 020 0.0 010 0.0 010 ND	00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0	- 60 400 130
09 DEC 07 MAR 1988 21 APR 06 18 MAY	0. 0. 0. 0.	200 0. 210 0. 250 0. 290 0. 270 0.	.020 .00 .010 .270 .020	0.03 0.0 0.01 0.35 0.03	0.16 0.17 0.20 0.46 0.16	0.31 0.18 0.17 0.21 0.73 0.18	0.40 0.38 0.38 0.46 1.0 0.45	1. 1. 2. 4. 2.	8 0.0 7 0.0 7 0.0 0 0.0 5 0.0 5 0.0	010 0.0 010 0.0 020 0.0 010 0.0 010 ND	00 0.00 0.00 0.00 0.00	0	- - 60 400 130
09 DEC 07 MAR 1988 21 APR 06 18 MAY 03	0. 0. 0. 0.	200 0. 210 0. 250 0. 290 0. 270 0. 300 0. 320 0.	.020 .00 .010 .270 .020	0.03 0.0 0.01 0.35 0.03 0.03	0.16 0.17 0.20 0.46 0.16 0.25 0.21	0.31 0.18 0.17 0.21 0.73 0.18 0.27	0.40 0.38 0.38 0.46 1.0 0.45 0.57	1. 1. 2. 4. 2.	8 0.0 7 0.0 7 0.0 0 0.0 5 0.0 0 0.0 4 0.0	010 0.0 010 0.0 020 0.0 010 0.0 020 ND 010 ND	00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0	- 60 400 130
09 DEC 07 MAR 1988 21 APR 06 18 MAY 03 16 JUN 29 SEP	0. 0. 0. 0. 0.	200 0. 210 0. 250 0. 290 0. 270 0. 300 0. 320 0.	.020 .00 .010 .270 .020 .020 .010	0.03 0.0 0.01 0.35 0.03 0.03 0.01	0.16 0.17 0.20 0.46 0.16 0.25 0.21	0.31 0.18 0.17 0.21 0.73 0.18 0.27 0.22	0.40 0.38 0.38 0.46 1.0 0.45 0.57 0.54	1. 1. 2. 4. 2. 2. 2.	8 0.0 7 0.0 0 0.0 5 0.0 0 0.0 5 0.0 3 0.0	010 0.0 010 0.0 020 0.0 010 0.0 020 ND 010 ND	00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0	- 60 400 130 140 90
09 DEC 07 MAR 1988 21 APR 06 18 MAY 03 16 JUN 29 SEP 07	0. 0. 0. 0. 0.	200 0. 210 0. 250 0. 290 0. 270 0. 300 0. 320 0.	.020 .00 .010 .270 .020 .020 .010	0.03 0.0 0.01 0.35 0.03 0.03	0.16 0.17 0.20 0.46 0.16 0.25 0.21	0.31 0.18 0.17 0.21 0.73 0.18 0.27	0.40 0.38 0.38 0.46 1.0 0.45 0.57 0.54	1. 1. 2. 4. 2. 2.	8 0.0 7 0.0 0 0.0 5 0.0 0 0.0 5 0.0 3 0.0	010 0.0 010 0.0 020 0.0 010 0.0 020 ND 010 ND	00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0	- 60 400 430 140 90
09 DEC 07 MAR 1988 21 APR 06 18 MAY 03 16 JUN 29 SEP 07 OCT	0. 0. 0. 0. 0. 0.	200 0. 210 0. 250 0. 290 0. 270 0. 300 0. 320 0. 250 0.	.020 .00 .010 .270 .020 .020 .010	0.03 0.0 0.01 0.35 0.03 0.03 0.01 0.13	0.16 0.17 0.20 0.46 0.16 0.25 0.21 0.18	0.31 0.18 0.17 0.21 0.73 0.18 0.27 0.22 0.28	0.40 0.38 0.38 0.46 1.0 0.45 0.57 0.54	1. 1. 2. 4. 2. 2. 1.	8 0.0 7 0.0 0 0.0 5 0.0 0 0.0 5 0.0 4 0.0 9 0.0	010 0.0 010 0.0 020 0.0 010 0.0 020 ND 010 ND 020 ND 010 ND 010 ND	00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0	60 400 130 140 90
09 DEC 07 MAR 1988 21 APR 06 18 MAY 03 16 JUN 29 SEP 07 OCT 03	0. 0. 0. 0. 0. 0.	200 0. 210 0. 250 0. 290 0. 270 0. 300 0. 320 0. 250 0.	.020 .00 .010 .270 .020 .020 .010	0.03 0.0 0.01 0.35 0.03 0.03 0.01	0.16 0.17 0.20 0.46 0.16 0.25 0.21	0.31 0.18 0.17 0.21 0.73 0.18 0.27 0.22	0.40 0.38 0.38 0.46 1.0 0.45 0.57 0.54	1. 1. 2. 4. 2. 2. 1.	8 0.0 7 0.0 7 0.0 0 0.0 5 0.0 5 0.0 4 0.0 9 0.0	010 0.0 010 0.0 020 0.0 010 0.0 020 ND 010 ND 020 ND 010 ND 010 ND	00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0	- 60 400 130 140 90
09 DEC 07 MAR 1988 21 APR 06 18 MAY 03 16 JUN 29 SEP 07 OCT	0. 0. 0. 0. 0. 0.	200 0. 210 0. 250 0. 290 0. 270 0. 300 0. 320 0. 250 0. 240 0.	.020 .00 .010 .270 .020 .020 .010 .100 .010	0.03 0.0 0.01 0.35 0.03 0.03 0.01 0.13	0.16 0.17 0.20 0.46 0.16 0.25 0.21 0.18	0.31 0.18 0.17 0.21 0.73 0.18 0.27 0.22 0.28	0.40 0.38 0.38 0.46 1.0 0.45 0.57 0.54 0.53	1. 1. 2. 4. 2. 2. 2. 2.	8 0.0 7 0.0 0 0.0 5 0.0 0 0.0 4 0.0 3 0.0 9 0.0	010 0.0 010 0.0 020 0.0 010 0.0 020 ND 010 ND 010 ND 010 ND	00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0	60 400 130 140 90

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

## ST. LAWRENCE RIVER MAIN STEM

## 04216060 NIAGARA RIVER AT ANDERSON PARK, BUFFALO, NY - continued

DATE	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
APR 1987											
14 27		<10 <10		20 10		240 110		<100 5		10 10	
MAY											
19 JUN		<10		<10		190		<100		<10	
25 JUL		<10	<1.0	<10	8	430		8	<b>&lt;</b> 5	20	
27 SEP		<10		20		540		9		30	
28 NOV		<10		10		250		<100		10	10
09 DEC		<1		5		320		5		20	
07 MAR 1988		<1	<1.0	9	2	260		7	<5	10	
21 APR	<10	<1	<1.0	24	1	340	11	<5	<5	<10	5
06 18	10	<1 1	<1.0	9 5	 1	670 230	8	<5 <5	 <b>&lt;</b> 5	20 20	 5
MAY 03		1		6		290		<b>&lt;</b> 5		10	
16 JUN	<10	<1	<1.0	6	2	240	<3	<5	<5	20	1
29 SEP		2		6		300		<5		20	
07 OCT		<1		5	~-	160		<b>&lt;</b> 5		10	
03	10	1	<1.0	6	1	160	23	<b>&lt;</b> 5	<5	10	3
14		<1		3		590		<b>&lt;</b> 5		40	
DATE	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)	PHENOL (C6H- 5OH) TOTAL (UG/L)	BROMO- FORM TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)
	TOTAL RECOV- ERABLE (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	(C6H- 5OH) TOTAL	FORM TOTAL	TETRA- CHLO- RIDE TOTAL	BENZENE TOTAL	DI- BROMO- METHANE TOTAL	ethane total
DATE APR 1987 14	TOTAL RECOV- ERABLE (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L	(C6H- 5OH) TOTAL	FORM TOTAL	TETRA- CHLO- RIDE TOTAL	BENZENE TOTAL	DI- BROMO- METHANE TOTAL	ethane total
APR 1987	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L AS ZN)	(C6H- 5OH) TOTAL (UG/L)	FORM TOTAL (UG/L)	TETRA- CHLO- RIDE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	DI- BROMO- METHANE TOTAL (UG/L)	ETHANE TOTAL (UG/L)
APR 1987 14 27 MAY 19	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L AS ZN)	(C6H- 5OH) TOTAL (UG/L)	FORM TOTAL (UG/L)	TETRA- CHLO- RIDE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	DI- BROMO- METHANE TOTAL (UG/L)	ETHANE TOTAL (UG/L) ND
APR 1987 14 27 MAY 19 JUN 25	TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  10 <10	DIS- SOLVED (UG/L AS ZN)	(C6H- 5OH) TOTAL (UG/L)	FORM TOTAL (UG/L) ND ND	TETRA- CHLO- RIDE TOTAL (UG/L) ND	BENZENE TOTAL (UG/L) ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND	ETHANE TOTAL (UG/L) ND ND
APR 1987 14 27 MAY 19 JUN 25 JUL 27	TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  10 <10	DIS- SOLVED (UG/L AS ZN)	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND ND	TETRA-CHLO-RIDE TOTAL (UG/L) ND ND	BENZENE TOTAL (UG/L) ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND	ETHANE TOTAL (UG/L) ND ND
APR 1987 14 27 MAY 19 JUN 25 JUL 27 SEP 28	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 0.10 <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <100 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  10 <10 <10	DIS- SOLVED (UG/L AS ZN)	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND ND	TETRA-CHLO-RIDE TOTAL (UG/L) ND ND	BENZENE TOTAL (UG/L) ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND	ETHANE TOTAL (UG/L) ND ND
APR 1987 14 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 0.10 <0.10 <0.10 0.10	TOTAL RECOV- BERABLE (UG/L AS NI)  <100 <1 <100 <1 <200 <1 2	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS ZN)  10 <10 10 10	DIS- SOLVED (UG/L AS ZN)	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L) ND ND ND	TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND	BENZENE TOTAL (UG/L) ND ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND	ETHANE TOTAL (UG/L) ND ND ND
APR 1987 14 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 0.10 <0.10  <0.10  <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <100 <1 <100 <1 2 <100	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  10 <10  10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND ND ND ND ND	TETRA- CHLO- RIDE TOTAL (UG/L)  ND ND ND ND ND	BENZENE TOTAL (UG/L) ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L)  ND ND ND ND ND	ETHANE TOTAL (UG/L)  ND ND ND ND ND
APR 1987 14 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10  <0.10  <0.10  <0.10  <0.10  <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <100 <1 <100 <1 2 <100 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOVERABLE (UG/L AS ZN)  10 <10  10 <10  10 <10  10 <10	DIS- SOLVED (UG/L AS ZN)	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND ND ND ND ND ND ND ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND N	BENZENE TOTAL (UG/L)  ND ND ND ND ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L)  ND ND ND ND ND ND ND	ETHANE TOTAL (UG/L)  ND
APR 1987 14 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 0.10 <0.10  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV- REABLE (UG/L AS NI)  <100 <1 <100 <1 2 <100 <1 5 4100 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOVERABLE (UG/L AS ZN)  10 <10  10  10  10  10  10  10  10  10  10	DIS- SOLVED (UG/L AS 2N)	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND	TETRA- CHLO- RIDE TOTAL (UG/L)  ND	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND
APR 1987 14 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <100 <1 <100 <1 <100 <1 5 <100 <1 5 <100 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS ZN)  10 <10  10  10  10  10  30	DIS- SOLVED (UG/L AS 2N)	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND	TETRA- CHLO- RIDE TOTAL (UG/L)  ND	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L)  ND ND ND ND ND ND ND ND	ETHANE TOTAL (UG/L)  ND
APR 1987 14 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR 06 18 MAY 03	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10	TOTAL RECOV- REABLE (UG/L AS NI)  <100 <1 <100 <1 <100 <1 5 4 5 4 7	DIS- SOLVED (UG/L AS NI)	TOTAL RECOVERABLE (UG/L AS ZN)  10 <10  10  10  10  10  10  10  10  10  10	DIS- SOLVED (UG/L AS 2N)	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND N	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND
APR 1987 14 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR 06 18 MAY 03 16 JUN	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10	TOTAL RECOV- RECOV- ERABLE (UG/L AS NI)  <100 <1 <100 <1 2 <100 <1 5 4 7 1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOVERABLE (UG/L AS ZN)  10 <10  10  10  10  10  10  10  10  10  10	DIS- SOLVED (UG/L AS 2N)	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND N	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND
APR 1987 14 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR 06 18 MAY 03 16 JUN 29 SEP	TOTAL RECOV- REABLE (UG/L AS HG)  <0.10	TOTAL RECOV- REABLE (UG/L AS NI)  <100 <1 <100 <1 <100 <1 5 4 5 4 7	DIS- SOLVED (UG/L AS NI)  <1 <1 <1 4 5	TOTAL RECOVERABLE (UG/L AS ZN)  10 <10  10  10  10  10  10  10  10  10  10	DIS- SOLVED (UG/L AS 2N)  <10 10 4 3	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND N	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND
APR 1987 14 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR 06 18 MAY 03 16 JUN 29	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <100 <1 <100 <1 2 <100 <1 5 4 5 4 7 1 10	DIS- SOLVED (UG/L AS NI)  <1 <1 <1 5 5	TOTAL RECOVERABLE (UG/L AS ZN)  10 <10  10  10  10  10  10  10  10  10  10	DIS- SOLVED (UG/L AS 2N)	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND N	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND
APR 1987 14 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR 06 18 MAY 03 16 JUN 29 SEP O7 OCT	TOTAL RECOV- REABLE (UG/L AS HG)  <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <100 <1 <100 <1 2 <100 <1 5 4 5 4 7 1 100 1	DIS- SOLVED (UG/L AS NI)  <1 <1 <1 4 5	TOTAL RECOVERABLE (UG/L AS ZN)  10 <10  10  10  10  10  10  10  10  210  210	DIS- SOLVED (UG/L AS 2N)  <10 10 4 <3 <3	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE RIDE TOTAL (UG/L)  ND N	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

### ST. LAWRENCE RIVER MAIN STEM

## 04216060 NIAGARA RIVER AT ANDERSON PARK, BUFFALO, NY - continued

DATE	CHLORO- FORM TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,2- TRI- CHLORO~ ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)
APR 1987 14 27	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
MAY 19	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
JUN 25	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
JUL 27			~=						~-		
SEP 28	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
NOV 09	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DEC											
07 MAR 1988	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
21 APR	ND	ND	ND	ND	ND	0.5	ND	ND	ND	ND	ND
06 18	ND ND	<b>N</b> D <b>N</b> D	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
MAY 03	0	0	0	0	0	0	0	0	0	0	0
16 JUN	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
29 SEP	ND	ND	ND	ND	ND	ND	0.1	ND	ND	ND	ND
07	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
OCT 03	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
NOV 14	ND	<b>N</b> D	ND	ND	ND	0.5	ND	ND	ND	ND	ND
DATE	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)
APR 1987	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
APR 1987 14 27	CHLORO- BENZENE TOTAL	CHLORO- ETHANE WATER WHOLE TOTAL	CHLORO- PROPANE TOTAL	TRANSDI CHLORO- ETHENE TOTAL	CHLORO- BENZENE TOTAL	CHLORO- BENZENE TOTAL	CHLORO- ETHYL~ ENE TOTAL	1,3-DI- CHLORO- PROPENE TOTAL	CHLORO- ETHYL- ENE TOTAL	CHLORO- ETHYL- VINYL- ETHER TOTAL	CHLO- RIDE TOTAL
APR 1987 14 27 MAY 19	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
APR 1987 14 27 MAY 19 JUN 25	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND	CHLO- RIDE TOTAL (UG/L) ND ND
APR 1987 14 27 MAY 19 JUN	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND	CHLO- RIDE TOTAL (UG/L) ND ND
APR 1987 14 27 MAY 19 JUN 25 JUL	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND	CHLO- RIDE TOTAL (UG/L) ND ND ND
APR 1987 14 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND ND ND ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND ND ND ND ND ND ND	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND ND ND ND ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND ND
APR 1987 14 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND ND ND ND ND ND ND	CHLORO-PROPANE TOTAL (UG/L)  ND N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND ND ND	CHLO-RIDE TOTAL (UG/L)  ND
APR 1987 14 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND N
APR 1987 14 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO- ETHYL- ENE TOTAL (UG/L)  ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND N
APR 1987 14 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR 06 18	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND N
APR 1987 14 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR 06 18 MAY 03 16	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND N
APR 1987 14 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR 06 18 MAY 03 16 JUN 29	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND N
APR 1987 14 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR 06 18 MAY 03 16 JUN 29 SEP	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND N
APR 1987 14 27 MAY 19 JUN 25 JUL 27 SEP 28 NOV 09 DEC 07 MAR 1988 21 APR 06 18 MAY 03 16 JUN 29 SEP	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND ND ND ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- ENE TOTAL (UG/L)  ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND N

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

### ST. LAWRENCE RIVER MAIN STEM

## 04216060 NIAGARA RIVER AT ANDERSON PARK, BUFFALO, NY - continued

## SUSPENDED SEDIMENT DISCHARGE

DATE	TIME	DIS- CHARGE, IN CUBIC FEET PER SECOND	SEDI- MENT, SUS- PENDED (MG/L)	
APR 1987				
14	1500	246000	9	5980
MAY 19	1030	234000	5	3160
JUN	1030	234000	,	3160
25	1030	236000	12	7650
09	1020	214000	8	4620
MAY 1988	1020	214000	8	4620
16	1020	223000	6	3610
JUN			_	
29 SEP	0900	203000	7	3840
07	1015	203000	5	2740
ΩT				
03	0830	192000	5	2590
NOV 14	0830	205000	15	8300
	-000		10	

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

#### NIAGARA RIVER BASIN

### 04217122 TONOWANDA CREEK NEAR EAST PEMBROKE, NY

LOCATION.--Lat 42 59'58", long 78 18'38", Genesse County, Hydrologic Unit 04120104, at bridge on County Highway 30 near East Pembroke.

DRAINAGE AREA. -- 200 mi2.

PERIOD OF RECORD.--Water years 1987 to 1989.
CHEMICAL DATA: 1987-88 (c), 1989 (a).
MINOR ELEMENT DATA: 1987-88 (c), 1989 (a).
PESTICIDE DATA: 1987-88 (c), 1989 (a).
ORGANIC DATA: PCB--1988 (a).
NUTRIENT DATA: 1987-88 (c), 1989 (a).
SEDIMENT DATA: 1987-88 (b), 1989 (a).

REMARKS.--Water-discharge data based on records from stream-flow gage 04217000 Tonowanda Creek at Batavia and 04217500 Tonowanda Creek near Alabama.

DATE	TIME	DIS- CHARGE, IN CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
APR 1987												
15	1200	E370			8.0	13.5	15		12.7	170	52	9.5
28	1130	E180			7.9	12.0	14		8.6	210	62	13
MAY												
20	1030	E68		575	7.6	14.5	7.8		7.9	220	67	14
JUN												
22	1315	E74			7.7	21.0	12					
JUL 22	1515	E180			7.7	28.5	66		6.9	140	45	7.6
SEP	1212	£180			7.7	20.5	00		0.3	140	43	7.0
30	1100	E100		556	7.7	22.0	20					
NOV	1100	5100		330	, , ,	22						
19	1130	E190			7.8	6.0	24		13.2	230	68	14
DEC												
08	1130	E190			8.0	1.5	7.4		12.0			
MAR 1988												
22	1000	E140		488	8.2	2.0	8.8			210	61	13
APR					~ .	40.0						
06	1230	520		364	7.4	13.0	46			220	64	14
18 May	1230	E160		471			7.3			220	64	14
03	1145	283		405	8.0	11.0	12		10.0			
16	1200	145		507	8.2	19.0	15		8.4	220	65	15
JUN	1200	143		30,	0.2	25.0	15		•••	220	05	
30	0945	E24	685	683	7.4	17.0	3.5		6.0	260	73	19
SEP		_										
07	1145	E34		595	7.4	17.0	16			210	61	15
OCT												
03	1300	20		580	7.2	15.0	12	763	5.6	220	63	16

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

## 04217122 TONOWANDA CREEK NEAR EAST PEMBROKE, NY - continued

DATE	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFA DIS- SOLV (MG/ AS SO	ATE RII DIS VED SOI 'L (MG	DE, R S- LVED S G/L (	LUO-	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLII SUM ( CONST TUENT DIS SOLV (MG,	OF SOL TI- RES TS, AT S- DEG VED TO	IDS, IDUE T 105 . C,	COLIDS, VOLA- PILE ON IGNI- TION, TOTAL (MG/L)	RESIDUE TOTAL FIXED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)
APR 1987														
15					. ,			204		-	255	6	234	0.930
28								286		-	310	70	240	1.04
MAY 20								328		_	338	96	248	0.860
JUN														
22					-			312		-	334	70	288	1.03
JUL 22					_			228		_	296	96	184	
SEP								220			230	90	104	
30					-			308		-	358	64	320	0.940
NOV 19					_			288			351	80	260	0.830
DEC								200		_	221	80	260	0.830
08					-			296		-	301	88	240	1.08
MAR 1988		1.0	160	2.2	,	•	0.20	274		200	202	40	254	
22 APR	20	1.9	168	32	3	-	0.20	274	•	260	302	48	254	
06			135	28	1		0.10	216	-		300	52	248	0.750
18 May	17	1.9	176	28	2	7	0.20	316	:	258	320	64	256	1.06
03			155		_			252	_	-	272	48	224	0.720
16	18	2.3	190	28	2	8	0.30	320	:	271	352	120	232	0.830
JUN 30	37	4.0	218	40	5	۵	0.30	409		364	455	111	344	0.860
SEP	3,	•••	210	40	3		0.30	407		304	433		311	0.000
07	31	3.9	169	50	5	1	0.20	360	:	315	416	96	320	1.55
ост 03	34	4.6	166	51	4	7	0.40	324		316	368	88	280	1.94
	NITR GEN NITRI	, GE	EN, G	TRO- EN, ONIA	NITRO- GEN, AMMONIA	NITRO- GEN, ORGANIC	MONIA	AM- A + NI	TRO- EN,	NITRO- GEN,	PHOS- PHORUS		US PHA	OS- ATE, IHO, IS-
	TOTA			TAL	TOTAL	TOTAL	TOTA		TAL	TOTAL	TOTAL			LVED
DAT				G/L	(MG/L	(MG/L	(MG/		G/L	(MG/L	(MG/I			3/L
	AS N	) AS	N) AS	N)	AS NH4)	AS N)	AS N	I) AS	N)	AS NO3)	AS P)	AS P	) AS I	PO4)
APR 198	7													
15				.080	0.10	0.19			1.2	5.4	0.07			0.03
28 MAY	0.0	60 1.	.10 0	.310	0.40	0.69	9 1.	.0	2.1	9.3	0.13	30 <b>0.</b>	010 (	0.03
20	0.1	10 0.	.970 0	.380	0.49	0.03	3 0.	.41	1.4	6.1	0.17	70 0.	090 (	0.28
JUN 22	0.5	00 1	.53 0	.280	0.36	0.34	<b>1</b> 0	. 62	2.2	9.5	0.31	10 0	150 (	0.46
JUL				.200	0.50	0.5		. 02	2.2	,,,	0.0.			
22		0.	.770 0	.180	0.23	0.25	50.	.43	1.2	5.3	0.21	10 0.	060 (	0.18
SEP 30	0.0	80 1.	.02 0	.270	0.35	0.60	0.	.87	1.9	8.4	0.28	30 0.	130	0.40
VON														
19	0.0	30 0.	.860 0	.300	0.39	0.2	1 0.	.51	1.4	6.1	0.24	10 0.	060 (	0.18
08		10 1.	.09 0	.220	0.28	0.40	0.	.62	1.7	7.6	0.12	20 0.	00 (	0.0
MAR 198 22		1.	.27 0	.190	0.24	0.24	<b>4</b> 0.	.43	1.7	7.5	0.16	50 0.	090	0.28
APR														
06 18				.230	0.30 0.30	0.47			1.5 1.8	6.4 7.8	0.08			0.0 0.37
MAY				.250	0.50	0.44	- 0.			,	0.21			
03				.080	0.10	0.30			1.1	5.0	0.11			0.0
16 JUN	0.0	50 0.	.880 0	.100	0.13	0.39	9 0.	.49	1.4	6.1	0.18	30 0.	00 (	0.0
30 SEP	0.4	90 1	.35 0	.130	0.17	0.82	2 0.	.95	2.3	10	0.40	0.	190	0.58
07	0.2	60 1	.81 0	.520	0.67	0.78	3 1.	. 3	3.1	14	0.63	30 0.	360	1.1
ОСТ 03	0.2	00 2	.14 0	.430	0.55	0.7	7 1.	. 2	3.3	15	0.39	90 0.	280	0.86

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

### 04217122 TONOWANDA CREEK NEAR EAST PEMBROKE, NY - continued

					IEK-QUALI						
DATE	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)
APR 1987											
15			<10 <10		<10 10		890 940		<100 14		60 100
28 MAY			<b>~</b> 10		10		340		14		100
20			<10	1.0	10	3	640		35	<5	150
JUN 22			<10		<10		780				100
JUL 22			<10		30		2900		<5		110
SEP 30			<10	<1.0	10	2	1200		<100	<b>&lt;</b> 5	120
NOV 19			<1		11		1800		<b>&lt;</b> 5		100
DEC 08			<1		8		510		<b>&lt;</b> 5		70
MAR 1988 22	200	<10	<1	<1.0	3	<1	540	10	<b>&lt;</b> 5	<b>&lt;</b> 5	80
APR	4000		.4		12		6200				150
06 18 MAY	4000 220	10	<1 	<1.0			6200 580	15	<5 		70
03	350		2		51		890		6		80
16	410	20	7	<1.0	7	1	880	20	<b>&lt;</b> 5	<5	130
JUN 30	210		<1		3		660		<b>&lt;</b> 5		260
SEP 07	430		<1		5		1000		<b>&lt;</b> 5		140
ОСТ 03	330	<10	<1	<1.0	4	<1	770	14	<b>&lt;</b> 5	<b>&lt;</b> 5	110
DATE	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)	BROMO- FORM TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)
	NESE, DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	FORM TOTAL	TETRA- CHLO- RIDE TOTAL	BENZENE TOTAL	DI- BROMO- METHANE TOTAL	ETHANE TOTAL
APR 1987 15	NESE, DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	TOTAL RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	FORM TOTAL	TETRA- CHLO- RIDE TOTAL	BENZENE TOTAL	DI- BROMO- METHANE TOTAL	ETHANE TOTAL
APR 1987 15 28	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)	TETRA- CHLO- RIDE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	DI- BROMO- METHANE TOTAL (UG/L)	ETHANE TOTAL (UG/L)
APR 1987 15 28 MAY 20	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)	TETRA- CHLO- RIDE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	DI- BROMO- METHANE TOTAL (UG/L)	ETHANE TOTAL (UG/L) ND
APR 1987 15 28 MAY	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN) <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L) ND ND	TETRA- CHLO- RIDE TOTAL (UG/L) ND	BENZENE TOTAL (UG/L) ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND	ETHANE TOTAL (UG/L) ND ND
APR 1987 15 28 MAY 20 JUN 22 JUL 22	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN) <10 10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L) ND ND	TETRA-CHLO-RIDE TOTAL (UG/L) ND ND	BENZENE TOTAL (UG/L) ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND	TOTAL (UG/L)  ND ND ND
APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 0.10 <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 5 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN) <10 10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L) ND ND ND	TETRA- CHLO- RIDE TOTAL (UG/L) ND ND	BENZENE TOTAL (UG/L) ND ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND	ETHANE TOTAL (UG/L)  ND ND ND ND
APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30 NOV 19	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 0.10 <0.10 <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <100 5 <1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 10 <10 20	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND ND ND ND ND	TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND ND ND ND	BENZENE TOTAL (UG/L)  ND ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L)  ND ND ND ND	ETHANE TOTAL (UG/L)  ND ND ND ND ND ND
APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30 NOV 19 DEC 08	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- REABLE (UG/L AS HG)  <0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 5 <1 <1 <100	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- REABLE (UG/L AS ZN)  <10 10 20 <10	DIS- SOLVED (UG/L AS ZN)  20 <10	FORM TOTAL (UG/L)  ND ND ND ND ND ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND N	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L)  ND ND ND ND ND	ETHANE TOTAL (UG/L)  ND
APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30 NOV 19 DEC 08 MAR 1988	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <100 5 <1 <1 <100 1 1	DIS- SOLVED (UG/L AS NI)   1  <1 	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 10 20 <10 20 20	DIS- SOLVED (UG/L AS ZN)  20 <10	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND	ETHANE TOTAL (UG/L)  ND
APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- REABLE (UG/L AS HG)  <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <100 5 <1 <1 <100 1 1 1	DIS- SOLVED (UG/L AS NI)  1 <1 3	TOTAL RECOV- REABLE (UG/L AS ZN)  <10 10 20 <10 20 20 10	DIS- SOLVED (UG/L AS ZN)  20 <10 <3	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND N	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND
APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 06 18	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <100 5 <1 <1 <100 1 1	DIS- SOLVED (UG/L AS NI)   1  <1 	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 10 20 <10 20 20	DIS- SOLVED (UG/L AS ZN)  20 <10	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND	ETHANE TOTAL (UG/L)  ND
APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 06 18 MAY	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <100 5 <1 <1 <100 1 1 1 1 12	DIS- SOLVED (UG/L AS NI)  1 <1 3	TOTAL RECOV- REABLE (UG/L AS ZN)  <10 10 20 <10 20 20 10 30 <10	DIS- SOLVED (UG/L AS ZN)  20 <10 <3	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND N	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND
APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 06 18 MAY 03 16	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <100 5 <1 <1 <100 1 1 1	DIS- SOLVED (UG/L AS NI)  1 <1 3	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 10 20 <10 20 20 10 30	DIS- SOLVED (UG/L AS ZN)  20 <10 <3	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND N	BENZENE TOTAL (UG/L)  ND	DI- BROMO- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND
APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 06 18 MAY 03 16 JUN 30	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <100 5 <1 <100 1 1 1 1 8	DIS- SOLVED (UG/L AS NI)  1 <1 3	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 10 20 <10 20 20 10 30 <10 10 10	DIS- SOLVED (UG/L AS ZN)  20 <10 <3 <3	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE RIDE TOTAL (UG/L)  ND N	BENZENE TOTAL (UG/L)  ND	DI- BROMO- BROMO- METHANE TOTAL (UG/L) ND	ETHANE TOTAL (UG/L)  ND
APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 06 18 MAY 03 16 JUN	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <100 5 <1 <1 <100 1 1 1 12 8 7	DIS- SOLVED (UG/L AS NI)  3 1	TOTAL RECOV- REABLE (UG/L AS ZN)  <10 10 20 <10 20 10 30 <10 10 10 <10 10 10 10	DIS- SOLVED (UG/L AS ZN)  20 <10 <3 <3 4	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND N	BENZENE TOTAL (UG/L)  ND	DI- BROMO- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 04217122 TONOWANDA CREEK NEAR EAST PEMBROKE, NY - continued

DATE	CHLORO- FORM TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)
APR 1987											
15	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
28	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MAY 20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
JUN											
JUL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
22 SEP	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
30 NOV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
19 DEC	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
08 MAR 1988	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
22 APR	0.2	ND	ND	ND	ND	0.5	ND	ND	ND	ND	ND
06	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
18	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MAY 03	0	0	0	0	0	0	0	0	0	0	0
16	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
JUN	ND	MD	ND	ND	ND	ND	ND	ND	ND	ND	ND
30 SEP	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND
07 OCT	ND	ND	ND	ND	ND	ND	NU	ND	ND	ND	NU
03	0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DATE	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)
DATE APR 1987	CHLORO- BENZENE TOTAL	CHLORO- ETHANE WATER WHOLE TOTAL	CHLORO- PROPANE TOTAL	TRANSDI CHLORO- ETHENE TOTAL	CHLORO- BENZENE TOTAL	CHLORO- BENZENE TOTAL	CHLORO- ETHYL- ENE TOTAL	1,3-DI- CHLORO- PROPENE TOTAL	CHLORO- ETHYL- ENE TOTAL	CHLORO- ETHYL- VINYL- ETHER TOTAL	CHLO- RIDE TOTAL
APR 1987 15	CHLORO- BENZENE TOTAL (UG/L) ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
APR 1987 15 28	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
APR 1987 15 28 MAY 20	CHLORO- BENZENE TOTAL (UG/L) ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
APR 1987 15 28 MAY 20 JUN 22	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND	CHLORO- PROPANE TOTAL (UG/L) ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND	CHLO- RIDE TOTAL (UG/L) ND ND
APR 1987 15 28 MAY 20 JUN 22 JUL 22	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND	CHLO- RIDE TOTAL (UG/L) ND ND
APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30	CHLORO- BENZENE TOTAL (UG/L) ND ND ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND	CHLORO-BENZENE TOTAL (UG/L) ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND	CHLO- RIDE TOTAL (UG/L) ND ND ND
APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30 NOV 19	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)  ND ND ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND	CHLORO-ETHYL- ENE TOTAL (UG/L)  ND ND ND ND ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND ND ND
APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30 NOV	CHLORO- BENZENE TOTAL (UG/L) ND ND ND ND	CHLORO-ETHANE WATER WATER WHOLE TOTAL (UG/L) ND ND ND ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND ND ND	CHLORO-ETHYL-ENE TYOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND ND ND
APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30 NOV 19 DEC 08 MAR 1988	CHLORO- BENZENE TOTAL (UG/L)  ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO- RIDE TOTAL (UG/L)  ND
APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30 NOV 19 DEC 08	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND ND ND ND ND ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND ND ND	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND	CHLO- RIDE TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND
APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 06	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO- RIDE TOTAL (UG/L)  ND
APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 06 18	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND
APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 06 18 MAY 03	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND N	CHLORO-PROPANE TOTAL (UG/L)  ND N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE RIDE TOTAL (UG/L)  ND
APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 06 18 MAY 03 16 JUN	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE ENE ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- ENE ENE TOTAL (UG/L)  ND	CHLORO-ETHYL- VINYL-ETHER TOTAL (UG/L)  ND	CHLO- RIDE TOTAL (UG/L)  ND
APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 06 18 MAY 03 16 JUN 30 SEP	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- ENE TOTAL (UG/L)  ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO- RIDE TOTAL (UG/L)  ND
APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR APR APR APR O6 18 MAY 03 16 JUN 30	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE ENE ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- ENE ENE TOTAL (UG/L)  ND	CHLORO-ETHYL- VINYL-ETHER TOTAL (UG/L)  ND	CHLO- RIDE TOTAL (UG/L)  ND

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

## 04217122 TONOWANDA CREEK NEAR EAST PEMBROKE, NY - continued

## SUSPENDED SEDIMENT DISCHARGE

DATE	TIME	DIS- CHARGE, IN CUBIC FEET PER SECOND	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)
APR 1987				
15	1200	E370	29	
28	1130	E180	24	
DEC				
08	1130	E190	11	
MAY 1988				
16	1200	145	30	12
SEP				
07	1145	E34	22	
OCT				
03	1300	20	16	0.86

#### BED MATERIAL ANALYSES

DATE  JUL 1987 22 JUN 1988 30	TIME	SOLIDS, VOLA- FILE IN SOUTTOM MA- TERIAL (MG/KG) 25100 53400	INUM, RECOV.	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRC MIUN RECC FM BC TOM N TERM (UG.	M, REMOV. FM : DOT- TOM MA- TE IAL (UG/G) AS	COV. RE BOT- FM MA- TOM RIAL TE G/G (U CU) AS	COV. RE BOT- FM MA- TOM RIAL TE	COV. NE BOT- RE MA- FM RIAL TOM G/G TE	SE, RE COV. FM BOT- TOM I MA- TE GRIAL (U IG/G) AS	COV. RE BOT- FM MA- TON RIAL TE	ECOV. R BOT- FM MA- TO ERIAL T UG/G (	INC, ECOV. BOT- M MA- ERIAL UG/G S ZN) 40
DATE	AROCLA 1221 IN BOTTO MAT (UG/K	AROCI 124 M PCI BOT.I	48 125 B PCE MAT BOT.M	4 126 PC AT BOT.	LOR 0 1 B 1	ALDRIN, TOTAL IN BOT- IOM MA- TERIAL (UG/KG)	ALPHA BHC TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ATRA- ZINE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	BETA BENZENE HEXA- CHLOR- I DE BOT.MAT (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- PYRIFOS IN BOT. MAT. (UG/KG)	DELTA BENZENE HEXA- CHLOR- IDE BOT.MAT (UG/KG)	
JUL 1987 22 JUN 1988				-	-								
30	ND	ND	7.	0 иг	)	ND	ND	ND	ND	ND	ND	ND	
DATE	DI- AZINO TOTA IN BO TOM M TERI (UG/K	L TOT. T- IN B A- TOM AL TER	IN, AL ENDO OT-SULFA MA-ALPH IAL BOT.M	N SULF A BET AT BOT	'AN 'A : MAT I	ENDO- SULFAN SULFATE BOT.MAT (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN ALDE- HYDE BOT.MAT (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
JUL 1987 22		_		_									
JUN 1988 30	ND	ND	ND	NI	)	ND	ND	ND	ND	ND	ND	ND	
DATE	METH OXY- CHLO TOT. BOTT MAT (UG/K	MIR R, TOT IN IN B OM TOM: L. TER	AL TOTA OT- IN BO MA- TOM M IAL TERI	DI L TOI T- IN E A- TOM AL TEF	MA- '	P,P' DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	BED MAT. FALL DIAM. % FINER THAN .004 MM	BED MAT. SIEVE DIAM. % FINER THAN .062 MM	BED MAT. SIEVE DIAM. % FINER THAN .125 MM	BED MAT. SIEVE DIAM. % FINER THAN 2.00 MM	
JUL 1987		-							0	3	8	98	
JUN 1988 30	ND	ND	ND		1.0	ND	ND	ND					

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

### 04218054 TONOWANDA CREEK AT PENDLETON, NY

LOCATION.-- Lat 43 05'10", long 78 43'40", Erie County, Hydrologic Unit 042120104, at bridge on New Road at Pendleton and 0.3 mi upstream from the Erie Canal.

DRAINAGE AREA. -- 396 mi2.

PERIOD OF RECORD.--Water years 1987 to 1989.
CHEMICAL DATA: 1987-88 (c), 1989 (a).
MINOR ELEMENT DATA: 1987-88 (c), 1989 (a).
PESTICIDE DATA: 1987-88 (c), 1989 (a).
ORGANIC DATA: PCB--1988 (a).
NUTRIENT DATA: 1987-88 (c), 1989 (a).
SEDIMENT DATA: 1987 (b), 1988-89 (a).

REMARKS.--Water-discharge data based on records from stream-flow gage 04218000 Tonowanda Creek at Rapids.

DATE	TIME	DIS- CHARGE, IN CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)
APR 1987												
15	0900	E1000			8.0	12.5	22		12.2	200	62	11
28	0900	E320			8.1	13.0	6.6		9.2	310	92	19
MAY												
20	0845	E150			8.0	15.5	20			350	110	19
JUN												
22	1115	E60			8.0	21.0	23			300	93	16
JUL												
22	1030	E620			8.1	27.5	22		7.1	260	82	13
SEP												
30	0900	E150		588	8.0	22.0	30		6.4			
NOV												
19	0900	E290			8.0	5.0	30		14.9	270	83	16
DEC												
08	0930	E500			8.1	1.5	11		13.0			
MAR 1988		-200								050	00	
22	1200	E320		608	8.3	1.0	7.8			270	80	16
APR 06	1345	E2000		355	7.7	13.0	120					
18	1330	E310		637	8.3	8.0	6.0			280	85	16
MAY	1330	2310		637	0.3	8.0	6.0			200	65	10
03	1245	E640		435	8.1	11.0	17					
17	1215	E310		694	7.9	16.0	21		7.4	310	95	18
JUN	1213	2310		034	7.3	10.0	21			310	,,	10
29	1030	E43	958	949	7.4	20.5	14		8.0	390	120	23
SEP	1000	242	,,,	,,,,		20.5			0.0	330	120	25
07	1300	E47		569	7.9	19.0	19			230	70	14
OCT				307		25.0						
03	1115	E36		705	7.7	15.0	22	763	5.8	300	91	17

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

### 04218054 TONOWANDA CREEK AT PENDLETON, NY - continued

	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, TOTAL (MG/L)	SOLIDS, VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	RESIDUE TOTAL FIXED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)
APR 1987												
15							256		316	44	276	0.960
28							394		430	116	342	4.10
MAY												
20							540		568	164	404	1.13
JUN												
22					-~		480		538	134	404	0.670
JUL							252		205	400	200	
22 SEP							372		397	128	288	
30				~-			352		405	84	336	0.930
NOV							332		403	04	336	0.330
19				~-			404		451	72	340	0.610
DEC											3.0	0.010
08				~ -			348		360	136	284	
MAR 1988												
22	23	2.0	174	83	38	0.20	370	347	390	82	308	
APR												
06			118	39	18	0.20	2 <b>4</b> 8		416	92	324	0.600
18	20	1.8	194	88	36	0.20	416	363	460	64	396	0.830
MAY												
03			145				276		312	72	240	0.510
17	24	2.4	197	110	38	0.30	492	406	528	172	356	0.960
JUN 29	38	3.0	193	220	62	0.40	673	582	784	223	5.01	
SEP	36	3.0	193	220	62	0.40	6/3	582	/84	223	561	
07	20	2.8	145	99	32	0.20	404	325	420	104	316	0.820
OCT	20	2.0	127	23	32	0.20	404	323	420	104	310	0.620
03	30	3.4	176	120	46	0.30	432	414	484	112	372	0.890
			-				- 7-				= / <del>=</del>	

DATE	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS NH4)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS NO3)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)
APR 1987											
15	0.010	0.970	0.030	0.04	0.36	0.39	1.4	6.0	0.080	0.020	0.06
28	0.170	4.27	3.70	4.8	4.8	8.5	13	57	0.080	0.010	0.03
MAY											
20	0.020	1.15	0.060	0.08	0.18	0.24	1.4	. 6.2	0.120	0.040	0.12
JUN											
22	0.010	0.680	0.050	0.06	0.27	0.32	1.0	4.4	0.130	0.020	0.06
JUL											
22		0.690	0.050	0.06	0.24	0.29	0.98	4.3	0.100	0.070	0.21
SEP											
30	0.010	0.940	0.050	0.06	0.49	0.54	1.5	6.6	0.160	0.00	0.0
NOV											
19	0.010	0.620	0.030	0.04	0.24	0.27	0.89	3.9	0.140	0.040	0.12
DEC											
08											
MAR 1988				2 25		• • •					
22		1.08	0.040	0.05	0.27	0.31	1.4	6.2	0.060	0.030	0.09
APR 06	0.00	0.600	1.20	1.5	1.5	2.7	3.3		0.140	0.00	0.0
18	0.010	0.840	0.010	0.01	0.36	0.37	1.2	15 5.4	0.140	0.00	
MAY	0.010	0.840	0.010	0.01	0.36	0.37	1.2	3.4	0.040	0.00	0.0
03	0.010	0.520	0.030	0.04	0.31	0.34	0.86	3.8	0.080	0.00	0.0
17	0.010	0.920	0.070	0.09	0.47	0.54	1.5	6.8	0.120	0.020	0.06
JUN	0.030	0.990	0.070	0.03	0.47	0.54	1.3	0.0	0.120	0.020	0.00
29	ND	ND	0.050	0.06	0.34	0.39			0.130	0.00	0.0
SEP	IVD	140	0.030	3.00	3.34	0.55			0.130	0.00	0.0
07	0.020	0.840	0.030	0.04	0.33	0.36	1.2	5.3	0.110	0.030	0.09
OCT	0.020	0.040	0.030	3.04	3.33	3.30	1.2	3.3	0.110	0.050	0.05
03	0.010	0.900	0.040	0.05	0.47	0.51	1.4	6.2	0.160	0.090	0.28

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

## 04218054 TONOWANDA CREEK AT PENDLETON, NY - continued

DATE	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)
APR 1987											
15 28			<10 <10		<10 10		1100 <b>4</b> 50		<100 5		50 50
MAY											
20 JUN			<10	1.0	10	3	950		<5	<5	90
22			<10		<10		630		<5		90
JUL 22			<10		30		1000		<5		60
SEP 30			<10	<1.0	10	2	1300		<100	<5	90
NOV 19			<1		6		1500		<5		50
DEC 08			<1		5		630		5		40
MAR 1988 22	230	<10	<1	<1.0	2	2	460	19	<5	<5	50
APR 06	1300		<1		7		2500		<b>&lt;</b> 5		100
18 MAY	100	10	1	<1.0	11	3	420	17	<5	<5	60
03	410 510	 <10	2 4	 <1.0	9 10	2	8 <b>4</b> 0 9000	13	<5 <5	 <b>&lt;</b> 5	50 110
JUN											
29 SEP	810		<1	<b></b>	7		1400		11		230
07 ⊙CT	460		<1		5		830		<5		60
03	610	<10	1	<1.0	8	1	980	12	<5	<5	90
DATE	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)	BROMO- FORM TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)
APR 1987	NESE, DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L	FORM TOTAL (UG/L)	TETRA- CHLO- RIDE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	DI- BROMO- METHANE TOTAL (UG/L)	ETHANE TOTAL (UG/L)
APR 1987 15 28	NESE, DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL	TETRA- CHLO- RIDE TOTAL	BENZENE TOTAL	DI- BROMO- METHANE TOTAL	ETHANE TOTAL
APR 1987 15 28 MAY 20	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L) ND	TETRA- CHLO- RIDE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	DI- BROMO- METHANE TOTAL (UG/L)	ETHANE TOTAL (UG/L) ND
APR 1987 15 28 MAY 20 JUN 22	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 2	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L) ND ND	TETRA- CHLO- RIDE TOTAL (UG/L) ND ND	BENZENE TOTAL (UG/L) ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND	ETHANE TOTAL (UG/L) ND ND
APR 1987 15 28 MAY 20 JUN 22 JUL 22	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 2	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND ND ND	TETRA-CHLO-RIDE TOTAL (UG/L) ND ND	BENZENE TOTAL (UG/L) ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND	TOTAL (UG/L) ND ND
APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 0.10 <0.10 <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  10 <10 10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND ND ND ND	TETRA- CHLO- RIDE TOTAL (UG/L)  ND ND ND	BENZENE TOTAL (UG/L) ND ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND	ETHANE TOTAL (UG/L)  ND ND ND ND
APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30 NOV 19	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 0.10 <0.10 <0.10 <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  10 <10 10 20 30	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND ND ND ND	TETRA- CHLO- RIDE TOTAL (UG/L)  ND ND ND ND	BENZENE TOTAL (UG/L) ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND	ETHANE TOTAL (UG/L)  ND ND ND ND ND ND
APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30 NOV 19 DEC 08	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  10 <10 10 20 30 20	DIS- SOLVED (UG/L AS ZN)  10 <10	FORM TOTAL (UG/L)  ND ND ND ND ND ND	TETRA- CHLO- RIDE TOTAL (UG/L)  ND ND ND ND ND ND	BENZENE TOTAL (UG/L)  ND ND ND ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND	ETHANE TOTAL (UG/L)  ND ND ND ND ND ND ND ND
APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 0.10 <0.10 <0.10 <0.10 <0.10 -0.10	TOTAL RECOV- PERABLE (UG/L AS NI)  <1000 2 <1 <1 <1 <1 <1 <7	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  10 <10  20  30  20  10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND	ETHANE TOTAL (UG/L)  ND
APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 06 18	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)  <100 2 <1 <1 <100 7 2 2	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS ZN)  10 <10 10 20 30 20 10	DIS- SOLVED (UG/L AS ZN)  10 <10	FORM TOTAL (UG/L)  ND	TETRA- CHLO- RIDE TOTAL (UG/L)  ND	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND	ETHANE TOTAL (UG/L)  ND
APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 06 18 MAY 03 17	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10	TOTAL RECOVERABLE (UG/L AS NI)  <100 2  <1 <1 <1 <10 <7 2  3 7	DIS-SOLVED (UG/L AS NI)	TOTAL RECOVERABLE (UG/L AS ZN)  10 <10 10 20 30 20 10 10 10 10 10 10 10	DIS- SOLVED (UG/L AS ZN)  10 <10 <3	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE RIDE TOTAL (UG/L)  ND	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND
APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 06 18 MAY 03 17 JUN 29	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)  <100 2 <1 <1 <1 <1 <10 <7 <1 <10 <10 <10 <10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS NI)  2 <1 5 2	TOTAL RECOVERABLE (UG/L AS ZN)  10 <10 10 20 30 20 10 10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS 2N)  10 <10 <3 <3	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE RIDE TOTAL (UG/L)  ND	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND	ETHANE TOTAL (UG/L)  ND
APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 06 18 MAY 03 17 JUN	NESE, DIS- SOLVED (UG/L AS MN)  90 50 40 61	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10	TOTAL RECOV- RERABLE (UG/L AS NI)  <1000 2  <11 <1 <1 <100  7 2  3 7 5  6 4	DIS- SOLVED (UG/L AS NI)  2 <1 2 <1 2	TOTAL RECOVERABLE (UG/L AS ZN)  10 <10  10  20  30  20  10  10  <10  <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)  10 <10 <3 <3 5	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND N	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND ND ND ND	ETHANE TOTAL (UG/L)  ND

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

## 04218054 TONOWANDA CREEK AT PENDLETON, NY - continued

DATE	CHLORO- FORM TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)
APR 1987											
15 28	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
MAY 20											
JUN	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
22 JUL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
22 SEP	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
30	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
NOV 19	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DEC 08	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MAR 1988 22	ND	ND	ND	ND	ND	0.5	ND	ND	ND	ND	ND
APR 06	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
18	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MAY 03	0	0	0	0	0	0	0	0	0	0	0
17 JUN	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
29	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SEP 07	0.4	ND	0.2	ND	ND	ND	ND	ND	ND	ND	ND
OCT 03	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DATE	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)
APR 1987	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
APR 1987 15 28	CHLORO- BENZENE TOTAL	CHLORO- ETHANE WATER WHOLE TOTAL	CHLORO- PROPANE TOTAL	TRANSDI CHLORO- ETHENE TOTAL	CHLORO- BENZENE TOTAL	CHLORO- BENZENE TOTAL	CHLORO- ETHYL- ENE TOTAL	1,3-DI- CHLORO- PROPENE TOTAL	CHLORO- ETHYL- ENE TOTAL	CHLORO- ETHYL- VINYL- ETHER TOTAL	CHLO- RIDE TOTAL
APR 1987 15 28 MAY 20	CHLORO- BENZENE TOTAL (UG/L) ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
APR 1987 15 28 MAY 20 JUN 22	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND	CHLO- RIDE TOTAL (UG/L) ND
APR 1987 15 28 MAY 20 JUN 22 JUL 22	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND
APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30	CHLORO- BENZENE TOTAL (UG/L) ND ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND	CHLORO-BENZENE TOTAL (UG/L) ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND ND
APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30 NOV	CHLORO- BENZEME TOTAL (UG/L) ND ND ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND	CHLORO- PROPANE TOTAL (UG/L)  ND ND ND ND ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND ND ND
APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30 NOV 19 DEC	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)  ND ND ND ND ND ND ND	CHLORO- PROPANE TOTAL (UG/L)  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND ND ND ND	CHLO-RIDE TOTAL (UG/L)  ND ND ND ND ND ND ND
APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30 NOV 19 DEC 08 MAR 1988	CHLORO-BENZEME TOTAL (UG/L)  ND N	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO- PROPANE TOTAL (UG/L)  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND
APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)  ND ND ND ND ND ND ND	CHLORO- PROPANE TOTAL (UG/L)  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND ND ND ND	CHLO-RIDE TOTAL (UG/L)  ND ND ND ND ND ND ND
APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22	CHLORO-BENZEME TOTAL (UG/L)  ND N	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO- PROPANE TOTAL (UG/L)  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND
APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 06 18 MAY	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-ETHANE WATER WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND N
APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 06 18 MAY 03 17	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND N	TRANSDI CHLORO- ETHENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENDE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE RIDE TOTAL (UG/L)  ND
APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 06 18 MAY 03 17 JUN 29	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND N
APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 06 18 MAY 03 17 JUN	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND N	CHLORO-PROPANE TOTAL (UG/L)  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE ENE TYOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- ENE ENE TOTAL (UG/L)  ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE RIDE TOTAL (UG/L)  ND N

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

## 04218054 TONOWANDA CREEK AT PENDLETON, NY - continued

## SUSPENDED SEDIMENT DISCHARGE

DATE	TIME	DIS- CHARGE, IN CUBIC FEET PER SECOND	SEDI- MENT, SUS- PENDED (MG/L)
APR 1987			
15	0900	E1000	38
28	0900	E320	10
JUL			
22	1030	E620	25
MAY 1988			
17	1215	E310	30
SEP			
07	1300	E47	25
OCT			
03	1115	E36	25

### BED MATERIAL ANALYSES

DATE  JUL 1987 22 JUN 1988 29	TIME	SOLIDS VOLA- TILE II BOTTOM MA- TERIA (MG/KG 3540	IN REFM TOM	UM, RECOV. FM BOT- TOM MA- TE		CHRO- MIUM, RECOV. M BOT- OM MA- TERIAL (UG/G)	RE FM TOM TE (U	COV. F BOT- FF MA- TO RIAL T G/G	RON, RECOV. I BOT- M MA- PERIAL LUG/G AS FE) 6800	REG FM: TOM TE (U	COV. BOT- MA- F RIAL T	MANGA- NESE, RECOV. M BOT- OM MA- TERIAL (UG/G) 220	RE FM TOM TE (U AS	CURY COV. BOT- MA- RIAL G/G HG)	FM TOM TEI	COV. BOT-	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)
DATE JUL 1987	AROCL 1221 IN BOTTO MAT (UG/K	M BO	OCLOR 1248 PCB T.MAT G/KG)	AROCLOR 1254 PCB BOT.MAT (UG/KG)	AROCLO 1260 PCB BOT.M	OR TO IN TO AT TI	DRIN, DTAL BOT- M MA- ERIAL G/KG)	ALPHA BHC TOTAL IN BOT- TOM MA- TERIAL (UG/KG	TOM TER	E, AL OT- MA- IAL	BETA BENZEN HEXA- CHLOR IDE BOT.MA (UG/KG	E DA TO - IN TOM T TE	ILOR- NE, TAL BOT- I MA- CRIAL G/KG)	CHLO: PYRI IN B MAT (UG/	FOS OT.	DELT BENZE HEXA CHLO IDE BOT.M (UG/K	NE - R- AT
22									-	-				-	-		
JUN 1988 29	ND		ND	3.0	ND	1	ND	ND	NE	)	ND	N	ID	ND		ND	
DATE	DI- AZINO TOTA IN BO TOM M TERI (UG/K	N, EL L T T- IN A- TO AL T	DI- DRIN, OTAL BOT- M MA- ERIAL G/KG)	ENDO- SULFAN ALPHA BOT.MAT (UG/KG)	ENDO- SULFAI BETA BOT.M.	N SU SUI AT BO	NDO- ULFAN LFATE I.MAT G/KG)	ENDRIN TOTAL IN BOT TOM MA TERIA (UG/KG	ENDR - ALC - HY L BOT.	E- DE MAT	ETHION TOTAL IN BOT TOM MA TERIA (UG/KG	, CH TO - IN - TOM L TE	EPTA- ILOR, OTAL BOT- I MA- ERIAL G/KG)	HEP CHL EPOX TOT. BOT MA (UG/	OR IDE IN TOM TL.	MALA THIO TOTA IN BO TOM M TERI (UG/K	N, L T- A- AL
JUL 1987 22									_					_	_		
JUN 1988 29	ND		ND	ND	ND	1	ND	ND	NE	,	ND		ID.	ND		ND	
DATE JUL 1987 22	METH OXY- CHLO TOT. BOTT MAT (UG/K	I- OR, T IN IN OM TO	IREX, OTAL BOT- M MA- ERIAL G/KG)	P,P' DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	P, P DDE TOTAL IN BO TOM M. TERI. (UG/K	L TY T- IN A- TO	P,P' DDT, OTAL BOT- M MA- ERIAL G/KG)	PARA- THION TOTAL IN BOT TOM MA TERIA (UG/KG	TOX PHE TOI IN E TOM	IA- INE, IAL SOT- MA- RIAL	BED MAT. FALL DIAM. % FINE THAN	E SJ DJ R % E	BED MAT. EEVE MAM. FINER CHAN 52 MM	BEE MASIE DIA % FI TH	D T. VE M. NER	BED MAT SIEV DIAM % FIN THA 2.00	E E ER N
JUN 1988 29	ND		ND	ND	ND	1	ND	ND	NI	<b>)</b>				_	_		
					110	•		140	141	•							

### 04218090 RANSOM CREEK NEAR CLARANCE CENTER, NY

LOCATION.--Lat 43 01'11", long79 39'47", Erie County, Hydrologic Unit 04120104, at bridge on Connor Road, 1.4 mi northwest of Clarence Center.

DRAINAGE AREA. -- 15.6 mi2.

PERIOD OF RECORD.--Water years 1987 to 1989.
CHEMICAL DATA: 1987-88 (c), 1989 (a).
MINOR ELEMENT DATA: 1987-88 (c), 1989 (a).
PESTICIDE DATA: 1987-88 (c), 1989 (a).
ORGANIC DATA: PCB--1988 (a).
NUTRIENT DATA: 1987-88 (c), 1989 (a).
SEDIMENT DATA: 1987-88 (b), 1989 (a).

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
APR 1987												
15	1030			8.2	12.5	2.7		15.4	230	72	13	
28	1020			7.9	8.5	10		9.2	260	78	16	
MAY												
20	1310			7.8	15.5	2.6			420	130	24	
JUN												
22	1220			7.9	18.0	23			480	150	26	
JUL 22	1130			7.7	26.0			5.3	310	97	16	
SEP	1130			/./	26.0	14		5.3	310	91	16	
30	1000		1000	7.7	22.0	7.5						
NOV	1000		1000	,.,	22.0	7.3						
19	1030			7.8	4.0	10		14.7	300	87	20	
DEC												
08	1015			8.2	4.0	3.6		11.6				
MAR 1988												
22	1115		829	8.6	1.0	2.5		15.0	320	94	20	44
APR												
04	1130		402	7.6	10.0	64						
19 MAY	1200		775	8.3	5.5	2.0			330	99	21	33
05	1230		923	7.8	13.0	2.6		7.6				
17	1145		542	7.8	14.0	17		6.8	190	56	13	33
JUN	1143		342	,.,	14.0	+ /		0.0	130	30	13	33
29	0930	1040	1040	7.2	14.5	8.0		4.2	420	130	24	57
SEP				,,,		0.0				230		•
09	1145		1450	7.6	15.0				700	220	36	59
OCT												
05	0915		920	7.5	10.5	5.4	764	3.8	390	120	21	40
NOV												
16	0850		963	7.8	7.0	2.6	759	9.4	380	110	25	48

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

## 04218090 RANSOM CREEK NEAR CLARANCE CENTER, NY - continued

DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, TOTAL (MG/L)	SOLIDS, VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	RESIDUE TOTAL FIXED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)
APR 1987						206		265	50	21.4	1 45
15 28						296 426		365 447	50 <b>74</b>	314 384	1.45 0.870
MAY 20						764		844	216	628	0.530
JUN 22						776		842	222	662	0.610
JUL 22						632		664	168	516	
SEP 30						696		760	136	624	0.480
NOV 19						496		538	140	404	1.63
DEC 08						496		568	152	416	3.41
MAR 1988 22	2.3	192	110	75	0.20	530	461	572	110	462	
APR 04		117	42	34	0.20	284		368	84	284	1.03
19 MAY	2.0	196	120	61	0.30	512	454	516	36	480	1.21
05 17	2.4	236 130	 5 <b>6</b>	 54	0.30	676 380	 293	740 400	188 144	552 256	0.750 0.420
JUN 29	4.1	196	220	98	0.30	677	652	789	228	561	0.080
SEP 09	4.1	248	480	89	0.30	1090	1040	1100	196	904	0.270
ОСТ 05	7.0	150	230	58	0.30	608	568	365	92	544	0.120
NO <b>V</b> 16	3.6	186	190	84	0.30	5 <b>6</b> 8	573	648	140	508	3.62
DATE	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS NH4)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS NO3)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)
APR 1987	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS NO3)	PHORUS TOTAL (MG/L AS P)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)
APR 1987 15 28	GEN, NITRITE TOTAL (MG/L	GEN, NO2+NO3 TOTAL (MG/L	GEN, AMMONIA TOTAL (MG/L	GEN, AMMONIA TOTAL (MG/L	GEN, ORGANIC TOTAL (MG/L	GEN, AM- MONIA + ORGANIC TOTAL (MG/L	GEN, TOTAL (MG/L	GEN, TOTAL (MG/L	PHORUS TOTAL (MG/L	PHORUS ORTHO, DIS- SOLVED (MG/L	PHATE, ORTHO, DIS- SOLVED (MG/L
APR 1987 15 28 MAY 20	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS NO3)	PHORUS TOTAL (MG/L AS P)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)
APR 1987 15 28 MAY 20 JUN 22	GEN, NITRITE TOTAL (MG/L AS N) 0.010 0.020	GEN, NO2+NO3 TOTAL (MG/L AS N) 1.46 0.890	GEN, AMMONIA TOTAL (MG/L AS N) 0.020 0.050	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.03 0.06	GEN, ORGANIC TOTAL (MG/L AS N) 0.29 0.29	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.31	GEN, TOTAL (MG/L AS N) 1.8 1.2	GEN, TOTAL (MG/L AS NO3) 7.8 5.4	PHORUS TOTAL (MG/L AS P) 0.050 0.080	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) 0.03
APR 1987 15 28 MAY 20 JUN 22 JUL 22	GEN, NITRITE TOTAL (MG/L AS N) 0.010 0.020	GEN, NO2+NO3 TOTAL (MG/L AS N) 1.46 0.890 0.650	GEN, AMMONIA TOTAL (MG/L AS N) 0.020 0.050	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.03 0.06	GEN, ORGANIC TOTAL (MG/L AS N) 0.29 0.29	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.31 0.34	GEN, TOTAL (MG/L AS N) 1.8 1.2	GEN, TOTAL (MG/L AS NO3) 7.8 5.4 4.6	PHORUS TOTAL (MG/L AS P) 0.050 0.080	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.010 0.010	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) 0.03 0.03
APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30	GEN, NITRITE TOTAL (MG/L AS N) 0.010 0.020 0.120 0.010	GEN, NO2+NO3 TOTAL (MG/L AS N) 1.46 0.890 0.650	GEN, AMMONIA TOTAL (MG/L AS N) 0.020 0.050 0.200	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.03 0.06 0.26	GEN, ORGANIC TOTAL (MG/L AS N) 0.29 0.29 0.18	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.31 0.34 0.38	GEN, TOTAL (MG/L AS N) 1.8 1.2 1.0	GEN, TOTAL (MG/L AS NO3) 7.8 5.4 4.6 5.0	PHORUS TOTAL (MG/L AS P) 0.050 0.080 0.200	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.010 0.010 0.160	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) 0.03 0.03 0.49
APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30 NOV 19	GEN, NITRITE TOTAL (MG/L AS N) 0.010 0.020 0.120 0.010	GEN, NO2+NO3 TOTAL (MG/L AS N) 1.46 0.890 0.650 0.620	GEN, AMMONIA TOTAL (MG/L AS N)  0.020 0.050 0.200 0.040 0.080	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.03 0.06  0.26  0.05	GEN, ORGANIC TOTAL (MG/L AS N) 0.29 0.29 0.18 0.47	GEN, AM- MONIA + ORGANIC TYOTAL (MG/L AS N)  0.31 0.34 0.38 0.51	GEN, TOTAL (MG/L AS N) 1.8 1.2 1.0	GEN, TOTAL (MG/L AS NO3) 7.8 5.4 4.6 5.0	PHORUS TOTAL (MG/L AS P) 0.050 0.080 0.200 0.500 0.370	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.010 0.010 0.160 0.320 0.330	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) 0.03 0.03 0.49 0.98
APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30 NOV 19 DEC 08	GEN, NITRITE TOTAL (MG/L AS N) 0.010 0.020 0.120 0.010	GEN, NO2+NO3 TOTAL (MG/L AS N) 1.46 0.890 0.650 0.620 0.870 0.580	GEN, AMMONIA TOTAL (MG/L AS N) 0.020 0.050 0.200 0.040 0.080	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.03 0.06 0.26 0.05 0.10	GEN, ORGANIC TOTAL (MG/L AS N) 0.29 0.29 0.18 0.47 0.27	GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N)  0.31 0.34 0.38 0.51 0.35	GEN, TOTTAL (MG/L AS N) 1.8 1.2 1.0 1.1	GEN, TOTAL (MG/L AS NO3) 7.8 5.4 4.6 5.0 5.4 6.1	PHORUS TOTAL (MG/L AS P) 0.050 0.080 0.200 0.500 0.370 0.380	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.010 0.010 0.160 0.320 0.330	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) 0.03 0.03 0.49 0.98 1.0
APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30 NOV 19 DEC 08 MAR 1988 22	GEN, NITRITE TOTAL (MG/L AS N) 0.010 0.020 0.120 0.010	GEN, NO2+NO3 TOTAL (MG/L AS N) 1.46 0.890 0.650 0.620 0.870 0.580 1.65	GEN, AMMONIA TOTAL (MG/L AS N)  0.020 0.050 0.200 0.040 0.080 0.030	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.03 0.06  0.26  0.05  0.10  0.04	GEN, ORGANIC TOTAL (MG/L AS N) 0.29 0.29 0.18 0.47 0.27 0.77	GEN, AM- MONIA + ORGANIC TYOTAL (MG/L AS N)  0.31 0.34 0.38 0.51 0.35 0.80 0.43	GEN, TOTTAL (MG/L AS N) 1.8 1.2 1.0 1.1 1.2	GEN, TOTAL (MG/L AS NO3) 7.8 5.4 4.6 5.0 5.4 6.1 9.2	PHORUS TOTAL (MG/L AS P)  0.050 0.080 0.200 0.500 0.370 0.380 0.220	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.010 0.010 0.160 0.320 0.330 0.170 0.140	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) 0.03 0.03 0.49 0.98 1.0 0.52
APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30 NOV 19 DEC 08 MAR 1988	GEN, NITRITE TOTAL (MG/L AS N) 0.010 0.020 0.120 0.010  0.100 0.020 0.010	GEN, NO2+NO3 TOTAL (MG/L AS N) 1.46 0.890 0.650 0.620 0.870 0.580 1.65 3.42	GEN, AMMONIA TOTAL (MG/L AS N) 0.020 0.050 0.200 0.040 0.080 0.030 0.030	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.03 0.06 0.26 0.05 0.10 0.04 0.04	GEN, ORGANIC TOTAL (MG/L AS N) 0.29 0.29 0.18 0.47 0.27 0.77 0.40	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.31 0.34 0.38 0.51 0.35 0.80 0.43 0.18	GEN, TOTTAL (MG/L AS N) 1.8 1.2 1.0 1.1 1.2 1.4 2.1	GEN, TOTAL (MG/L AS NO3) 7.8 5.4 4.6 5.0 5.4 6.1 9.2	PHORUS TOTAL (MG/L AS P) 0.050 0.080 0.200 0.500 0.370 0.380 0.220 0.060	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.010 0.010 0.160 0.320 0.330 0.170 0.140	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) 0.03 0.03 0.49 0.98 1.0 0.52 0.43
APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 04 19 MAY 05	GEN, NITRITE TOTAL (MG/L AS N)  0.010 0.020 0.120 0.010 0.100 0.020 0.010 0.00 0.010 0.020	GEN, NO2+NO3 TOTAL (MG/L AS N) 1.46 0.890 0.650 0.620 0.870 0.580 1.65 3.42 1.65 1.03 1.22	GEN, AMMONIA TOTAL (MG/L AS N) 0.020 0.050 0.040 0.080 0.030 0.030 0.020 0.010 0.230 0.00	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.03 0.06 0.26 0.05 0.10 0.04 0.04 0.03 0.01	GEN, ORGANIC TOTAL (MG/L AS N) 0.29 0.29 0.18 0.47 0.27 0.77 0.40 0.16 0.33	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.31 0.34 0.38 0.51 0.35 0.80 0.43 0.18 0.34	GEN, TOTTAL (MG/L AS N) 1.8 1.2 1.0 1.1 1.2 1.4 2.1 3.6 2.0 2.1	GEN, TOTAL (MG/L AS NO3) 7.8 5.4 4.6 5.0 5.4 6.1 9.2 16 8.8 9.4	PHORUS TOTAL (MG/L AS P)  0.050 0.080 0.200 0.500 0.370 0.380 0.220 0.060 0.040 0.280 0.030 0.060	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.010 0.010 0.160 0.320 0.330 0.170 0.140 0.020 0.010	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) 0.03 0.49 0.98 1.0 0.52 0.43 0.06
APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 04 19 MAY 05 17 JUN	GEN, NITRITE TOTAL (MG/L AS N)  0.010 0.020 0.120 0.010 0.100 0.020 0.010 0.000 0.010	GEN, NO2+NO3 TOTAL (MG/L AS N) 1.46 0.890 0.650 0.620 0.870 0.580 1.65 3.42 1.65	GEN, AMMONIA TOTAL (MG/L AS N)  0.020 0.050 0.200 0.040 0.080 0.030 0.030 0.020 0.010 0.230 0.00	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.03 0.06  0.26  0.05  0.10  0.04  0.04  0.03  0.01  0.30  0.0	GEN, ORGANIC TOTAL (MG/L AS N) 0.29 0.29 0.18 0.47 0.27 0.77 0.40 0.16 0.33 0.87 0.23	GEN, AM- MONIA + ORGANIC TYOTAL (MG/L AS N)  0.31 0.34 0.38 0.51 0.35 0.80 0.43 0.18 0.34	GEN, TOTTAL (MG/L AS N) 1.8 1.2 1.0 1.1 1.2 1.4 2.1 3.6 2.0 2.1	GEN, TOTAL (MG/L AS NO3) 7.8 5.4 4.6 5.0 5.4 6.1 9.2 16 8.8 9.4 6.4	PHORUS TOTAL (MG/L AS P)  0.050 0.080 0.200 0.500 0.370 0.380 0.220 0.060 0.040 0.280 0.030	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.010 0.010 0.320 0.330 0.170 0.140 0.020 0.010	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) 0.03 0.03 0.49 0.98 1.0 0.52 0.43 0.06 0.03
APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 04 19 MAY 05 17 JUN 29 SEP	GEN, NITRITE TOTAL (MG/L AS N)  0.010 0.020 0.120 0.010 0.100 0.020 0.010 0.00 0.010 0.020 0.020 0.020	GEN, NO2+NO3 TOTAL (MG/L AS N)  1.46 0.890 0.650 0.620 0.870 0.580 1.65 3.42 1.65 1.03 1.22 0.770 0.440 0.100	GEN, AMMONIA TOTAL (MG/L AS N)  0.020 0.050 0.200 0.040 0.080 0.030 0.030 0.020 0.010 0.230 0.000 0.050 0.070 0.050	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.03 0.06  0.26  0.05  0.10  0.04  0.04  0.03  0.01  0.30  0.0  0.06  0.09  0.03	GEN, ORGANIC TOTAL (MG/L AS N) 0.29 0.18 0.47 0.27 0.77 0.40 0.16 0.33 0.87 0.23 0.63	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.31 0.34 0.38 0.51 0.35 0.80 0.43 0.18 0.34 1.1 0.23 0.37 0.70 0.30	GEN, TOTTAL (MG/L AS N) 1.8 1.2 1.0 1.1 1.2 1.4 2.1 3.6 2.0 2.1 1.5 1.1 1.1	GEN, TOTAL (MG/L AS NO3) 7.8 5.4 4.6 5.0 5.4 6.1 9.2 16 8.8 9.4 6.4 5.0 5.0	PHORUS TOTAL (MG/L AS P)  0.050 0.080  0.200  0.500  0.370  0.380  0.220  0.060  0.040  0.280  0.030  0.060  0.180  0.410	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.010 0.010 0.320 0.330 0.170 0.140 0.020 0.010 0.130 0.00 0.020 0.070	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) 0.03 0.03 0.49 0.98 1.0 0.52 0.43 0.06 0.03
APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 04 19 MAY 05 17 JUN 29 SEP 09 OCT	GEN, NITRITE TOTAL (MG/L AS N)  0.010 0.020 0.120 0.010 0.100 0.020 0.010 0.00 0.010 0.020 0.020	GEN, NO2+NO3 TOTAL (MG/L AS N)  1.46 0.890 0.650 0.620 0.870 0.580 1.65 3.42 1.65 1.03 1.22 0.770 0.440	GEN, AMMONIA TOTAL (MG/L AS N)  0.020 0.050  0.200 0.040 0.080 0.030 0.030 0.020 0.010 0.230 0.00 0.050 0.050	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.03 0.06  0.26  0.05  0.10  0.04  0.03  0.01  0.30  0.0  0.06  0.09	GEN, ORGANIC TOTAL (MG/L AS N) 0.29 0.29 0.18 0.47 0.27 0.77 0.40 0.16 0.33 0.87 0.23 0.32 0.63	GEN, AM- MONIA + ORGANIC TOTTAL (MG/L AS N)  0.31 0.34 0.38 0.51 0.35 0.80 0.43 0.18 0.34 1.1 0.23 0.37	GEN, TOTTAL (MG/L AS N) 1.8 1.2 1.0 1.1 1.2 1.4 2.1 3.6 2.0 2.1 1.5	GEN, TOTAL (MG/L AS NO3) 7.8 5.4 4.6 5.0 5.4 6.1 9.2 16 8.8 9.4 6.4 5.0 5.0	PHORUS TOTAL (MG/L AS P)  0.050 0.080 0.200 0.500 0.370 0.380 0.220 0.060 0.040 0.280 0.030 0.060 0.180	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.010 0.160 0.320 0.330 0.170 0.140 0.020 0.010 0.130 0.00 0.020 0.070	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) 0.03 0.49 0.98 1.0 0.52 0.43 0.06 0.03
APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 04 19 MAY 05 17 JUN 29 SEP	GEN, NITRITE TOTAL (MG/L AS N)  0.010 0.020 0.120 0.010 0.100 0.020 0.010 0.00 0.010 0.020 0.020 0.020	GEN, NO2+NO3 TOTAL (MG/L AS N)  1.46 0.890 0.650 0.620 0.870 0.580 1.65 3.42 1.65 1.03 1.22 0.770 0.440 0.100	GEN, AMMONIA TOTAL (MG/L AS N)  0.020 0.050 0.200 0.040 0.080 0.030 0.030 0.020 0.010 0.230 0.000 0.050 0.070 0.050	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.03 0.06  0.26  0.05  0.10  0.04  0.04  0.03  0.01  0.30  0.0  0.06  0.09  0.03	GEN, ORGANIC TOTAL (MG/L AS N)  0.29 0.29 0.18 0.47 0.27 0.77 0.40 0.16 0.33 0.87 0.23 0.32 0.63 0.28	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.31 0.34 0.38 0.51 0.35 0.80 0.43 0.18 0.34 1.1 0.23 0.37 0.70 0.30	GEN, TOTTAL (MG/L AS N) 1.8 1.2 1.0 1.1 1.2 1.4 2.1 3.6 2.0 2.1 1.5 1.1 1.1	GEN, TOTAL (MG/L AS NO3) 7.8 5.4 4.6 5.0 5.4 6.1 9.2 16 8.8 9.4 6.4 5.0 5.0	PHORUS TOTAL (MG/L AS P)  0.050 0.080  0.200  0.500  0.370  0.380  0.220  0.060  0.040  0.280  0.030  0.060  0.180  0.410	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) 0.010 0.010 0.320 0.330 0.170 0.140 0.020 0.010 0.130 0.00 0.020 0.070	PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4) 0.03 0.03 0.49 0.98 1.0 0.52 0.43 0.06 0.03

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

## 04218090 RANSOM CREEK NEAR CLARANCE CENTER, NY - continued

DATE	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)
APR 1987											
15 28			<10 <10		<10 <10		190 <b>4</b> 50		<100 7		30 70
MAY 20			<10	1.0	10	1	200		<b>&lt;</b> 5	<5	100
JUN 22 JUL			<10		<10		950		<5		170
22 SEP			<10		20		840		<b>&lt;</b> 5		90
30			<10		10		510		<100		130
19 DEC			<1		5		540		<5		30
08 MAR 1988			<1		5		250		<5		30
22 APR	<10	40	<1	<1.0	3	2		120	<5	<5	20
04 19	2900 <b>4</b> 0		<1 1	 <1.0	31 3	2	3100 140	17	<5 <5	 <5	70 30
MAY	60	10			6	2	150		<b>&lt;</b> 5	~3	100
05 17 JUN	450	20	<1 <1	<1.0	3	4	820	180	<5 <5	 <5	80
29 SEP	430		<1		5		560		<5		180
09	100		<1		4		210		<5		70
05 NOV	120	10	<1	<1.0	6	1	540	140	<5	<5	360
16	50		1		4		160		<5		20
DATE	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)	BROMO- FORM TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)
APR 1987	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)	TETRA- CHLO- RIDE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	DI- BROMO- METHANE TOTAL (UG/L)	ETHANE TOTAL (UG/L)
	NESE, DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	FORM TOTAL	TETRA- CHLO- RIDE TOTAL	BENZENE TOTAL	DI- BROMO- METHANE TOTAL	ETHANE TOTAL
APR 1987 15 28	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)	TETRA- CHLO- RIDE TOTAL (UG/L)	BENZENE TOTAL (UG/L) ND	DI- BROMO- METHANE TOTAL (UG/L)	ETHANE TOTAL (UG/L) ND
APR 1987 15 28 MAY 20 JUN 22	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG) <0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 9	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L) ND ND	TETRA- CHLO- RIDE TOTAL (UG/L) ND ND	BENZENE TOTAL (UG/L) ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND	ETHANE TOTAL (UG/L) ND ND
APR 1987 15 28 MAY 20 JUN 22 JUL 22	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 9	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  10 20 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND ND ND	TETRA-CHLO-RIDE TOTAL (UG/L) ND ND	BENZENE TOTAL (UG/L) ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND	ETHANE TOTAL (UG/L) ND ND
APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 0.10 <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 9 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  10 20 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L) ND ND ND	TETRA- CHLO- RIDE TOTAL (UG/L) ND ND ND	BENZENE TOTAL (UG/L) ND ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND	ETHANE TOTAL (UG/L) ND ND ND
APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30 NOV 19	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 9 <1 <1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  10 20 <10 20	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L) ND ND ND ND	TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND	BENZENE TOTAL (UG/L) ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND	ETHANE TOTAL (UG/L)  ND ND ND ND
APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30 NOV 19 DEC 08	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <100 9 <1 <1 <1 <100	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  10 20 <10 20 20	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND ND ND ND ND ND	TETRA- CHLO- RIDE TOTAL (UG/L)  ND ND ND ND ND ND	BENZENE TOTAL (UG/L)  ND ND ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND	ETHANE TOTAL (UG/L)  ND ND ND ND ND ND
APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30 NOV 19 DEC 08 MAR 1988 22	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10	TOTAL RECOV- PRABLE (UG/L AS NI)  <100 9 <1 <1 <1 <100 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  10 20 <10 20 20 10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND	TETRA- CHLO- RIDE TOTAL (UG/L)  ND	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND ND	ETHANE TOTAL (UG/L)  ND
APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 04	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <100 9 <1 <1 <100 <1 <1 <100 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS ZN)  10 20 <10 20 20 10 10 40 40	DIS- SOLVED (UG/L AS 2N)  10 7	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE RIDE TOTAL (UG/L)  ND	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND
APR 1987 15 28 MAY 20 JUN 22 30 NOV 19 DEC 08 MAR 1988 22 APR 04 19 MAY	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <1000 9 <1 <1 <100 <1 <1 <1 <100 <1 <1 <1 <1 <100 <1 <1 <100 <1 <1 <100 <1 <100 <1 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS ZN)  10 20 <10 20 20 10 10 40 <10	DIS- SOLVED (UG/L AS ZN)  10 7	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND N	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND
APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 04 19 MAY 05 17	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <100 9 <1 <1 <100 <1 <1 <100 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS ZN)  10 20 <10 20 20 10 10 40 40	DIS- SOLVED (UG/L AS 2N)  10 7	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE RIDE TOTAL (UG/L)  ND	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND
APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 04 19 MAY 19 17 JUN 29	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)  <100 9 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS ZN)  10 20 <10 20 20 10 10 <10 40 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	DIS- SOLVED (UG/L AS ZN)  10 7 4	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND N	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND
APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 04 19 MAY 05 JUN 29 SEP 09	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10	TOTAL RECOVERABLE (UG/L AS NI)  <1000 9 <1 <1 <100 <1 <1 <100 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	DIS- SOLVED (UG/L AS NI)  1 1 1	TOTAL RECOVERABLE (UG/L AS ZN)  10 20 20 20 10 10 40 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	DIS- SOLVED (UG/L AS ZN)  10 17	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND N	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND
APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 04 19 MAY 19 JUN 29 SEP	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOVERABLE (UG/L AS HG)  <0.10	TOTAL RECOV- REABLE (UG/L AS NI)  <100 9 <1 <1 <100 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	DIS- SOLVED (UG/L AS NI)  3 1 1	TOTAL RECOVERABLE (UG/L AS ZN)  10 20 20 20 10 10 40 <10 <10 <10 <20 <20 <20 <40 <40 <40 <40 <40 <40 <40 <40 <40 <4	DIS- SOLVED (UG/L AS 2N)  10 17 4 12	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND N	BENZENE TOTAL (UG/L)  ND	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

## 04218090 RANSOM CREEK NEAR CLARANCE CENTER, NY - continued

					rer-Quali.			•			
DATE	CHLORO- FORM TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)
APR 1987											
15	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
28 May	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
JUN 22	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
JUL 22	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SEP 30	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
NOV 19	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DEC 08 MAR 1988	ND	ND	ND	ND	ND	ND	ND	ИD	ND	ND	ND
22 APR	ND	ND	ND	ND	ND	0.5	ND	ND	ND	ND	ND
04 19	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ON	ND ND	ND ND
MAY 05	0	0	0	0	0	0	0	0	0	0	0
17 JUN	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ИD
29 SEP	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
09 ∝T	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
05 NOV	ND	ND	ND	ИD	ND	ND	ND	ND	ND	ND	ND
16	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DATE	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)
APR 1987	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI~ CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
APR 1987 15 28	CHLORO- BENZENE TOTAL	CHLORO- ETHANE WATER WHOLE TOTAL	CHLORO- PROPANE TOTAL	TRANSDI CHLORO- ETHENE TOTAL	CHLORO- BENZENE TOTAL	CHLORO- BENZENE TOTAL	CHLORO- ETHYL- ENE TOTAL	1,3-DI- CHLORO- PROPENE TOTAL	CHLORO- ETHYL- ENE TOTAL	CHLORO- ETHYL- VINYL- ETHER TOTAL	CHLO- RID <b>E</b> TOTAL
APR 1987 15 28 MAY 20	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
APR 1987 15 28 MAY 20 JUN 22	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L) ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND	CHLO- RIDE TOTAL (UG/L) ND
APR 1987 15 28 MAY 20 JUN 22 JUL 22	CHLORO- BENZENE TOTAL (UG/L) ND ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND	CHLO- RIDE TOTAL (UG/L) ND ND
APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30	CHLORO- BENZENE TOTAL (UG/L) ND ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND	CHLORO-PROPANE TOTAL (UG/L)  ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND ND
APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30 NOV 19	CHLORO- BENZENE TOTAL (UG/L) ND ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND	CHLORO- PROPANE TOTAL (UG/L)  ND ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND ND ND ND ND ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND ND
APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08	CHLORO- BENZENE TOTAL (UG/L)  ND ND ND ND ND ND ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)  ND ND ND ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND ND ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND ND ND
APR 1987 15 28 MAY 20 JUN 22 JUL 22 SEP 30 NOV 19 DEC	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO- PROPANE TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO- ETHYL- ENE TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO- ETHYL- ENE TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND
APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 04 19	CHLORO- BENZENE TOTAL (UG/L)  ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO- PROPANE TOTAL (UG/L)  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND ND ND ND	CHLORO-ETHYL- ENE TOTAL (UG/L)  ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND
APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 04 19 MAY 055 17	CHLORO- BENZENE TOTAL (UG/L)  ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- ENE TOTAL (UG/L)  ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO- RIDE TOTAL (UG/L)  ND
APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 04 19 17 JUN 29	CHLORO- BENZENE TOTAL (UG/L)  ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- ENE TOTAL (UG/L)  ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO- RIDE TOTAL (UG/L)  ND
APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 222 APR 04 19 MAY 05 JUN 29 SEP 09	CHLORO- BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND ND ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLOROBENZENE BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- ENE TOTAL (UG/L)  ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO- RIDE TOTAL (UG/L)  ND
APR 1987 15 28 MAY 20 JUN 22 SEP 30 NOV 19 DEC 08 MAR 1988 22 APR 04 19 MAY 05 17 JUN 29 SEP	CHLORO- BENZENE TOTAL (UG/L)  ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND N	TRANSDI CHLORO- ETHENE TOTAL (UG/L)  ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- ENE TOTAL (UG/L)  ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO- RIDE TOTAL (UG/L)  ND

### 04218090 RANSOM CREEK NEAR CLARANCE CENTER, NY - continued

## SUSPENDED SEDIMENT DISCHARGE

DATE	TIME	SEDI- MENT, SUS- PENDED (MG/L)
APR 1987		
15	1030	9
28	1020	11
JUN		
22	1220	49
DEC		
08	1015	10
MAY 1988	1115	2.4
17	1145	24
JUN 29	0930	17
SEP	0930	17
09	1145	4
OCT	1143	-
05	0915	7
NOV		
16	0850	1

### BED MATERIAL ANALYSES

40 40

D <b>ATE</b>		SOLIDS, VOLA- TILE IN BOTTOM MA- TERIAL (MG/KG)	IN FM TON	NUM, RECOV. FM BOT- TOM MA- TE	CCOV. MI BOT- RI MA- FM CRIAL TOI	IUM, R ECOV. FM BOT- TO M MA- T ERIAL (		IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, RECOV FM BOTTOM MA TERIA (UG/G AS PB	. NE - RE - FM L TOM TE	SE, R COV. FM BOT- TO IMA- T CRIAL (	ECOV. F BOT- FN M MA- TO ERIAL T UG/G	CKEL, RECOV. BOT- OM MA- PERIAL (UG/G AS NI)	ZINC RECO FM BO TOM M TERI (UG/ AS Z
JUL 1987 22 JUN 1988	1130	32400			<1	70	5	3800	1			<0.10	<10	
29	0930	29800	)	3300	<10		10	6 <b>4</b> 0 <b>0</b>	<10	0	160	<0.10	<100	
DATE	AROCL 1221 IN BOTTO MAT (UG/K	ARC 1 0M F	CLOR 248 CB MAT (/KG)	AROCLOR 1254 PCB BOT.MAT (UG/KG)	AROCLOR 1260 PCB BOT.MAT (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALPHA BHC TOTAL IN BO TOM M TERIA (UG/K	ZII TO T- IN I A- TOM L TE	NE, BE TAL H BOT- C MA- RIAL BO	BETA NZENE EXA- HLOR- IDE T.MAT G/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	IN BOT	IDE BOT.M	ENE A- OR- E (AT
JUL 1987														_
JUN 1988		•							<del></del>					
29	ND	7	ID	ND	ND	ND	ND	N	D	ND	ND	ND	ND	
DATE	DI- AZINO TOTA IN BO TOM M TERI (UG/K	ON, ELE AL TO YT- IN IA- TOM IAL TE	OI- ORIN, OTAL BOT- I MA- ERIAL G/KG)	ENDO- SULFAN ALPHA BOT.MAT (UG/KG)	ENDO- SULFAN BETA BOT.MAT (UG/KG)	ENDO- SULFAN SULFATE BOT.MAT (UG/KG)		L END T- AL A- H AL BOT	RIN T DE- IN YDE TO .MAT T	HION, OTAL BOT- M MA- ERIAL G/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR EPOXIDI TOT. II BOTTOI	THICE TOTAL IN BO ITOM N TERI	ON, AL OT- MA- IAL
JUL 1987 22														-
JUN 1988 29	ND	N	1D	ND	ND	ND	ND	N	D	ND	ND	ND	ND	
DATE	METH OXY- CHLC TOT. BOTI MAI (UG/K	OR, TO IN IN OM TOM	(REX, DTAL BOT- f MA- ERIAL G/KG)	P,P' DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	P, P' DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	P,P' DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA THIC TOTA IN BO TOM M TERI (UG/K	N, PH L TO T- IN A- TOM AL TE	ENE, TAL BOT- D MA- % RIAL	BED MAT. FALL IAM. FINER THAN	BED MAT. SIEVE DIAM. % FINER THAN .062 MM	THAN	THA	r. Ve M. Ner An
JUL 1987 22										1	13	3	)	98
JUN 1988 29	ND	Ŋ	ND	3.0	ND	ND	ND	N	D					-

#### 04219640 NIAGARA RIVER (LAKE ONTARIO) AT FORT NIAGARA, NY

LOCATION.--Lat 43 16'10", long 79 03'52", Niagara County, Hydrologic Unit 04120104, water samples collected about 2 mi upstream from Coast Guard wharf, at Fort Niagara and 1.5 mi south oif Youngstown

DRAINAGE AREA. -- 265,000 mi2.

PERIOD OF RECORD.--Water years 1971 to current year.

CHEMICAL DATA: 1971 (a), 1973-74 (b), 1975-82 (c), 1983-86 (b), 1987 (c), 1988 (d), 1989 (a).

MINOR ELEMENT DATA: 1971 (a), 1972-86 (b), 1987 (c), 1988 (d), 1989 (a).

PESTICIDE DATA: 1987 (b), 1988 (c), 1989 (a).

ORGANIC DATA: OC--1973 (a), 1974-75 (b), 1978-80 (c), 1981 (b), 1988 (b), 1989 (a).

NUTRIENT DATA: 1971 (a), 1973-74 (b), 1975-82 (c), 1983-86 (b), 1987 (c), 1988 (d), 1989 (a).

BIOLOGICAL DATA:

Bacteria--1973 (b), 1974 (d), 1975-82 (c), 1983-88 (b).

Phytoplankton--1973 (b), 1974 (d), 1975-77 (c), 1978-81 (c).

Periphyton--1974 (a), 1975-80 (b).

SEDIMENT DATA: 1975-77 (c), 1978 (b), 1979-82 (c), 1983-86 (b), 1987-88 (b), 1989 (a).

PERIOD OF DAILY RECORD . --

SPECIFIC CONDUCTANCE: September 1973 to June 1980. WATER TEMPERATURE: September 1973 to June 1980.

REMARKS.--Published in 1971 as "at Youngstown". Discharge is the daily mean reported by The Corps of Engineers Detroit for the Niagara River at Queenstown.

DATE	TIME	DIS- CHARGE, IN CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
APR 1987												
14	0845	246000			8.0	7.5	4.0		16.4	~-	120	35
27	0905	248000			8.2	6.5	4.1		12.2		130	39
MAY												
19	0915	234000		296	7.8	12.0	2.3				120	36
JUN 25	0930	236000		~~	8.1	19.0	1.7	756			120	35
JUL	0930	236000			0.1	19.0	1.7	736			120	33
28	1100	240000			8.4	23.0	4.0				120	35
SEP												
28	0940	227000		289	8.1	22.0						~-
NOV					_	_						
05 DEC	0825	212000		534	8.2	11.5	6.6	765	11.0		130	39
07	0830	212000			8.2	5.0	15		11.4			
MAR 1988	0030	212000			0.2	3.0	13		11.4			
21	0945	218000		290	8.4	0.0	7.5				120	36
APR												
06	0935	223000		273		2.0	4.3					
18 MAY	0920	217000		259		1.0	3.8				110	33
MA1 03	0845	225000		287	8.1	7.5	2.2	760	13.3	~-		
03	0900	225000	278	291	8.1	7.0	0.80	760	13.4	111	130	36
16	0910	227000		293	8.1	12.0	1.5		12.9		120	36
JUN												
29	1230	209000	291	291	8.0	19.0	1.6		9.2		120	35
SEP	0000	000000		200								
07 OCT	0900	20800 <b>0</b>		282	8.3	20.0	1.5				120	35
03	0938	197000		288	8.1	18.0	2.0	763	9.0		130	36
NOV	0,00	17,000		200	0.1	10.0	2.0	103	3.0		130	50
14	0930	213000		292	8.3	8.0	12	763	11.4		130	36

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

### NIAGARA RIVER BASIN

## 04219640 NIAGARA RIVER (LAKE ONTARIO) AT FORT NIAGARA, NY - continued

							IA (COMCI					
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, TOTAL (MG/L)	SOLIDS, VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	RESIDUE TOTAL FIXED (MG/L)
APR 1987												
14	7.8							160		184	62	134
27	8.4							146		166	38	142
MAY 19	7.5							184		168	60	132
JUN										200		
25 JUL	8.3							184		170	40	152
28 SEP	7.9							152		172	140	84
28										169		
05	8.6							160		165	54	128
07								168		176	232	184
MAR 1988 21	8.4	9.0	1.3	102	26	15	0.20	168	157	198	48	150
APR 06				94	27	1.4	0 10	172		220	F 2	160
18	7.5	8.4	1.2	87	24	1 <b>4</b> 15	0.10 0.20	172 172	141	220 188	52 20	168 168
MAY 03				97	~-			168		204	52	152
03	8.5	9.5	1.3	95	27	16	0.10	159	164			
16 JUN	8.5	9.9	1.3	95	26	15	0.30	188	154	200	100	100
29 SEP	8.3	9.1	1.3	97	26	14	0.30	179	152	191	69	122
07 OCT	8.8	9.8	1.3	95	26	14	0.10	180	152	188	64	124
03	8.7	9.0	1.4	96	30	14	0.10	180	157	204	88	116
14	8.8	8.7	1.4	97	27	14	0.10	168	154	176	60	116
DATE	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS NH4)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS NO3)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)
DATE APR 1987	GEN, NITRATE TOTAL (MG/L	GEN, NITRITE TOTAL (MG/L	GEN, NO2+NO3 TOTAL (MG/L	GEN, AMMONIA TOTAL (MG/L	GEN, AMMONIA TOTAL (MG/L	GEN, AMMONIA DIS- SOLVED (MG/L	GEN, ORGANIC TOTAL (MG/L	GEN, AM- MONIA + ORGANIC TOTAL (MG/L	GEN, TOTAL (MG/L	GEN, TOTAL (MG/L	PHORUS TOTAL (MG/L	PHORUS ORTHO, DIS- SOLVED (MG/L
APR 1987 14 27	GEN, NITRATE TOTAL (MG/L	GEN, NITRITE TOTAL (MG/L	GEN, NO2+NO3 TOTAL (MG/L	GEN, AMMONIA TOTAL (MG/L	GEN, AMMONIA TOTAL (MG/L	GEN, AMMONIA DIS- SOLVED (MG/L	GEN, ORGANIC TOTAL (MG/L	GEN, AM- MONIA + ORGANIC TOTAL (MG/L	GEN, TOTAL (MG/L	GEN, TOTAL (MG/L	PHORUS TOTAL (MG/L	PHORUS ORTHO, DIS- SOLVED (MG/L
APR 1987 14	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS NH4)	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS NO3)	PHORUS TOTAL (MG/L AS P)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)
APR 1987 14 27 MAY 19 JUN 25	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)  ND ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.280 0.270	GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.020	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N) 0.23 0.21	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.24 0.23	GEN, TOTAL (MG/L AS N) 0.52 0.50	GEN, TOTAL (MG/L AS NO3)	PHORUS TOTAL (MG/L AS P) 0.020 0.050	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND
APR 1987 14 27 MAY 19 JUN 25 JUL 28	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)  ND ND ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.280 0.270	GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.020	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.03	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N) 0.23 0.21	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.24 0.23	GEN, TOTAL (MG/L AS N) 0.52 0.50	GEN, TOTAL (MG/L AS NO3) 2.3 2.2	PHORUS TOTAL (MG/L AS P) 0.020 0.050 0.010	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND ND
APR 1987 14 27 MAY 19 JUN 25 JUL 28 SEP 28	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N) ND ND 0.00	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.280 0.270 0.160	GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.020 0.040	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.03 0.05	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) 0.03	GEN, ORGANIC TOTAL (MG/L AS N) 0.23 0.21 0.16	GEN, AM- MONIA + ORGANIC TYOTAL (MG/L AS N) 0.24 0.23 0.20	GEN, TOTAL (MG/L AS N) 0.52 0.50 0.36	GEN, TOTAL (MG/L AS NO3) 2.3 2.2 1.6	PHORUS TOTAL (MG/L AS P) 0.020 0.050 0.010	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND ND 0.00
APR 1987 14 27 MAY 19 JUN 25 JUL 28 SEP 28 NOV 05	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)  ND ND 0.00 0.00	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.280 0.270 0.160 0.150	GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.020 0.040 0.020	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.03 0.05 0.03	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) 0.03	GEN, ORGANIC TOTAL (MG/L AS N) 0.23 0.21 0.16 0.13	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.24 0.23 0.20 0.15	GEN, TOTAL (MG/L AS N) 0.52 0.50 0.36 0.30	GEN, TOTAL (MG/L AS NO3) 2.3 2.2 1.6 1.3	PHORUS TOTAL (MG/L AS P) 0.020 0.050 0.010 0.010	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND ND 0.00
APR 1987 14 27 MAY 19 JUN 25 JUL 28 SEP 28 NOV 05 DEC 07	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)  ND ND 0.00 0.00  ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.280 0.270 0.160 0.150 0.110	GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.020 0.040 0.020 0.020	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.01 0.03  0.05 0.03  0.03	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) 0.03	GEN, ORGANIC TOTAL (MG/L AS N) 0.23 0.21 0.16 0.13 0.10	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.24 0.23 0.20 0.15 0.12	GEN, TOTAL (MG/L AS N) 0.52 0.50 0.36 0.30 0.23	GEN, TOTAL (MG/L AS NO3) 2.3 2.2 1.6 1.3 1.0	PHORUS TOTAL (MG/L AS P) 0.020 0.050 0.010 0.010 0.010	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND ND 0.00 ND
APR 1987 14 27 MAY 19 JUN 25 SEP 28 NOV 05 DEC 07 MAR 1988 21	GEN, NITRATE TOTAL (MG/L AS N)  0.160 0.150	GEN, NITRITE TOTAL (MG/L AS N)  ND ND 0.00 0.00 ND ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.280 0.270 0.160 0.150 0.110 0.090 0.160	GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.020 0.040 0.020 0.020 0.020	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.03 0.05 0.03 0.03 0.03	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)  0.03	GEN, ORGANIC TOTAL (MG/L AS N) 0.23 0.21 0.16 0.13 0.10 0.36	GEN, AM- MONIA + ORGANIC TYOTAL (MG/L AS N)  0.24 0.23 0.20 0.15 0.12 0.38	GEN, TOTAL (MG/L AS N) 0.52 0.50 0.36 0.30 0.23 0.47	GEN, TOTAL (MG/L AS NO3) 2.3 2.2 1.6 1.3 1.0 2.1	PHORUS TOTAL (MG/L AS P) 0.020 0.050 0.010 0.010 0.010	PHORUS ORTHO, DIS-, SOLVED (MG/L AS P)  ND 0.00  ND 0.00  0.00  0.00
APR 1987 14 27 MAY 19 JUN 25 JUL 28 SEP 28 NOV 05 DEC 07 MAR 1988 21 APR	GEN, NITRATE TOTAL (MG/L AS N)  0.160 0.150	GEN, NITRITE TOTAL (MG/L AS N)  ND ND 0.00 0.00 ND ND ND ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.280 0.270 0.160 0.150 0.110 0.090 0.160 0.210	GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.020 0.020 0.020 0.020 0.130 0.030 0.060	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.03 0.05 0.03 0.03 0.17 0.04	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)  0.03	GEN, ORGANIC TOTAL (MG/L AS N) 0.23 0.21 0.16 0.13 0.10 0.36 0.28 0.24	GEN, AM- MONIA + ORGANIC TYOTAL (MG/L AS N)  0.24 0.23 0.20 0.15 0.12 0.38 0.41 0.27	GEN, TOTAL (MG/L AS N) 0.52 0.50 0.36 0.30 0.23 0.47 0.57 0.48	GEN, TOTAL (MG/L AS NO3) 2.3 2.2 1.6 1.3 1.0 2.1 2.5 2.1	PHORUS TOTAL (MG/L AS P) 0.020 0.050 0.010 0.010 0.020  0.070 0.050	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)  ND 0.00  ND 0.00  0.00  0.00  0.00  0.00
APR 1987 14 27 MAY 19 JUN 25 JUL 28 SEP 28 NOV 05 DEC 07 MAR 1988 21 APR 066 18	GEN, NITRATE TOTAL (MG/L AS N)  0.160 0.150	GEN, NITRITE TOTAL (MG/L AS N)  ND ND 0.00 0.00  ND ND ND ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.280 0.270 0.160 0.150 0.110 0.090 0.160	GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.020 0.040 0.020 0.020 0.020 0.130	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.01 0.03  0.05 0.03  0.03 0.03 0.03	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4) 0.03	GEN, ORGANIC TOTAL (MG/L AS N) 0.23 0.21 0.16 0.13 0.10 0.36 0.28	GEN, AM- MONITA + ORGANIC TOTAL (MG/L AS N)  0.24 0.23 0.20 0.15 0.12 0.38 0.41	GEN, TOTPAL (MG/L AS N) 0.52 0.50 0.36 0.30 0.23 0.47 0.57	GEN, TOTAL (MG/L AS NO3) 2.3 2.2 1.6 1.3 1.0 2.1 2.5	PHORUS TOTAL (MG/L AS P) 0.020 0.050 0.010 0.010 0.010  0.070	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND ND 0.00 ND 0.00 0.00
APR 1987 14 27 MAY 19 JUN 25 JUL 28 SEP 28 NOV 05 DEC 07 MAR 1988 21 APR 06 18 MAY	GEN, NITRATE TOTAL (MG/L AS N)  0.160 0.150  	GEN, NITRITE TOTAL (MG/L AS N)  ND ND 0.00  0.00  ND ND ND ND  ND ND ND ND ND ND ND ND N	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.280 0.270  0.160 0.150  0.110 0.090 0.160 0.210 0.230 0.130	GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.020 0.040 0.020 0.020 0.020 0.130 0.030	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.01 0.03 0.05 0.03 0.03 0.17 0.04 0.08 0.13 0.01 0.01	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)  0.03	GEN, ORGANIC TOTAL (MG/L AS N) 0.23 0.21 0.16 0.13 0.10 0.36 0.28 0.24	GEN, AM- MONITA + ORGANIC TOTAL (MG/L AS N)  0.24 0.23 0.20 0.15 0.12 0.38 0.41 0.27 0.47	GEN, TOTAL (MG/L AS N) 0.52 0.50 0.36 0.30 0.23 0.47 0.57 0.48 0.70	GEN, TOTAL (MG/L AS NO3) 2.3 2.2 1.6 1.3 1.0 2.1 2.5 2.1 3.1 2.6	PHORUS TOTAL (MG/L AS P) 0.020 0.050 0.010 0.010 0.020  0.070 0.050	PHORUS ORTHO ORTHO DIS- SOLVED (MG/L AS P)  ND ND 0.00  ND 0.00  0.00  0.00  0.00  ND 0.00
APR 1987 14 27 MAY 19 JUN 25 JUL 28 SEP 28 NOV 05 DEC 07 MAR 1988 21 APR 06 18 MAY 03	GEN, NITRATE TOTAL (MG/L AS N)  0.160 0.150    0.130	GEN, NITRITE TOTAL (MG/L AS N)  ND 0.00 0.00 ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.280 0.270 0.160 0.150 0.110 0.090 0.160 0.210 0.230 0.130 0.240 1.78	GEN, AMMONIA TOTAL (MG/L AS N)  0.010 0.020 0.040 0.020 0.020 0.030 0.030 0.060 0.100 0.010 0.010 0.020	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.01 0.03 0.05 0.03 0.03 0.17 0.04 0.08 0.13 0.01 0.01 0.01	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)  0.03	GEN, ORGANIC TOTAL (MG/L AS N) 0.23 0.21 0.16 0.13 0.10 0.36 0.28 0.24 0.41 0.36 0.19	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.24 0.23 0.20 0.15 0.12 0.38 0.41 0.27 0.47 0.46 0.20 0.22 <0.20	GEN, TOTAL (MG/L AS N) 0.52 0.50 0.36 0.30 0.23 0.47 0.57 0.48 0.70 0.59 0.44	GEN, TOTAL (MG/L AS NO3) 2.3 2.2 1.6 1.3 1.0 2.1 2.5 2.1 3.1 2.6 1.9	PHORUS TOTAL (MG/L AS P) 0.020 0.050 0.010 0.010 0.020  0.070 0.050 0.010 0.020 0.020	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)  ND ND 0.00  ND 0.00  0.00  0.00  ND 0.00  ND 0.00  ND 0.00  ND 0.00  ND ND 0.00  ND ND 0.00  ND ND 0.00  ND ND 0.00
APR 1987 14 27 MAY 19 JUN 25 JUL 28 SEP 28 NOV 05 DEC 07 MAR 1988 21 APR 06 18 MAY 03 03 16 JUN	GEN, NITRATE TOTAL (MG/L AS N) 	GEN, NITRITE TOTAL (MG/L AS N)  ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.280 0.270  0.160 0.150 0.110 0.090 0.160 0.210 0.230 0.130 0.240 1.78 0.270	GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.020 0.020 0.020 0.130 0.030 0.060 0.100 0.010 0.020	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.03 0.05 0.03 0.03 0.17 0.04 0.08 0.13 0.01 0.01	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)  0.03 0.04	GEN, ORGANIC TOTAL (MG/L AS N) 0.23 0.21 0.16 0.13 0.10 0.36 0.28 0.24 0.41 0.36 0.19	GEN, AM- MONITA + ORGANIC TOTAL (MG/L AS N)  0.24 0.23 0.20 0.15 0.12 0.38 0.41 0.27 0.47 0.46 0.20 0.22 <0.20 0.24	GEN, TOTTAL (MG/L AS N) 0.52 0.50 0.36 0.30 0.23 0.47 0.57 0.48 0.70 0.59 0.44 2.0	GEN, TOTAL (MG/L AS NO3) 2.3 2.2 1.6 1.3 1.0 2.1 2.5 2.1 3.1 2.6 1.9 8.9	PHORUS TOTAL (MG/L AS P) 0.020 0.050 0.010 0.010 0.020  0.070 0.050 0.010 0.020 0.020 0.010	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)  ND 0.00  ND 0.00  0.00  0.00  ND 0.00  0.00  ND 0.00  ND ND 0.00  ND ND 0.00  ND ND ND 0.00
APR 1987 14 27 MAY 19 JUN 25 JUL 28 SEP 28 NOV 05 DEC 07 AAR 1988 21 APR 06 APR 06 18 MAY 03 16 JUN 29 SEP	GEN, NITRATE TOTAL (MG/L AS N)  0.160 0.150   0.130  0.230	GEN, NITRITE TOTAL (MG/L AS N)  ND 0.00 0.00 ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.280 0.270 0.160 0.150 0.110 0.090 0.160 0.210 0.230 0.230 0.240 1.78 0.270 0.240	GEN, AMMONIA TOTAL (MG/L AS N)  0.010 0.020 0.040 0.020 0.020 0.030 0.030 0.060 0.010 0.010 0.020 0.030 0.010 0.010 0.020 0.030 0.010 0.020 0.030 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.01 0.03 0.05 0.03 0.03 0.17 0.04 0.08 0.13 0.01 0.01 0.01 0.01	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)  0.03 0.04	GEN, ORGANIC TOTAL (MG/L AS N) 0.23 0.21 0.16 0.13 0.10 0.36 0.28 0.24 0.41 0.36 0.19	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.24 0.23 0.20 0.15 0.12 0.38 0.41 0.27 0.47 0.46 0.20 0.22 <0.20 0.24 0.14	GEN, TOTAL (MG/L AS N) 0.52 0.50 0.36 0.30 0.23 0.47 0.57 0.48 0.70 0.59 0.44 2.0	GEN, TOTAL (MG/L AS NO3) 2.3 2.2 1.6 1.3 1.0 2.1 2.5 2.1 3.1 2.6 1.9 8.9  2.3 1.7	PHORUS TOTAL (MG/L AS P)  0.020 0.050 0.010 0.010 0.010 0.020 0.070 0.050 0.010 0.020 0.010 0.020 0.010 0.020	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)  ND 0.00  ND 0.00  0.00  0.010  0.00  ND
APR 1987 14 27 MAY 19 JUN 25 JUL 28 NOV 05 DEC 07 MAR 1988 21 APR 06 18 MAY 03 03 16 JUN 29 SEP 07 OCT	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)  ND 0.00 0.00 ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.280 0.270 0.160 0.150 0.110 0.090 0.160 0.210 0.230 0.130 0.240 1.78 0.270 0.240 0.130	GEN, AMMONIA TOTAL (MG/L AS N)  0.010 0.020 0.040 0.020 0.030 0.030 0.010 0.020 0.030 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.01 0.03 0.05 0.03 0.03 0.17 0.04 0.08 0.13 0.01 0.01 0.01 0.01 0.03 0.04	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)  0.03 0.04	GEN, ORGANIC TOTAL (MG/L AS N) 0.21 0.16 0.13 0.10 0.36 0.28 0.24 0.41 0.36 0.19 0.21	GEN, AM- MONITA + ORGANIC TOTAL (MG/L AS N)  0.24 0.23 0.20 0.15 0.12 0.38 0.41 0.27 0.47 0.46 0.20 0.22 <0.20 0.24 0.14 0.26	GEN, TOTTAL (MG/L AS N) 0.52 0.50 0.36 0.30 0.23 0.47 0.57 0.48 0.70 0.59 0.44 2.0  0.51 0.38	GEN, TOTAL (MG/L AS NO3) 2.3 2.2 1.6 1.3 1.0 2.1 2.5 2.1 3.1 2.6 1.9 8.9  2.3 1.7	PHORUS TOTAL (MG/L AS P)  0.020 0.050  0.010  0.010  0.020   0.070  0.050  0.010  0.020  0.010  0.020  0.020  0.010  0.020  0.010  0.020	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)  ND ND 0.00  ND 0.00  0.00  0.00  0.00  ND ND 0.00  ND ND ND 0.00  ND ND ND 0.00  ND ND 0.010  ND ND 0.010
APR 1987 14 27 MAY 19 JUN 25 JUL 28 SEP 28 NOV 05 DEC 07 MAR 1988 21 APR 06 18 MAY 03 03 03 16 JUN 29 SEP 07	GEN, NITRATE TOTAL (MG/L AS N)  0.160 0.150   0.130  0.230	GEN, NITRITE TOTAL (MG/L AS N)  ND 0.00 0.00 ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.280 0.270 0.160 0.150 0.110 0.090 0.160 0.210 0.230 0.230 0.240 1.78 0.270 0.240	GEN, AMMONIA TOTAL (MG/L AS N)  0.010 0.020 0.040 0.020 0.020 0.030 0.030 0.060 0.010 0.010 0.020 0.030 0.010 0.010 0.020 0.030 0.010 0.020 0.030 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.01 0.03 0.05 0.03 0.03 0.17 0.04 0.08 0.13 0.01 0.01 0.01 0.01	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)  0.03 0.04	GEN, ORGANIC TOTAL (MG/L AS N) 0.23 0.21 0.16 0.13 0.10 0.36 0.28 0.24 0.41 0.36 0.19	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.24 0.23 0.20 0.15 0.12 0.38 0.41 0.27 0.47 0.46 0.20 0.22 <0.20 0.24 0.14	GEN, TOTAL (MG/L AS N) 0.52 0.50 0.36 0.30 0.23 0.47 0.57 0.48 0.70 0.59 0.44 2.0	GEN, TOTAL (MG/L AS NO3) 2.3 2.2 1.6 1.3 1.0 2.1 2.5 2.1 3.1 2.6 1.9 8.9  2.3 1.7	PHORUS TOTAL (MG/L AS P)  0.020 0.050 0.010 0.010 0.010 0.020 0.070 0.050 0.010 0.020 0.010 0.020 0.010 0.020	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)  ND 0.00  ND 0.00  0.00  0.010  0.00  ND

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

## 04219640 NIAGARA RIVER (LAKE ONTARIO) AT FORT NIAGARA, NY - continued

DATE	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)
APR 1987												
1 <b>4</b> 27				<10 <10			<10 <10		3100 11000		<100 <5	 <5
MAY 19 JUN	0.0			10			<10		750		<100	
25 JUL				<10			<10		110		<100	
28 SEP	0.0			<10	1.0		<10	6	130		5	<5
28 NOV	0.0			<10			10		2100		<100	
05 DEC	0.03			<1			5		490		<b>&lt;</b> 5	
07 MAR 1988	0.0			<1	1.0		7	4	2200		<5	<5
21 APR	0.0	540	<10	<1	<1.0		11	1	20000	25	<5	<b>&lt;</b> 5
06 18		260 150	<10	<b>&lt;1</b> 1	<1.0		8 5	1	720 880	8	<5 <5	 <5
MAY 03 03	0.0	60		<1			8		540		<5	
16 JUN	0.03	40	<10 <10	5	<1.0 <1.0		14	4 2	160	<3 <3	<5	<b>&lt;</b> 5 <b>&lt;</b> 5
29 SEP		50		<1			11		100		8	
07 OCT	0.03	50		<1			6		140		<5	
03		230	<10	<1	<1.0		4	1	420	9	<5	<b>&lt;</b> 5
14	0.03	460		<1			8		950		<5	
DATE	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)	SILVER, DIS- SOLVED (UG/L AS AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)	PHENOL (C6H- 5OH) TOTAL (UG/L)	BROMO- FORM TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)
DATE APR 1987	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	(C6H- 5OH) TOTAL	FORM TOTAL	TETRA- CHLO- RIDE TOTAL	BENZENE TOTAL
APR 1987 14 27	NESE, TOTAL RECOV- ERABLE (UG/L	NESE, DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	(C6H- 5OH) TOTAL	FORM TOTAL	TETRA- CHLO- RIDE TOTAL	BENZENE TOTAL
APR 1987 14 27 MAY 19	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)	DIS- SOLVED (UG/L AS AG)	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L AS ZN)	(C6H- 5OH) TOTAL (UG/L)	FORM TOTAL (UG/L)	TETRA- CHLO- RIDE TOTAL (UG/L)	BENZENE TOTAL (UG/L) ND
APR 1987 14 27 MAY 19 JUN 25	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 1	DIS- SOLVED (UG/L AS NI)	DIS- SOLVED (UG/L AS AG)	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L AS ZN)	(C6H- 5OH) TOTAL (UG/L)	FORM TOTAL (UG/L) ND ND	TETRA- CHLO- RIDE TOTAL (UG/L) ND ND	BENZENE TOTAL (UG/L) ND ND
APR 1987 14 27 MAY 19 JUN	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG) <0.10 0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 1 <100	DIS- SOLVED (UG/L AS NI)	DIS- SOLVED (UG/L AS AG)	TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 10	DIS- SOLVED (UG/L AS ZN)	(C6H- 5OH) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND ND ND	TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND	BENZENE TOTAL (UG/L) ND ND
APR 1987 14 27 MAY 19 JUN 25 JUL 28 SEP 28 NOV	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) 20 40 10 <10 20	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <100 1 <100 <100	DIS- SOLVED (UG/L AS NI)	DIS- SOLVED (UG/L AS AG)	TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 10 60 <10	DIS- SOLVED (UG/L AS ZN)	(C6H- 5OH) TOTAL (UG/L)	FORM TOTAL (UG/L) ND ND ND	TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND	BENZENE TOTAL (UG/L) ND ND ND
APR 1987 14 27 MAY 19 JUN 25 JUL 28 SEP 28 NOV 05 DEC	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)  20 40 10 <10 20 20 20	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <100 1 <100 <100 2 <100 <1	DIS- SOLVED (UG/L AS NI)	DIS- SOLVED (UG/L AS AG)	TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 10 60 <10 10	DIS- SOLVED (UG/L AS ZN)	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND N	BENZENE TOTAL (UG/L) ND ND ND ND ND
APR 1987 14 27 MAY 19 JUN 25 JUL 28 SEP 28 NOV 05 DEC 07 MAR 1988	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)  20 40 10 <10 20 20 20 50	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)  <100     1     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100	DIS- SOLVED (UG/L AS NI)	DIS- SOLVED (UG/L AS AG)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 <10 10 60 <10 10 30	DIS- SOLVED (UG/L AS ZN)	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND N	BENZENE TOTAL (UG/L)  ND
APR 1987 14 27 MAY 19 JUN 25 JUL 28 SEP 28 NOV 05 DEC 07 MAR 1988 21 APR	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)  20 40 10 <10 20 20 20 50 100	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <100     1     <100     <100     <100     <100     <1	DIS- SOLVED (UG/L AS NI)	DIS- SOLVED (UG/L AS AG)	TOTAL RECOV-ERABLE (UG/L AS ZN)  <10 <10 <10  10  60  <10  10  10  10  10  10  10  10  10  10	DIS- SOLVED (UG/L AS ZN)	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND	BENZENE TOTAL (UG/L)  ND
APR 1987 14 27 MAY 19 JUN 25 JUL 28 SEP 28 NOV 05 DEC 07 MAR 1988 21	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)  20 40 10 <10 20 20 20 50	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)  <100     1     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100	DIS- SOLVED (UG/L AS NI)	DIS- SOLVED (UG/L AS AG)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 <10 10 60 <10 10 30	DIS- SOLVED (UG/L AS ZN)	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND N	BENZENE TOTAL (UG/L)  ND
APR 1987 14 27 MAY 19 JUN 25 JUL 28 SEP 28 NOV 05 DEC 07 MAR 1988 21 APR 06 18 MAY	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)  20 40 10 210 20 20 100 100 100 100 100 100 1	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10	TOTAL RECOV-ERABLE (UG/L AS NI)  <100 1 <100 <100 2 <100 <1 2 <100 <1 5 5	DIS- SOLVED (UG/L AS NI)	DIS- SOLVED (UG/L AS AG)	TOTAL RECOV-ERABLE (UG/L AS ZN)  <10 <10 <10  10  60  <10  10  <10  10  <10  <10  <10  <10	DIS- SOLVED (UG/L AS ZN)	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND N	BENZENE TOTAL (UG/L)  ND
APR 1987 14 27 MAY 19 JUN 25 JUL 28 SEP 28 NOV 05 DEC 07 MAR 1988 21 APR 06 18 MAY 03 03 03	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)  20 40 10 20 20 20 100 100 20	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10	TOTAL RECOVERABLE (UG/L AS NI)  <100     100     <100     <100     <100     <100     3     5     3	DIS- SOLVED (UG/L AS NI)	DIS- SOLVED (UG/L AS AG)	TOTAL RECOV-ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND N	BENZENE TOTAL (UG/L)  ND
APR 1987 14 27 MAY 19 JUN 25 JUL 28 SEP 28 NOV 05 DEC 07 MAR 1988 21 APR 06 18 MAY 03 03 16 JUN 29	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)  20 40 10 20 20 20 50 100 10 20	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10	TOTAL RECOVERABLE (UG/L AS NI)  <100     100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100     <100	DIS- SOLVED (UG/L AS NI)	DIS- SOLVED (UG/L AS AG)	TOTAL RECOV-ERABLE (UG/L AS ZN)  <10	DIS- SOLVED (UG/L AS ZN)	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND N	BENZENE TOTAL (UG/L)  ND
APR 1987 14 27 MAY 19 JUN 25 JUL 28 SEP 06 MAR 1988 21 APR 06 18 MAY 03 03 16 JUN 29 SEP 07	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)  20 40 10 20 20 20 100 10 20 10 <10	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10	TOTAL RECOVERABLE (UG/L AS NI)  <100	DIS- SOLVED (UG/L AS NI)  2 <1 3 1 1 3	DIS- SOLVED (UG/L AS AG)	TOTAL RECOV-ERABLE (UG/L AS ZN)  <10 <10 <10  10  60  <10  10  <10  <10  <10  <10	DIS- SOLVED (UG/L AS ZN)	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND N	BENZENE TOTAL (UG/L)  ND
APR 1987 14 27 MAY 19 JUN 25 JUL 28 SEP 06 APR 06 APR 06 18 MAY 03 03 16 JUN 29 SEP	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)  20 40 10 <10 20 20 50 100 10 <10 50	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10	TOTAL RECOVERABLE (UG/L AS NI)  <100	DIS- SOLVED (UG/L AS NI)  2 <1 3 <1 3	DIS- SOLVED (UG/L AS AG)	TOTAL RECOV-ERABLE (UG/L AS ZN)  <10	DIS- SOLVED (UG/L AS ZN)	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND N	BENZENE TOTAL (UG/L)  ND

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 04219640 NIAGARA RIVER (LAKE ONTARIO) AT FORT NIAGARA, NY - continued

							IN (CONCI	•				
DATE	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)	CHLORO- FORM TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)
APR 1987 14	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
27 MAY	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
19 JUN	ND	<b>N</b> D	<b>N</b> D	ND	ND	ND	ND	ND	ND	ND	ND	ND
25 JUL	~-											~-
28 SEP	ND	ND	ND	ND	ND	ND	ND	, ND	ND	ND	ND	ND
28 NOV_	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
05 DEC	ND	<b>N</b> D	<b>N</b> D	ND	ND	ND	ND	ND	ND	ND	ND	ND
07 MAR 1988	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
21 APR	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ИD
06 18	ND ND	ND ND	ND ND	ND ND	nd nd	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
MAY 03	0	0	0	0	0	0	0	0	0	0	0	0
03 16	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
JUN 29	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SEP 07	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ОСТ 03	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
NOV 14	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DATE	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)
APR 1987	TETRA- CHLORO- ETHANE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
APR 1987 14 27	TETRA- CHLORO- ETHANE TOTAL (UG/L)	CHLORO- BENZENE TOTAL	CHLORO- ETHANE WATER WHOLE TOTAL	CHLORO- PROPANE TOTAL	TRANSDI CHLORO- ETHENE TOTAL	CHLORO- BENZENE TOTAL	CHLORO- BENZENE TOTAL	CHLORO- ETHYL- ENE TOTAL	1,3-DI- CHLORO- PROPENE TOTAL	CHLORO- ETHYL- ENE TOTAL	CHLORO- ETHYL- VINYL- ETHER TOTAL	CHLO- RIDE TOTAL
APR 1987 14 27 MAY 19	TETRA- CHLORO- ETHANE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L) ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
APR 1987 14 27 MAY 19 JUN 25	TETRA- CHLORO- ETHANE TOTAL (UG/L) ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND	CHLO- RIDE TOTAL (UG/L) ND ND
APR 1987 14 27 MAY 19 JUN 25 JUL 28	TETRA- CHLORO- ETHANE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND	CHLO- RIDE TOTAL (UG/L) ND ND
APR 1987 14 27 MAY 19 JUN 25 JUL 28 SEP 28	TETRA- CHLORO- ETHANE TOTAL (UG/L) ND ND	CHLORO-BENZENE TOTAL (UG/L) ND ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND	CHLO- RIDE TOTAL (UG/L) ND ND
APR 1987 14 27 MAY 19 JUN 25 SEP 28 NOV 05	TETRA- CHLORO- ETHANE TOTAL (UG/L) ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND ND ND  ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND	CHLORO-ETHYL-ENETOTAL (UG/L)  ND ND ND  ND ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND ND
APR 1987 14 27 MAY 19 JUN 25 JUL 28 SEP 28 NOV 05 DEC 07	TETRA-CHLORO-ETHANE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND ND ND ND ND	CHLORO-PROPANE TOTAL (UG/L)  ND ND ND ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND ND ND ND ND ND ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND ND
APR 1987 14 27 MAY 19 JUN 25 SEP 28 NOV 05 DEC 07 MAR 1988 21	TETRA-CHLORO-ETHANE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)  ND ND ND ND ND ND ND	CHLORO-PROPANE TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND ND ND ND ND ND ND ND
APR 1987 14 27 MAY 19 JUN 25 JUL 28 SEP 28 NOV 05 DEC 07 MAR 1988 21 APR	TETRA-CHLORO-ETHANE TOTAL (UG/L)  ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND N	TRANSDI CHLORO-ETHENE TOTAL (UG/L)  ND N	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND
APR 1987 14 27 MAY 19 JUN 25 JUL 28 SEP 28 NOV 05 DEC 07 MAR 1988 21 APR 06 18	TETRA-CHLORO-ETHANE TOTAL (UG/L)  ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND N
APR 1987 14 27 MAY 19 JUN 25 JUL 28 SEP 28 NOV 05 DEC 07 MAR 1988 21 APR 06 18 MAY 03	TETRA-CHLORO-ETHANE TOTAL (UG/L)  ND N	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- ENE TOTAL (UG/L)  ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE RIDE TOTAL (UG/L)  ND
APR 1987 14 27 MAY 19 JUN 25 SEP 28 NOV 05 DEC 07 MAR 1988 21 APR 06 18 MAY 03 03 16 JUN	TETRA-CHLORO-ETHANE TOTAL (UG/L)  ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND N	TRANSDI CHLORO-ETHENE TOTAL (UG/L)  ND N	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-BENZENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND
APR 1987 14 27 MAY 19 JUN 25 JUL 28 SEP 28 NOV 05 DEC 07 MAR 1988 21 APR 06 18 MAY 03 03 03 16 JUN 29 SEP	TETRA-CHLORO-ETHANE TOTAL (UG/L)  ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND N	TRANSDI CHLORO-ETHENE TOTAL (UG/L)  ND N	CHLOROBENZENE BENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- ENE ENE TOTAL (UG/L)  ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO- RIDE TOTAL (UG/L)  ND
APR 1987 14 27 MAY 19 JUN 25 JUL 28 SEP 28 NOV 05 DEC 07 MAR 1988 21 APR 06 18 MAY 03 03 16 JUN 29 SEP 07 CCT	TETRA-CHLORO-ETHANE TOTAL (UG/L)  ND N	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND N	TRANSDI CHLORO-ETHENE TOTAL (UG/L)  ND N	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE ENE ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- ENE TOTAL (UG/L)  ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE RIDE TOTAL (UG/L)  ND
APR 1987 14 27 MAY 19 JUN 25 SEP 28 NOV 05 DEC 07 MAR 1988 21 APR 06 18 MAY 03 03 16 JUN 29 SEP	TETRA-CHLORO-ETHANE TOTAL (UG/L)  ND	CHLOROBENZENE TOTAL (UG/L)  ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND N	TRANSDI CHLORO-ETHENE TOTAL (UG/L)  ND N	CHLOROBENZENE BENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND N	CHLORO-ETHYL- ENE ENE TOTAL (UG/L)  ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO- RIDE TOTAL (UG/L)  ND

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

## 04219640 NIAGARA RIVER (LAKE ONTARIO) AT FORT NIAGARA, NY - continued

## SUSPENDED SEDIMENT DISCHARGE

		DIS- CHARGE,		SEDI- MENT,
		IN	SEDI-	DIS-
		CUBIC	MENT,	CHARGE,
		FEET	SUS-	SUS-
DATE	TIME	PER		PENDED
		SECOND	(MG/L)	(T/DAY)
APR 1987				
14	0845	246000	8	5310
27	0905	248000	95	63600
MAY				
19	0915	234000	14	8850
JUN				
25	0930	236000	5	3190
JUL				
28	1100	240000	4	2590
NOV				
05	0825	212000	29	16600
DEC				
07	0830	212000	63	36100
MAY 1988				
03		225000		2430
16	0910	227000	4	2450
JUN				
29	1230	209000	6	3390
SEP			_	
07	0900	208000	8	4490
OCT .	0020	107000	-	2662
03	0938	197000	5	2660
NOV 14	0020	212000	20	17300
14	0930	213000	30	17300

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

#### 04227510 GENESEE RIVER AT GENESEO, NY

LOCATION.--Lat 42 46'37", long 77 50'31", Livingston County, Hydrologic Unit 04130003, at bridge on U.S. Highway 20A, and State Highway 39, 1.0 mi west of intersection with State Highway 63 and 1.5 mi Southwest of Geneseo.

DRAINAGE AREA. -- 1,425 mi2.

PERIOD OF RECORD.--Water years 1972-74, 1988 to current year.

CHEMICAL DATA: 1988 (b), 1989 (a).

MINOR ELEMENT DATA: 1972-74 (a), 1988 (b), 1989 (a).

PESTICIDE DATA: 1988 (b), 1989 (a).

NUTRIENT DATA: 1988 (b), 1989 (a).

SEDIMENT DATA: 1988-89 (a).

REMARKS.--Water-discharge data are based on records from station 04227500 Genesee River near Mount Morris.

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM	WHOLE FIELD (STAND- ARD	WATER	DIS-	(MG/L D AS	CALCIU DIS- SOLVE (MG/L	DIS- D SOLVED (MG/L	SODIUM DIS- SOLVED (MG/L	DIS- SOLVE (MG/L	,
APR 1988 06 MAY	1100	5420	19	6 8.:	2 13.	0 9.	3 7	7 23	4.8	7.1	1.6	
02 JUN	1530	3110	20	4 8.0	11.	5 9.	8 8	0 23·	5.4	7.8	1.4	
06 AUG	0945	682	32	8 8.4	18.	0 8.	2 13	0 39	9.1	12	1.6	
02 ⊙CT	0945	230	38	1 8.4	<b>4</b> 26.	5 7.	2 15	0 43	11	16	2.1	
03	0930	316	32	1 8.	5 15.	0 8.	1 14	0 40	9.0	12	2.0	
DATE	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, TOTAL (MG/L)	SOLIDS, VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	RESIDUE TOTAL FIXED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)
APR 1988 06	57	23	11	0.10		105					ND	0.740
MAY 02	60	23	12	0.10		109				0.600	0.00	0.600
JUN 06	107	31	17	0.10	207	174	224	90	134	0.730	0.010	0.740
AUG							224	90				
02 OCT	118	35	25	0.10		203				0.390	0.010	0.400
03	105	27	18	0.10		171				0.380	0.00	0.380
DATE	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS NH4)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS NO3)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
APR 1988	0 570	0.72	0 77		2.0	0.0	0.650	0.00	0.0	11000	.1	24
06 May	0.570	0.73	0.73	1.3	2.0	9.0	0.650		0.0	11000	<1	24
02 JUN	0.050	0.06	0.12	0.17	0.77	3.4	0.170	0.00	0.0	2200	2	19
06 AUG	0.030	0.04	0.10	0.13	0.87	3.9	0.040	0.00	0.0	570	1	9
02 OCT	0.060	0.08	0.25	0.31	0.71	3.1	0.040	0.00	0.0	530	1	12
03	0.020	0.03	0.12	0.14	0.52	2.3	0.030	0.010	0.03	900	<1	6

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

## 04227510 GENESEE RIVER AT GENESEO, NY - continued

## WATER-QUALITY DATA (continued)

					201.01						
DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	BROMO- FORM TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)
APR 1988											
06	18000	60	350	<0.10	21	70	ND	ND	ND	ND	ND
MAY											_
02 JUN	5100	8	140	<0.10	9	20	0	0	0.0	0	0
06	1100	<b>&lt;</b> 5	70	<0.10	3	20					
AUG					•						
02	1000	<5	70	<0.10	3	20	ND	ND	ND	ND	ND
OCT	1000		00					MD	MD	MD	ND
03	1000	<b>&lt;</b> 5	80		<1	50	ND	ND	ND	ND	ND
DATE	CHLORO- FORM TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	DI - CHLORO- BROMO- METHANE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)
APR 1988											
06	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MAY											
02	0	0	0	0	0	0	0	0	0	0	0
JUN 06											
AUG											
02	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND .
OCT											
03	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND .
											•
DATE	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	TRI - CHLORO- ETHYL- ENE TOTAL (UG/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)
APR 1988											
06	ND	ND	ND	ND	ND	ND	ND	<b>N</b> D	ND	ND	ND .
MAY											
02	0	0.00	0	0	0	0	0.0	0	0	0	0
JUN 06											
AUG											
02	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
OCT 03	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
03	ND	NO	MD	ND	ND	NU	140	ND	ND	ND	ND

## SUSPENDED SEDIMENT DISCHARGE

		DIS- CHARGE, INST.	SEDI-	SEDI- MENT, DIS-
		CUBIC FEET	MENT, SUS-	CHARGE, SUS-
DATE	TIME	PER SECOND	PENDED (MG/L)	PENDED (T/DAY)
AUG 1988				
02 ⊙CT	0945	230	29	18
03	0930	316	21	18

#### 04232006 GENESEE RIVER AT CHARLOTTE DOCKS AT ROCHESTER NY

LOCATION.--Lat 43 13'26", long 77 36'59", Monroe County, Hydrologic Unit 04130003, at Charlotte Docks, at Rochester Cement

Corp.,
in Rochester. 0.4 mi upstream from Rattlesnake Point, 1.6 mi upstream from Stutson Street Bridge, and 3.6 mi downstream from gaging station (04232000) at Rochester.

DRAINAGE AREA. -- 2,467 mi2 at station 04232000

PERIOD OF RECORD.--Water years 1971 to current year.

CHEMICAL DATA: 1971-72 (a), 1974 (b), 1975-82 (c), 1983-87 (b), 1988 (c), 1989 (a).

MINOR ELEMENTS DATA: 1971-73 (a), 1974-87 (b), 1988 (c), 1989 (a).

PESTICIDE DATA: 1988-89 (a),

ORGANIC DATA: OC--1974 (a), 1975 (b), 1977 (b), 1978-80 (c), 1981 (b).

NUTRIENT DATA: 1971 (a), 1974 (b), 1975-82 (c), 1983-87 (b), 1988 (c), 1989 (a).

BIOLOGICAL DATA:

Pacteria--1974 (b), 1975-82 (c), 1983-88 (b), 1989 (a). Phytoplankton--1974 (b), 1975-77 (c), 1978-81 (b). Periphyton--1975-80 (b). SEDIMENT DATA: 1974 (b), 1975-82 (c), 1983-88 (b), 1989 (a).

REMARKS.--Water discharge data are based on records from station 04232000 Genesee River at Rochester.

DATE	TIME	DIS- CHARGE, IN CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)
APR 1988 06 MAY	1430	8460	403	8.1	15.0	9.9	150	44	10	22	2.5
02 JUN	1215	3680	440	8.2	11.0	10.6	150	45	10	26	2.0
06	1225	1490	643	8.4	21.0	8.5	220	67	14	40	2.4
AUG 02	1200	511	775	8.0	29.5	7.2	220	67	13	64	3.7
ост 03	1200	879	855	7.9	16.5	7.0	240	71	15	73	3.4
DATE	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS NH4)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)
APR 1988	101	40									
06 May	104	47	33	0.20	221		ND	1.07	0.360	0.46	0.41
02 JUN	101	50	42	0.20	236	0.560	0.010	0.570	0.180	0.23	0.41
06 AUG	137	87	<b>6</b> 8	0.20	361	0.490	0.040	0.530	0.070	0.09	0.21
02 OCT	112	110	110	0.30	435	0.670	0.050	0.720	0.220	0.28	0.44
03	125	100	130	0.20	468	0.500	0.060	0.560	0.250	0.32	0.15
DATE	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS NO3)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)
APR 1988							0.00	_			_
06 May	0.77	1.8	8.1	0.510	0.00	0.0	9100	1	16	16000	6
02 JUN	0.59	1.2	5.1	0.140	0.00	0.0	2200	3	12	3800	<5
06 AUG	0.28	0.81	3.6	0.060	0.00	0.0	580	2	8	1500	<5
02	0.66	1.4	6.1	0.070	0.010	0.03	200	2	9	370	7
03	0.40	0.96	4.2	0.070	0.00	0.0	880	1	30	1000	<5

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

## 04232006 GENESEE RIVER AT CHARLOTTE DOCKS AT ROCHESTER NY - continued

DATE	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	TOTA RECO ERAE (UG)	AL OV-BRO BLE FO 'L TO	MO- PRM TAL G/L)	CARBO TETI CHLO RIDI TOTA (UG.	RA- O- C E E AL 1	CHLOR BENZE POTAL UG/L	NE METH	- MO- CHL ANE ETH AL TC	ANE FO	ORO- DRM TAL S/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)
APR 1988														
06	370	<0.10	20		60 N	D	ND		ND	ND	N	D N	ID	ND
MAY 02	90	<0.10	6		20			-		_	_			
JUN 06	00	-0.10	,		20		_							
AUG	80	<0.10	6		20		-	-		-	-			
02	120	<0.10	6		30 N	D	ND		ND	ND	N	D	0.5	ND
OCT 03	130		7		50 N	D	ND		ND	ND	N	D	0.2	ND
<b>DAT</b> APR 198	CHL BR MET E TO	HANE BRO	TAL C	THYL- HLO- IDE OTAL G/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	TR	I - ORO- ANE AL	1,1-I CHLOF ETHAN TOT) (UG/I	VT 16 10- 11-	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)	1,2 CHL BEN	-DI- ORO- ZENE FAL /L)
06		D N	1D	ND	ND	N	D	ND		ND	ND	ИD	N	D
MAY 02							_ <b>_</b>							
JUN														
06 AUG									•					
02		0.2 h	1D	ND	2.8	:	0.2	ND		ND	0.1	ND	N	D
ОСТ 03	N	D N	1D	ND	200		0.2	(	0.4	ND	ND	ND	N	D
DAT	CHL ETH WA WH E TO (UG	TER CHI OLE PRO TAL TO	ORO- CH OPANE ET OTAL T	1,2- ANSDI LORO- HENE OTAL IG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	CHL BEN	-DI- ORO- ZENE TAL /L)	TETRA CHLOS ETHYS ENE TOTA (UG/S	7T 50-	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	VII CHI RII TO	NYL LO- DE FAL G/L)
APR 198 06		D 1	₹D	ND	ND	N	D	ND		ND	ND	ND	N	D
MAY	•													
02 JUN									-					
06									-	'				
AUG 02 OCT	N	D	1.2	ND	ND	N	D	ND		ND	0.1	ND	N	D
03	N	D	0.7	ND	ND	N	D	ND		ND	ND	ND	N	D

### 04237410 SENECA RIVER AT JACK'S REEF NEAR MEMPHIS, NY

LOCATION.--Lat 43 05'55", long 76 25'24", Onondaga County, Hydrologic Unit 04140201, at bridge on Plainville Road, 200 ft from intersection with State Highway 31, 2.3 mi upstream from Cross Lake and 2.6 mi northwest of Memphis.

DRAINAGE AREA. -- 3,091 mi2.

PERIOD OF RECORD.--Water years 1988 to current year. CHEMICAL DATA: 1988 (b), 1989 (a).
MINOR ELEMENT DATA: 1988 (b), 1989 (a).
PESTICIDE DATA: 1988-89 (a).
NUTRIENT DATA: 1988 (b), 1989 (a).
BIOLOGICAL DATA: 1988 (b), 1989 (a).
SEDIMENT DATA: 1988 (a).

REMARKS.--Water-discharge data based on records for station 04237500 Seneca River at Baldwinsville.

DATE	TIME	DIS- CHARGE, IN CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)
APR 1988 04	1300	2440	~-	697	7.9	9.0	7.7		12.6		460
MAY				780							170
02 Jun	0930	1170			8.0	10.0	4.7		11.5		
06 AUG	1230	1130		717	8.2	13.0	14	758	6.9		290
02 OCT	1130	1090		758	8.1	28.0	8.5	753	8.2		4400
05	1000	886	310	826		17.5	4.7	764	7.1	74	65
DATE	FECAL COLI- FORM 24-HR MEM.FIL (COLS./ 100 ML)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS·MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)
APR 1988 04	44.0	250	74	17	43	2.1	159	00	70	0.00	460
MAY	44.0					2.1		88	72	0.20	
02 Jun	4.00	280	83	18	49	2.3	168	99	89	0.20	464
06 AUG	12.0	240	68	16	50	2.3	151	82	86	0.20	420
02 ⊙CT	20.0	180	47	14	78	2.3	104	77	120	0.10	464
05	10.0	220	60	16	78	2.6	118	99	130	0.10	520
DATE	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, TOTAL (MG/L)	SOLIDS, VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	RESIDUE TOTAL FIXED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS NH4)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)
APR 1988 04 MAY	392	488	88	400	1.22	0.020	1.24	0.050	0.06	0.32	0.37
02	441	520	132	388	0.740	0.010	0.750	0.040	0.05	0.37	0.41
JUN 06	395	468	136	332	0.480	0.020	0.500	0.050	0.06	0.53	0.58
AUG 02	401	520	180	340	0.060	0.00	0.060	0.030	0.04	0.54	0.57
ОСТ 05	456	528	112	416	0.100	0.010	0.110	0.060	0.08	0.57	0.63

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

## 04237410 SENECA RIVER AT JACK'S REEF NEAR MEMPHIS, NY - continued

	WATER-QUALITY DATA (continued)											
DATE APR 1988	NITRO- GEN, TOTAL (MG/L AS N)	NIT GE TOT (MG AS N	N, PHOR AL TOT /L (MG O3) AS	RUS DIS PAL SOLV G/L (MG/ P) AS P	US PHA HO, ORT - DI ED SOL L (MG	TE, INC THO, TOT S- REC VED ERA I/L (UC VO4) AS	JM, CADM PAL TOT COV- REC ABLE ERA G/L (UG	PAL TOT COV- REC ABLE ERA S/L (UG CD) AS	CAL TO: COV- REC ABLE ERA	TAL TO COV- REA ABLE ER G/L (U	AD, NI TAL TO COV- RI ABLE EI G/L (I	ANGA- ESE, OTAL ECOV- RABLE UG/L S MN)
04 MAY	1.6	,	.1 0.	060 0.	00 0	0.0	260	<1	14	400	24	50
02 JUN	1.2	5	.1 0.	040 0.	00 0	0.0	130	1	10	250	<5	40
06 AUG	1.1	4	.8 0.	070 0.	00 0	0.0	290	<1	6	10	<5	50
02	0.63	2	.8 0.	080 0.	00 0	0.0	170	<1	6	360	<5	50
05	0.74	3	.3 0.	070 0.	00 0	.0	80	<1	8	170	<5	40
DA APR 19	T R E ATE ( A	RCURY OTAL ECOV- RABLE UG/L S HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	BROMO- FORM TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)	CHLORO- FORM TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENI TOTAL (UG/L)	-
04		<0.10	2	<10	0	0	0.0	0	0	0	0	
MAY 02		<0.10	2	10	0	0	0.0	0	0	0	0	
JUN 06	• •	<0.10	2	20								
AUG 02		<0.10	1	10								
OCT 05	• •	<0.10	<1	20	ND	ND	ND	ND	ND	ND	ND	
	CH B ME ATE T	DI- LORO- ROMO- THANE OTAL UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)	1,2-DI	-
APR 19		0	0	0	0	0	0	0	0	0	0	
MAY 02		0	0	0	0	0	0	0	0	0	o	
JUN 06												
AUG 02												
OCT 05		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
03	1, CH ET W	2-DI- LORO- HANE ATER HOLE	1,2-DI- CHLORO- PROPANE	1,2- TRANSDI CHLORO- ETHENE	1,3-DI- CHLORO- BENZENE	1,4-DI- CHLORO- BENZENE	TETRA- CHLORO- ETHYL- ENE	TRANS- 1,3-DI- CHLORO- PROPENE	TRI - CHLORO- ETHYL- ENE	2- CHLORO- ETHYL- VINYL- ETHER	VINYL CHLO- RIDE	
DA		OTAL G/L)	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L)	TOTAL (UG/L)	)
APR 19 04	988	0.00	0	0	0	0	0.0	0	0	0	0	
MAY 02		0.00	0	0	0	0	0.0	0	0	0	0	
JUN 06												
AUG 02												
OCT												
05	••	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 04237410 SENECA RIVER AT JACK'S REEF NEAR MEMPHIS, NY - continued

### SUSPENDED SEDIMENT DISCHARGE

		DIS-		SEDI-
		CHARGE,		MENT,
		IN	SEDI-	DIS-
		CUBIC	MENT,	CHARGE,
		FEET	sus-	sus-
DATE	TIME	PER	PENDED	PENDED
		SECOND	(MG/L)	(T/DAY)
AUG 1988				
02	1130	1090	21	62

### 04248250 OSWEGO RIVER AT LOCK 5 AT MINETTO, NY

LOCATION.--Lat 43 24'01", long 76 28'25", Oswego County, Hydrologic Unit 04140203, at bridge on Oswego River in Minetto, .01 mi upstream of lock 5.

DRAINAGE AREA. -- 5,097 mi2.

PERIOD OF RECORD.--Water years 1988 to current year.
CHEMICAL DATA: 1988 (b), 1989 (a).
MINOR ELEMENT DATA: 1988 (b), 1989 (a).
PESTICIDE DATA: 1988-89 (a)
NUTRIENT DATA: 1988 (b), 1989 (a).
BIOLOGICAL DATA:
Bacteria--1988-89 (a).
SEDIMENT DATA: 1988 (a).

REMARKS.--Water-discharge data are based on records from station 04249000 Oswego River at Lock 7 Oswego.

DATE	TIME	DIS- CHARGE, IN CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR - BID- ITY (NTU)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)
APR 1988 04	1600	8200		591	8.1	7.0	6.0		13.2		
MAY 02	1200	1520		973	8.0	9.0	6.5		11.7		17000
JUN 06	1030	2250		850	8.0	17.0	5.8	758	9.6		29000
AUG 02	1330	2970		790	8.0	28.0	7.3	756	10.0		8500
OCT 05	1215	1300	330	876		15.0	20	764	8.6	85	62000
DATE	FECAL COLI- FORM 24-HR MEM.FIL (COLS./	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)
APR 1988 04		200	59	12	39	2.0	113	62	75	0.10	368
MAY 02	580	290	88	16	78	3.0	148	87	170	0.20	552
JU <b>N</b>											
06 AUG	240	250	74	15	68	1.5	137	81	130	0.20	496
02 ⊙CT	1200	190	53	14	71	2.5	106	82	130	0.10	484
05	2600	230	68	15	79	2.9	112	88	150	0.10	504
DATE	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, TOTAL (MG/L)	SOLIDS, VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	RESIDUE TOTAL FIXED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS NH4)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)
APR 1988	247	***	0.5	204	0.560	0.050	0.610			0.47	2 62
04 MAY	317	420	96	324	0.560	0.050	0.610	0.160	0.21	0.47.	0.63
02 JUN	531	640	156	484	0.730	0.020	0.750	0.270	0.35	0.49	0.76
06 AUG	452	584	136	448	0.430	0.030	0.460	0.150	0.19	0.43	0.58
02 ⊙CT	416	568	212	356	0.240	0.030	0.270	0.050	0.06	0.50	0.55
05	470	604	128	476	0.410	0.040	0.450	0.120	0.15	0.50	0.62

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

## 04248250 OSWEGO RIVER AT LOCK 5 AT MINETTO, NY - continued

	miles golden (contented)										
DAME	GEN, TOTAL T	GEN, PHO OTAL TO	PHO IOS- OR PRUS DI TAL SOL	RUS PH THO, OR S- D VED SO	ATE, IN THO, TO IS- RE LVED ER	TAL TO COV- RI ABLE EI	OTAL TO ECOV- RE RABLE ER	TAL TO COV- RE ABLE ER	TAL TO COV- RE ABLE EF	AD, NI TAL TO COV- RI ABLE E	ANGA- ESE, OTAL ECOV- RABLE
DATE			IG/L (MIG P) AS								UG/L S MN)
APR 1988 04									400	76	E 0
MAY	1.2	5.5 0	0.070 N	ID		240	<1	13	400	76	50
02 JUN	1.5	6.7	.080 0	.00	0.0	290	1	10	460	<5	80
06 AUG	1.0	4.6	.080 0	.00	0.0	170	<1	7	280	6	70
02 OCT	0.82	3.6	.090 к	ID		190	<1	6	710	33	90
05	1.1	4.7	.120 0	.00	0.0	400	<1	8	670	<5	80
DAT	MERCUR TOTAL RECOV ERABL E (UG/L AS HG	TOTAL - RECOV- E ERABLE (UG/L		FORM TOTAL	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)		CHLORO- ETHANE TOTAL (UG/L)	CHLORO- FORM TOTAL (UG/L)	CIS 1,3-DI CHLORO- PROPENI TOTAL (UG/L)	-
APR 198	8 <0.1	0 3	20	0	0	0.0	0	0	0	0	
MAY 02	<0.1	0 2	20	0	0	0.0	0	0	0	0	
JUN 06	<0.1	0 9	10								
AUG 02	<0.1	0 1	10								
OCT 05	<0.1	0 1	20	ND	ND	ND	ND	ND	ND	ND	
DATI	DI- CHLORO BROMO METHAN E TOTAL (UG/L	- METHYL- E BROMIDE TOTAL		METHYL- ENE CHLO- RIDE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)		1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)	1,2-DI	-
APR 198	3		•	-							
04 May	0	0	0	0	0	0	0	0	0	0	
02 JUN	0	0	0	0	0	0	0	0	0	0	
06 AUG											
02 OCT				~-							
05	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
DATI	1,2-DI CHLORO ETHANE WATER WHOLE TOTAL (UG/L)		CHLORO-		1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)	ı
APR 1988			_		_						
04 May	0.00	0	0	0	0	0.0	0	0	0	0	
02 JUN	0.00	0	0	0	0	0.0	0	0	0	0	
06											
AUG 02											
ост 05	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

## STREAMS TRIBUTARY TO LAKE ONTARIO

# 04248250 OSWEGO RIVER AT LOCK 5 AT MINETTO, NY - continued

# SUSPENDED SEDIMENT DISCHARGE

		DIS- CHARGE, IN CUBIC	SEDI- MENT,	SEDI- MENT, DIS- CHARGE,
DATE	TIME	FEET PER	SUS- PENDED	SUS- PENDED
DAIL	IIMC	SECOND	(MG/L)	(T/DAY)
APR 1988				
04	1600	8200	14	310
JUN				
06	103 <b>0</b>	2250	11	67

### STREAMS TRIBUTARY TO LAKE ONTARIO

### 04260500 BLACK RIVER AT WATERTOWN, NY

LOCATION.--Lat 43 59'08", long 75 55'30", Jefferson County, Hydrologic Unit 04150101, on downstream side of right abutment of Vanduzee Street Bridge at Watertown, and 3.5 mi upstream from Philomel Creek. Water-quality sampling site at discharge station.

DRAINAGE AREA. -- 1.864 mi 2 .

PERIOD OF RECORD. --Water years 1956-60, 1962 to current year.

CHEMICAL DATA: 1955 (e), 1959 (a), 1960 (b), 1965 (a), 1966-81 (d), 1982-87 (c), 1988 (d), 1989 (a).

MINOR ELEMENTS DATA: 1970-71 (a), 1974-79 (b), 1980 (c), 1981-87 (b), 1988 (c), 1989 (a).

PESTICIDE DATA: 1975-79 (b), 1980-82 (a), 1988 (b), 1989 (a).

ORGANIC DATA: OC--1973 (c), 1974 (a), 1975 (c), 1976-77 (b), 1978-81 (d), 1988-89 (a).

PCB--1978-79 (b), 1980-82 (a).

NUTRIENT DATA: 1968 (b), 1969-81 (d), 1982-87 (c), 1988 (d), 1989 (a).

BLOCKICAL DATA:

BIOLOGICAL DATA:

Pacteria--1973-81 (d), 1982-86 (c), 1987-88 (b), 1989 (a).
Phytoplankton--1975-77 (d), 1978-79 (c), 1980 (b), 1981 (c).
Periphyton--1975-80 (b).

SEDIMENT DATA: 1975-76 (d), 1977 (c), 1978-81 (d), 1982-88 (c), 1989 (a).

PERIOD OF DAILY RECORD .--

WATER TEMPERATURES: October 1955 to September 1959, July 1962 to March 1969.

REMARKS. -- Water-discharge data obtained from stream-flow gage at this site.

#### WATER-OUALITY DATA

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)
APR 1988 12 MAY	1630	<b>7</b> 720	73	6.8	8.0	1.9	13.1	28	9.4	1.0	2.5	0.70
11	1030	2810	93	7.1	14.5	2.0	13.1	35	12	1.2	4.0	0.60
JUN 21 AUG	1300	1140	113	7.3	24.5	1.3	12.4	38	13	1.3	6.7	0.80
02	1334	1340	103	7.5	28.5	1.0		35	12	1.3	5.6	0.80
05	1515	1560	93	6.8	13.0	2.3	14.3	30	10	1.3	5.8	0.90
DATE	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, TOTAL (MG/L)	SOLIDS, VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	RESIDUE TOTAL FIXED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)
APR 1988 12	20	13	2.3	0.20	63	41	69	31	38		ND	0.680
MAY 11	28	14	3.2	0.30	87	52	92	44	48	0.500	0.00	0.500
JUN 21	31	18	3.1	0.30	64	62	70	32	38	0.260	0.00	0.260
AUG 02	29	18	2.6	0.10		58	83	27	56	0.330	0.00	0.330
ост 05	22	15	2.9	0.10	58	49	66	15	51		ND	0.210
				NITRO-				PHOS-	PHOS-	ALUM-		
DATE APR 1988	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS NH4)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS NO3)	PHOS- PHORUS TOTAL (MG/L AS P)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
12	0.030	0.04	0.26	0.29	0.97	4.3	0.020	0.00	0.0	320	3	18
11	0.040	0.05	0.25	0.29	0.79	3.5	0.020	0.00	0.0	200	3	26
JUN 21	0.010	0.01	0.35	0.36	0.62	2.7	0.730	0.00	0.0	120	1	44
AUG 02	0.030	0.04	0.21	0.24	0.57	2.5	0.040	0.00	0.0	120	4	4
OCT 05	0.020	0.03	0.42	0.44	0.65	2.9	0.030	0.00	0.0	170	2	17

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

## STREAMS TRIBUTARY TO LAKE ONTARIO

# 04260500 BLACK RIVER AT WATERTOWN, NY - continued

## WATER-QUALITY DATA (continued)

DATE	TOTAL T RECOV- R ERABLE E (UG/L (	SEAD, NE OTAL TO ECOV- RE ERABLE EF UG/L (U	DTAL TO ECOV- RE RABLE EF JG/L (U	TAL TO COV- RE ABLE EF	DTAL BCOV- RABLE JG/L	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOL (C6H- 5OH) TOTAL (UG/L)	BROMO- FORM TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)
APR 1988												
12 MAY	360	6	30 <	0.10	6	20		ND	ND	ND	ND	ND
11 JUN	430	20	40 <	0.10	12	20		ND	ND	ND	ND	ND
21	3 <b>4</b> 0	38	60 <	0.10	5	10	0.0	ND	ND	ND	ND	ND
AUG 02	460	<5	50 <	0.10	5	10		ИD	ND	ND	ND	ND
ОСТ 05	450	<b>&lt;</b> 5	40 <	0.10	<1	20	ND	ND	ND	ND	ND	ND
DATE  APR 1988 12 MAY 11 JUN 21 AUG 02 OCT 05	CHLORC-FORM TOTAL (UG/L)  ND ND 0.1 0.1	PROPENE TOTAL (UG/L) ND ND ND	DI - CHLCRO- BROMO- METHANE TOTAL (UG/L) ND ND ND ND	METHYL- BROMI DE TOTAL (UG/L) ND ND ND ND	METHYL CHLO- RIDE TOTAL (UG/L) ND ND ND	LI DE	TRI	- 1,1- RO- CHLO NE ETHA L TOT L) (UG/ ND ND	NO ETHY NE EN AL TOT L) (UG/ ND ND	RO- TRI L- CHLC E ETHA AL TOT L) (UG/	- TETF RO- CHLC NE ETHA AL TOT L) (UG/	A-RO- RO- NNE 'AL L)
DATE	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	WATER	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	. 1,2- TRANSDI CHLORO- ETHENE TOTAI (UG/L	1,3-DI :HLORO BENZEN TOTAL (UG/L)	<ul> <li>CHLORGE BENZEN</li> </ul>	ETHY E ENE	RO- 1,3- L- CHLO PROP	DI- CHLO RO- ETHY ENE EN AL TOT	RO- ETHY L- VINY E ETH	RO- L- VIN L- CHL ER RID AL TOI	O~ E
APR 1988 12	ND	ND	ND	ND	ИD	<b>N</b> D	<b>N</b> D	, ND	ND.	, NE	) NE	,
MAY												
11 JUN	ND	ND	ND	ND	ND	ND	ND					
21 AUG	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
02 ∝T	ND	ND	ND	ND	ND	<b>N</b> D	ND	ND	ND	ND	ND.	1
05	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	

## SUSPENDED SEDIMENT DISCHARGE

		DIS-		SEDI-
		CHARGE,		MENT,
		INST.	SEDI-	DIS-
		CUBIC	MENT,	CHARGE,
		FE <b>ET</b>	SUS-	SUS-
DATE	TIME	PER	PENDED	PENDED
		SECOND	(MG/L)	(T/DAY)
JUN 1988				
21	1300	1140	7	22

### ST. LAWRENCE RIVER MAIN STEM

### 04260712 ST. LAWRENCE RIVER AT CAPE VINCENT, NY

LOCATION.--Lat 44 07'48", long 76 20'10", Jefferson County, Hydrologic Unit 04150301, at end of U.S. Coast Guard Station dock in Cape Vincent, and approximately 1,500 ft downstream from village water intake.

DRAINAGE AREA. -- 295,800 mi2.

PERIOD OF RECORD.--Water years 1957, 1969-75, 1988 (discontinued). CHEMICAL DATA: 1957 (a), 1969-74 (c), 1975, 1988 (b). MINOR ELEMENTS DATA: 1957 (a), 1969-74 (c), 1975, 1988 (b). PESTICIDE DATA: 1988 (b). ORGANIC DATA: OC--1988 (c). NUTRIENT DATA: 1957 (a), 1969-74 (c), 1975, 1988 (b).

#### WATER-OHALITY DATA

					WATER-(	QUALITY DA	ATA					
DATE APR 1988	TIME	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)
12	1030	321	8.2	7.5	1.6	13.9	130	38	8.2	12	1.5	98
MAY 10 JUN	0748	323	7.6	11.0	0.70		130	38	8.3	12	1.6	100
21	0830	311	8.2	17.5	0.60	12.8	130	37	8.1	12	2.4	96
AUG 02	1128	297	7.8	24.0	1.7		120	33	8.3	12	1.3	87
DATE	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, TOTAL (MG/L)	SOLIDS, VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	RESIDUE TOTAL FIXED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)
APR 1988 12	27	22	0.20	183	168	273	86	187		ND	0.310	0.010
MAY 10	27	22	0.30	205	169	229	89	140		ND	0.320	0.020
JUN 21	27	21	0.30	181	165	204	72	132			0.220	0.020
AUG										ND		
02	27	21	0.10	157	155	172	52	120	0.100	0.00	0.100	0.030
DATE	NITRO- GEN, AMMONIA TOTAL (MG/L AS NH4)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS NO3)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)
APR 1988												
12 May	0.01	0.21	0.22	0.53	2.3	0.010	0.00	0.0	40	3	4	60
10 Jun	0.03	0.53	0.55	0.87	3.9	0.010	0.00	0.0	30	2	27	60
21 AUG	0.03	0.25	0.27	0.49	2.2	0.330	ND		20	1	36	40
02	0.04	0.17	0.20	0.30	1.3	0.010	ND		10	1	32	50
DATE	ERA (UG AS	D, NES AL TOT OV- REC BLE ERA //L (UC	TAL TO COV- REABLE ER G/L (U	ABLE ERA G/L (UC	TAL TO: COV- REC ABLE ERI S/L (UC	FAL PHI COV- (CO ABLE 50	ENOL 5H- BROM 5H) FOF FAL TOI /L) (UG	RM RID	RA- O- CHLO E BENZ AL TOTA	ENE METH L TOT	- MO- CHLO ANE ETHA	NE 'AL
APR 1988	•	<5	<10 <	0.10	13	<10 NI	O NE	O ND	ND	ND	NE.	)
MAY 10 JUN		69	<10 <	0.10	9	40	NE	O ND	ND	ND.	NE	)
21 AUG		40	<10 <	0.10	28	20 NI	о и	סא כ	ND	ND.	NE	)
02		24	<10 <	0.10	3	20	0.0 NE	D ND	ND	ND	NE	)

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# ST. LAWRENCE RIVER MAIN STEM

# 04260712 ST. LAWRENCE RIVER AT CAPE VINCENT, NY - continued

DATE	CHLORO- FORM TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)
APR 1988 12 MAY	ND	ND	ND	ND	ND	ND	ND	ND	NĎ	ND	ND
10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
21	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
AUG 02	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DATE	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)
APR 1988	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
APR 1988 12	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
APR 1988 12 MAY 10 JUN	CHLORO- BENZENE TOTAL (UG/L) ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND	CHLORO- PROPANE TOTAL (UG/L) ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND	CHLORO- BENZENE TOTAL (UG/L) ND	CHLORO- BENZENE TOTAL (UG/L) ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND	CHLO- RIDE TOTAL (UG/L) ND
APR 1988 12 MAY 10	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)

#### 04263000 OSWEGATCHIE RIVER NEAR HEUVELTON, NY

LOCATION.--Lat 44 35'58", long 75 22'45", St. Lawrence County, Hydrologic Unit 04150302, on right bank 1.5 mi downstream from Beaver Creek, and 2.5 mi upstream from Heuvelton. Water-quality sampling site at discharge station.

DRAINAGE AREA. -- 965 mi 2 .

PERIOD OF RECORD.--Water years 1960, 1966-69, 1971-72, 1978-86, 1988 to current year.

CHEMICAL DATA: 1960 (a), 1966 (b), 1968-69 (d), 1971-72 (a), 1978 (c), 1979-80 (d), 1981-82 (c), 1983-86, CHEMICAL DATA: 1960 (a), 1966 (b), 1968-09 (d), 1971-72 (a), 1976 (c), 1978 (d), 1989 (a).

1988 (b), 1989 (a).

MINOR ELEMENTS DATA: 1978-79 (b), 1980 (c), 1981-86, 1988 (b), 1989 (a).

PESTICIDE DATA: 1988 (b), 1989 (a).

ORGANIC DATA: OC--1978 (c), 1979-80 (d), 1981 (c), 1988 (a).

NUTRIENT DATA: 1978 (c), 1979-80 (d), 1981-82 (c), 1983-86 (b), 1988 (b), 1989 (a).

BIOLOGICAL DATA:

Bacteria ~ 1978 (c), 1979-80 (d), 1981-82 (c), 1983-86 (b).

Phytoplankton--1978-80 (c), 1981 (b).

Periphyton--1978-80 (b).

Peniphyton--1978-80 (b).

SEDIMENT DATA: 1978 (c), 1979-80 (d), 1981-85 (c), 1986 (b), 1988 (a).

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: January 1978 to September 1981. WATER TEMPERATURES: January 1978 to September 1981.

REMARKS .-- Water-discharge data obtained from stream-flow gage at this site.

EXTREMES FOR PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE (water years 1978-81): Maximum daily, 155 microsiemens Jan. 31, 1981; minimum daily,

22 microsiemens sometime in February 1980.
WATER TEMPERATURES (water years 1978-81): Maximum daily, 28.0 C July 28, 1978 and July 23-28, 1979; minimum daily,

0.0 C on many days during winter periods.

# WATER-QUALITY DATA

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)
APR 1988		24.22	•									
13 MAY	1430	2180	92	6.8	8.5	1.5	11.6	37	10	2.8	2.5	0.80
11 JUN	1415	1640	89	6.7	15.5	0.80	12.3	36	10	2.6	2.4	0.80
22 AUG	1410	249	108	7.3	24.0	1.0	11.6	44	12	3.4	3.3	0.70
03	1410	316	112	8.2	30.5	1.3		43	12	3.1	3.5	0.60
OCT 04	1300	532	92	7.1	16.5	0.60	13.0	38	11	2.6	2.8	1.1
DATE	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, TOTAL (MG/L)	SOLIDS, VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	RESIDUE TOTAL FIXED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)
APR 1988	LINITY LAB (MG/L AS CACO3)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	RESIDUE AT 105 DEG. C, TOTAL (MG/L)	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L)	GEN, NITRATE TOTAL (MG/L	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)
APR 1988 13	LINITY LAB (MG/L AS CACO3)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	RESIDUE AT 180 DEG. C DIS- SOLVED	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	RESIDUE AT 105 DEG. C, TOTAL (MG/L)	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L)	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)
APR 1988 13	LINITY LAB (MG/L AS CACO3)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	RESIDUE AT 105 DEG. C, TOTAL (MG/L)	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L)	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)
APR 1988 13 MAY 11 JUN 22	LINITY LAB (MG/L AS CACO3)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	RESIDUE AT 105 DEG. C, TOTAL (MG/L)	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L)	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)
APR 1988 13 MAY 11 JUN	LINITY LAB (MG/L AS CACO3)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F) 0.20	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	RESIDUE AT 105 DEG. C, TOTAL (MG/L) 74	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L) 37 59	GEN, NITRATE TOTAL (MG/L AS N)	GEN, NITRITE TOTAL (MG/L AS N) ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.350

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 04263000 OSWEGATCHIE RIVER NEAR HEUVELTON, NY - continued

# WATER-QUALITY DATA (continued)

DATE	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS NH4)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	AINOM	- + NITRO	- NITRO GEN, TOTAL (MG/L AS NO3	PHORU TOTA (MG/	PHO OR' S DI L SOL' L (MG	RUS PH THO, OR S- D VED SO /L (M	ATE, IN THO, TO IS- RE LVED ER G/L (U	UM- UM, TAL COV- ABLE G/L AL)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
APR 1988													_
13 MAY	0.010	0.01	0.27	0.2	8 0.6	3 2.8	0.0	20 0	.00	0.0	170	3	6
11 JUN	0.020	0.03	0.18	0.2	0 0.4	3 1.9	0.0	20 0	.00	0.0	80	9	20
22	0.030	0.04	0.25	0.2	8 0.4	4 1.9	0.0	30 0	.00	0.0	80	<1	3
AUG 03	0.010	0.01	0.32	0.3	3 0.5	5 2.4	0.0	10 N	D		110	1	7
∞τ 04	0.010	0.01	0.26	0.2	7 0.4	1 1.8	0.0	10 0	.00	0.0	60	<1	1
	IRON, TOTAL RECOV-	LEAD, TOTAL RECOV-	MANGA- NESE, TOTAL RECOV-	MERCUR TOTAL	TOTAL	TOTAL	PHEN		TE	BON- TRA- ILO- CHL	oro-	CHLORO- DI- BROMO-	CHLORO-
-1-5	ERABLE	ERABLE	ERABLE	ERABL	E ERABL	E ERABL	Е 50н	) FO	RM RI	DE BEN	ZENE	METHANE	ETHANE TOTAL
DATE	(UG/L AS FE)	(UG/L AS PB)	(UG/L AS MN)	(UG/L AS HG						TAL TOI G/L) (UG	AL S/L)	TOTAL (UG/L)	(UG/L)
APR 1988 13	280	5	50	<0.1	0 1	1 2	0	N	D N	ID N	ID	ND	ND
MAY 11	230	85	30	<0.1	0	7 2	0	N	D N	ID N	ID	ND	ND
JUN 22	340	<5	60	<0.1	0 <	1 <1	0 0.	0 N	D 18	ID N	ID	ND	ND
AUG 03	1400	39									ID	ND	ND
OCT													
04	310	< 5	20	<0.1	0 <	1 <1	.0	N	D N	ID N	1D	ND	ND
DAT	CHLC FOI E TO (UG,	1,3 DRO- CHI RM PRO TAL TO	-DI- CHI ORO- BF OPENE MET OTAL TO	THANE BR	THYL- C OMIDE R OTAL T	THYL- HLO- C IDE R OTAL TO	ENE CHLO- C CIDE E YTAL I	TRI- TRI- THLORO- THANE TOTAL UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,2 TRI- CHLOR ETHAN TOTA (UG/L	TETF O- CHLO IE ETHA L TOI	A- PRO- NE 'AL
APR 198			ID N	1D	ND	ND	ND	ND	ND	ND	ND	NE	
13 MAY													
11 JUN	NI						ND	ND	ND	ND	ND	NI	
22 AUG	N	D 1	ID 1	1D	ND	ND	ND	ND	ND	ND	ND	NI	)
03 OCT	N	D 1	ID N	D	ND	ND	ND	ND	ND	ND	ND	NI	)
04	N	D 1	ID t	<b>I</b> D	ND	ND	ND	ND	ND	ND	ND	NI	)
DAT	CHLC BEN	CHI -DI- ETH DRO- WA ZENE WA TAL TO	ATER CHI HOLE PRO YTAL TO	2-di- tr Loro- ch Opane et Otal t	LORO- CH HENE BE OTAL T	LORO- CH NZENE BE OTAL I	4-DI- C HLORO- E ENZENE POTAL	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	2- CHLOR ETHYL VINYL ETHE TOTA (UG/L	- VII - CHI IR RII AL TOI	.O- )E
APR 198		_	_										
13 MAY							ND	ND	ND	ND	ND	NI	
11 JUN	N	D t	ID I	1D	ND	ND	ND	ND	ND	ND	ИД	NI	
22 AUG	N	D t	ID I	4D	ND	ND	ND	ND	ND	0.1	ND	N	
03	N	D 1	i di	ND	ND	ND	ND	ND	ND	ND	ND	N	
OCT 04	N	D t	ID I	ND	ND	ND	ND	ND	ND	ИD	ND	NI	

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 04263000 OSWEGATCHIE RIVER NEAR HEUVELTON, NY - continued

# SUSPENDED SEDIMENT DISCHARGE

		DIS-		SEDI-
		CHARGE,		MENT,
		INST.	SEDI~	DIS-
		CUBIC	MENT,	CHARGE,
		FEET	SUS-	SUS-
DATE	TIME	PER	PENDED	PENDED
		SECOND	(MG/L)	(T/DAY)
AUG				
03	1410	316	2	1.7

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

#### ST. LAWRENCE RIVER MAIN STEM

#### 04264331 ST. LAWRENCE RIVER AT CORNWALL, ONTARIO--NEAR MASSENA, NY

LOCATION.--Lat 45 00'22", long 74 47'43", Stormont County, Ontario--St. Lawrence County, NY, Hydrologic Unit Cornwall, Ontario, 2.9 mi upstream from Grass River, 6.2 mi upstream from Raquette River, and 5.9 mi northeast of Massena, NY. Water-quality samples collected at power dam from taps at generators 17 and 30.

DRAINAGE AREA. -- 298,800 mi 2 .

PERIOD OF RECORD.--Water years 1955, 1966 to current year. Prior to October 1970, published as "near Massena, NY". CHEMICAL DATA: 1955 (a), 1974 (c), 1975-81 (d), 1982-86 (c), 1987 (b), 1988 (b), 1989 (a).

MINOR ELEMENTS DATA: 1974-77 (b), 1978 (a), 1979 (b), 1980 (c), 1981-87 (b), 1988 (c), 1989 (a).

RADIOCHEMICAL DATA: 1974-88 (a).

ORGANIC DATA: OC--1974 (a), 1975 (b), 1977 (b), 1978-81 (d), 1988-89 (a).

NUTRIENT DATA: 1974-75 (c), 1976-81 (d), 1982-86 (c), 1987 (b), 1988 (c), 1989 (a).

BIOLOGICAL DATA:

Bacteria--1974 (c), 1975-81 (d), 1982-86 (c), 1987-88 (b), 1989 (a).
Phytoplankton--1974 (a), 1975-77 (d), 1978-81 (c).
Periphyton--1974 (a), 1975 (c), 1976-80 (b).
SEDIMENT DATA: 1975 (d), 1976-77 (c), 1978-81 (d), 1982-86 (c), 1987 (b), 1988 (c), 1989 (a).

PERIOD OF DAILY RECORD. --

SPECIFIC CONDUCTANCE: October 1975 to September 1986.

WATER TEMPERATURES: October 1955 to October 1958, unpublished; January 1966 to September 1986.

REMARKS.--Discharge is determined from summation of discharge through the Robert Moses-Robert H. Saunders powrer dam, the Long Sault Dam, the Massena Diversion, the Rasin River Diversion, the Cornwall and Massena municipal water supply, and the Cornwall and the Wiley-Dondero navigation canals. U.S.-Canada coordinated discharge figures supplied by Corps of Engineers. Temperature observations from October 1955 to October 1958 made at Aluminum Company of America Massena Canal power station and those from January 1966 to September 1986 made approximately 68 ft below normal forebay level.

EXTREMES FOR PERIOD OF DAILY RECORD .--

SPECIFIC CONDUCTANCE: Maximum daily, 400 microsiemens Aug. 7, 1978, Mar. 29, 1979; minimum daily, 250 microsiemens Dec. 21, 1978.

WATER TEMPERATURES: Maximum daily, 24.5 C on several days in August and September 1973 and August 1975; minimum daily 0.0 C on many days during winter periods except 1972-74, 1979, 1982-85.

#### WATER-OUALITY DATA

DATE	TIME	DIS- CHARGE, IN CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)
APR 1988		25222	200			2.6			26	7.0	4.0	1.0
13 MAY	1100	258000	320	8.2	7.5	2.6		120	36	7.9	12	1.8
10	1406	228000	312	7.6	11.0	0.80		130	37	8.0	11	1.3
22 AUG	1100	248000	312	8.1	19.0	0.90	13.4	130	38	8.1	12	1.3
03 OCT	1100	246000	304	8.0	26.0	0.90		120	34	8.4	12	1.3
04	1009	238000	310	7.4	13.0	0.80		130	36	8.8	12	1.7
DATE	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, TOTAL (MG/L)	SOLIDS, VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	RESIDUE TOTAL FIXED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)
APR 1988	LINITY LAB (MG/L AS CACO3)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	RESIDUE AT 180 DEG. C DIS- SOLVED	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	RESIDUE AT 105 DEG. C, TOTAL (MG/L)	VOLA- TILE ON IGNI- TION, TOTAL	TOTAL FIXED (MG/L)	GEN, NITRITE TOTAL (MG/L	GEN, NO2+NO3 TOTAL (MG/L	GEN, AMMONIA TOTAL (MG/L
APR 1988 13 MAY 10	LINITY LAB (MG/L AS CACO3)	DIS- SOLVED (MG/L	RIDE, DIS- SOLVED (MG/L	RIDE, DIS- SOLVED (MG/L	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVED	RESIDUE AT 105 DEG. C, TOTAL	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)
APR 1988 13 MAY 10 JUN 22	LINITY LAB (MG/L AS CACO3)	DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F)	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	RESIDUE AT 105 DEG. C, TOTAL (MG/L)	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)
APR 1988 13 MAY 10 JUN	LINITY LAB (MG/L AS CACO3) 97	DIS- SOLVED (MG/L AS SO4) 25	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE, DIS- SOLVED (MG/L AS F) 0.20	RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) 182 213	SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) 163	RESIDUE AT 105 DEG. C, TOTAL (MG/L) 193 232	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L) 127 139	GEN, NITRITE TOTAL (MG/L AS N) ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.310	GEN, AMMONIA TOTAL (MG/L AS N) 0.020

# ST. LAWRENCE RIVER MAIN STEM

04264331 ST. LAWRENCE RIVER AT CORNWALL, ONTARIO--NEAR MASSENA, NY - continued

WATER-QUALITY DATA (continued)

DATE	NITRO- GEN, AMMONIA TOTAL (MG/L AS NH4)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	GEN MON ORG TO	GANIC G OTAL TO IG/L (N	SEN, C TTAL TO IG/L (N	SEN, PHO TAL TO IG/L (N	PHO NOS- OI ORUS DI OTAL SOI NG/L (MO	ORUS F RTHO, C IS- LVED S G/L (	HATE, IN RTHO, TO DIS- RI OLVED EN MG/L (N	DTAL TO ECOV- RI RABLE E UG/L (	DMIUM ( DTAL ECOV- RABLE UG/L S CD)	TOTAL TRECOV- FERABLE EQUIPMENT (UG/L)	RON, OTAL ECOV- ERABLE UG/L AS FE)
APR 1988 13	0.03	0.60	)	0.62	0.93	4.1	0.010	0.00	0.0	70	4	70	730
MAY 10	0.0	0.24	ı	0.24	0.55	2.4 0	).010 I	ND		50	3	310	380
JUN 22	0.01	0.26		0.27	0.51	2.3	).010 ı	ND		30	1	14	5400
AUG				_						90			
03 OCT	0.04	0.36		0.39	0.57			ND			4	18	1300
04	0.04	0.34	•	0.37	0.71	3.1	0.030 (	0.00	0.0	30	2	32	270
DATE	LEA TOT REC ERA E (UG AS	D, NE AL TO OV- RE BLE EF /L (U	ANGA- ESE, DTAL ECOV- RABLE JG/L S MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	PHENOL (C6H- 5OH) TOTAL (UG/L)	BROMO- FORM TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORG DI- BROMG METHAI TOTAI (UG/)	O- CHLORO- NE ETHANE L TOTAL	
APR 1988	3	<b>&lt;</b> 5	<10	<0.10	12	10		ND	ND	ND	ND	ND	
MAY 10		20	<10	<0.10	12	50		ND	ND	ND	ND	ND	
JUN 22		14	30	<0.10	5	1000	ND	ND	ND	ND	ND	ND	
AUG 03		34	20	<0.10	3	160	0.0	ND	ND	ND	ND	ND	
OCT 04		<5	10	<0.10	<1	60	ND	ND	ND	ND	ND	ND	
DATE	CHLO FOR TOT (UG/	RO- CHI M PRO AL TO	CIS 3-DI- LORO- DPENE DTAL G/L)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,2 TRI- CHLORG ETHANI TOTAL (UG/L	TETRA- O- CHLORO- E ETHANE L TOTAL	
APR 1988	FOR E TOT (UG/	1,3 RO- CHI M PRO AL TO L) (UC	3-DI- LORO- DPENE DTAL G/L)	CHLORO- BROMO- METHANE TOTAL (UG/L)	BROMIDE TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)	ENE CHLO- RIDE TOTAL (UG/L)	TRI- CHLORO- ETHANE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	TRI- CHLORG ETHANI TOTAI (UG/L)	TETRA- D- CHLORO- E ETHANE L TOTAL ) (UG/L)	
	FOR E TOT (UG/	1,3 RO- CHI M PRO AL TO L) (UC	S-DI- LORO- OPENE OTAL	CHLORO- BROMO- METHANE TOTAL	BROMIDE TOTAL	CHLO- RIDE TOTAL	ENE CHLO- RIDE TOTAL	TRI- CHLORO- ETHANE TOTAL	CHLORO- ETHANE TOTAL	CHLORO- ETHYL- ENE TOTAL	TRI- CHLORG ETHANI TOTAL	TETRA- O- CHLORO- E ETHANE L TOTAL	
APR 1988	FOR E TOT (UG/	1,3 RO- CHI M PRO AL TO L) (UO	3-DI- LORO- DPENE DTAL G/L)	CHLORO- BROMO- METHANE TOTAL (UG/L)	BROMIDE TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)	ENE CHLO- RIDE TOTAL (UG/L)	TRI- CHLORO- ETHANE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	TRI- CHLORG ETHANI TOTAI (UG/L)	TETRA- D- CHLORO- E ETHANE L TOTAL ) (UG/L)	
APR 1988 13 MAY 10	FOR E TOT (UG/	1,3 RO- CHI M PRO AL TO L) (UC	B-DI- LORO- OPENE OTAL G/L)	CHLORO- BROMO- METHANE TOTAL (UG/L)	BROMIDE TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)	ENE CHLO- RIDE TOTAL (UG/L)	TRI- CHLORO- ETHANE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	TRI- CHLORG ETHANI TOTAI (UG/L	TETRA- O- CHLORO- E ETHANE L TOTAL ) (UG/L)  ND	
APR 1988 13 MAY 10 JUN 22 AUG 03	FOR E TOT (UG/ 8 ND	1,3 RO- CHI M PRO AL TO L) (UC	3-DI- LORO- DPENE DTAL G/L)	CHLORO- BROMO- METHANE TOTAL (UG/L) ND	BROMIDE TOTAL (UG/L) ND	CHLO- RIDE TOTAL (UG/L) ND	ENE CHLO- RIDE TOTAL (UG/L) ND	TRI- CHLORO- ETHANE TOTAL (UG/L) ND	CHLORO- ETHANE TOTAL (UG/L) ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	TRI- CHLORG ETHANI TOTAI (UG/L ND	TETRA- O- CHLORO- E ETHANE L TOTAL (UG/L)  ND	
APR 1988 13 MAY 10 JUN 22 AUG	FOR TOT (UG/ 8 ND ND	1,3 RO- CHI M PRC AL TC L) (UC	3-DI- LORO- DPENE DTAL S/L) ND	CHLORO- BROMO- METHANE TOTAL (UG/L) ND ND	BROMIDE TOTAL (UG/L) ND ND	CHLO- RIDE TOTAL (UG/L) ND ND	ENE CHLO- RIDE TOTAL (UG/L) ND ND	TRI- CHLORO- ETHANE TOTAL (UG/L) ND ND	CHLORO- ETHANE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	TRI- CHLORG ETHANI TOTAL (UG/L ND ND	TETRA- CHLORO- CHLORO- CHURON- L TOTAL (UG/L)  ND  ND  ND	
APR 1988 13 MAY 10 JUN 22 AUG 03 OCT	FOR TOT (UG/	1,3 CHIMAN PRO ALL TY CHIMAN P	S-DI- LORO- DPENE DTAL S/L) ND ND	CHLORO- BROMO- METHANE TOTAL (UG/L) ND ND ND	BROMIDE TOTAL (UG/L) ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND	ENE CHLO- RIDE TOTAL (UG/L)  ND  ND  ND	TRI- CHLORO- ETHANE TOTAL (UG/L)  ND ND ND	CHLORO- ETHANE TOTAL (UG/L) ND ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND ND	TRI-CHLORGETHANI TOTAL (UG/L ND ND ND ND	TETRA- CHLORO- E ETHANE E TOTAL ) (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	
APR 1988 13 MAY 10 JUN 22 AUG 03 OCT 04	FOR TOT (UG/8 ND	I, 2 CHI	S-DI-JORO-JORO-JORO-JORO-JORO-JORO-JORO-JOR	CHLORO-BROMO-METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  T,2-DI-CHLORO-PROPANE TOTAL (UG/L)	BROMIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  T,2-TRANSDI CHLORO-ETHENE TOTAL (UG/L)	CHLO-RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  CHLORO-BENZENE TOTAL (UG/L)	ENE CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  T,4-DI- CHLORO- BENZENE TOTAL (UG/L)	TRI- CHLORO- ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO-ETHANE TOTAL (UG/L)  ND ND ND ND ND TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	TRI-CHLORGETHANI TOTAI (UG/L) ND ND ND ND ND VI ND VI	TETRA- CHLORO- E ETHANE TOTAL ) (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	
APR 1988 13 MAY 10 JUN 22 AUG 03 OCT 04  DATE APR 1988 13 MAY	FOR TOT (UG/	1,2 CHL	3-DI JORO JO	CHLORO-BROMO-METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	BROMIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  T,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLO-RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	ENE CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRI-CHLORO-ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  TETRA-CHLORO-ETHYL-ENE TOTAL (UG/L)	CHLORO-ETHANE TOTAL (UG/L)  ND ND ND ND ND TRANS- 1,3-DI- CHLORO-PROPENE TOTAL (UG/L)	CHLORO-ETHYL- ENE TOTAL (UG/L)  ND ND ND ND ND CHLORO-ETHYL- ENE TOTAL (UG/L)  ND	TRI-CHLORGETHANI TOTAI (UG/L  ND  ND  ND  ND  ND  VID  CHLORGETHYL ETHEI TOTAI (UG/L)  ND	TETRA- CHLORO- E ETHANE E TOTAL ) (UG/L)  ND	
APR 1988 13 MAY 10 JUN 22 AUG 03 OCT 04  DATE APR 1988 13 MAY 10 JUN	FOR TOT (UG/8 ND	I, 2 CHIM M PRO AL TX L) (UC  1 1, 2 CHIM M PRO	S-DI-JORO-JORO-JORO-JORO-JORO-JORO-JORO-JOR	CHLORO-BROMO-METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	BROMIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)  ND  ND	CHLO-RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	ENE CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRI- CHLORO- ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)  ND  ND	CHLORO-ETHANE TOTAL (UG/L)  ND ND ND ND TRANS- 1,3-DI- CHLORO-PROPER TOTAL (UG/L)  ND ND	CHLORO-ETHYL- ENE TOTAL (UG/L)  ND	TRI-CHLORGETHANI (UG/L) ND N	TETRA- CHLORO- E ETHANE E TOTAL ) (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	
APR 1988 13 MAY 10 JUN 22 AUG 03  OCT 04  APR 1988 13 MAY 10 JUN 22 AUG	FOR TOT (UG/8 ND	1,2 CHIMAN PROCESS  M PROCESS  L) (UC  L) (UC  L)	G-DI- OROO- OROO- DPENE DTAL  G/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BROMO-METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	BROMIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  TRANSDI CHLORO-ETHENE TOTAL (UG/L)  ND  ND  ND  ND  ND	CHLO-RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	ENE CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRI-CHLORO-ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHANE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	TRI-CHLORGETHANI TOTAI (UG/L) ND	TETRA- CHLORO- E CHLORO- E CHANE L TOTAL ) (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	
APR 1988 13 MAY 10 JUN 22 AUG 03 OCT 04  DATE APR 1988 13 MAY 10 JUN 22	FOR TOT (UG/8 ND	1,2 CHIMAN PROCESS  M PROCESS  L) (UC  L) (UC  L)	S-DI-JORO-JORO-JORO-JORO-JORO-JORO-JORO-JOR	CHLORO-BROMO-METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	BROMIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)  ND  ND	CHLO-RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	ENE CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRI- CHLORO- ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)  ND  ND	CHLORO-ETHANE TOTAL (UG/L)  ND ND ND ND TRANS- 1,3-DI- CHLORO-PROPER TOTAL (UG/L)  ND ND	CHLORO-ETHYL- ENE TOTAL (UG/L)  ND	TRI-CHLORGETHANI (UG/L) ND N	TETRA- CHLORO- E ETHANE E TOTAL ) (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

#### STREAMS TRIBUTARY TO ST. LAWRENCE RIVER

### 04266500 RAQUETTE RIVER AT PIERCEFIELD, NY

LOCATION.--Lat 44 14'05", long 74 34'20", St. Lawrence County, Hydrologic Unit 04150305, on left bank 0.5 mi downstream from powerplant at Piercefield, and 1.5 mi upstream from Dead Creek.

DRAINAGE AREA. -- 721 mi 2 .

PERIOD OF RECORD.--Water years 1955, 1970-72, April 1988 to current year. CHEMICAL DATA: 1955, 1970-72 (a), 1988 (b), 1989 (a). MINOR ELEMENTS DATA: 1955, 1970-72 (a), 1988 (b), 1989 (a). PESTICIDE DATA: 1988 (b), 1989 (a). ORGANIC DATA: OC--1988 (a). NUTRIENT DATA: 1970-72 (a), 1988 (b), 1989 (a). SEDIMENT DATA: 1988-89 (a).

REMARKS.--Water-discharge data obtained from stream-flow gage at this site.

### WATER-QUALITY DATA

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)
APR 1988												
14 May	1100	3320	35	5.5	8.5	0.80		11.8	10	3.2	0.59	1.7
12 JUN	1100	2210	34	6.0	14.0	0.60	760	14.2	11	3.3	0.59	1.5
23 OCT	1130	408	40	6.5	21.5	1.0		10.7	13	3.9	0.78	2.0
06	1500	483	39	6.9	11.0	1.0		13.0	13	3.8	0.80	1.8
DATE	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, TOTAL (MG/L)	SOLIDS, VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	RESIDUE TOTAL FIXED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)
APR 1988 14	0.40	4.0	9.9	1.7	0.10		20	42	15	27	ND	0.440
MAY 12	1.4	5.0	9.2	1.5	0.30	58	21	65	38	27	ND	0.400
JUN												
23 ⊙CT	0.40	7.0	9.2	1.9	0.30		23	21	11	10	ND	0.160
06	0.60	9.0	8.3	1.8	0.10	22	23	31	15	16	ND	0.130
DATE	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS NH4)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS NO3)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)
APR 1988											_	_
14 MAY	0.010	0.01	0.19	0.20	0.64	2.8	0.010	0.00	0.0	150	2	9
12 JUN	0.030	0.04	0.36	0.39	0.79	3.5	0.00	ND		100	2	17
23 ⊙CT	0.040	0.05	0.40	0.44	0.60	2.7	0.320	0.00	0.0	70	<1	18
06	0.060	0.08	0.40	0.46	0.59	2.6	0.020	ND		130	2	52

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 04266500 RAQUETTE RIVER AT PIERCEFIELD, NY - continued

## WATER-QUALITY DATA (continued)

DATE	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L	RECOV- ERABLE (UG/L	PHENOL (C6H- 5OH) TOTAL UG/L)	BROMO- FORM TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)
APR 1988 14	160	<5	30	<0.10	4	10		ND	ND	ND	ND	ND
MAY 12	210	35	20	<0.10	7	20		ND	ND	ND	ND	ND
JUN 23 OCT	320	<5	80	<0.10	<1	20	0.0	ND	ND	ND	ND	ND
06	380	<5	60	<0.10	<1	40		ND	ND	ND	ND	ND
DATE	CHLOR FORM TOTA (UG/L	PROPEI L TOTAL	O- BROM NE METHA L TOTA	O- METHY NE BROMI L TOTA	DE RIDE	CHLO- RIDE	- 1,1,1 TRI- CHLOR ETHAN TOTAL (UG/L	1,1-I RO- CHLOR IE ETHAN TOTA	RO- ETHY NE EN AL TOT	RO- TRI L- CHLO E ETHA AL TOT	- TETF RO- CHLO NE ETHA AL TOT	RA- DRO- ANE FAL
APR 1988												
14 MAY	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NI	)
12 JUN	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NI	)
23 ⊙CT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NI	)
06	0	.1 ND	ND	ND	ND	ND	ND	ND	ND	ND	NI	)
DATE	1,2-D CHLOR BENZE TOTA (UG/L	O- WATEI NE WHOLI L TOTAI	D- E 1,2-E R CHLOR E PROPA L TOTA	O- CHLOR NE ETHEN L TOTA	EDI 1,3-DI RO- CHLORO RE BENZEN LL TOTAL	- CHLORO E BENZEN	- ETHYL	O- 1,3-E CHLOF PROPE L TOTA	OI - CHLO RO - ETHY ENE EN AL TOT	RO- ETHY L- VINY E ETH AL TOT	RO- L- VIN L- CHI ER RII AL TOI	O- E
APR 1988 14 MAY	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NI	)
12 JUN	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NI	)
23 ⊙CT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NE	)
06	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NE	)

# SUSPENDED SEDIMENT DISCHARGE

		DIS-		SEDI-
		CHARGE,		MENT,
		INST.	SEDI-	DIS-
		CUBIC	MENT,	CHARGE,
		FEET	SUS-	SUS-
DATE	TIME	PER	PENDED	PENDED
		SECOND	(MG/L)	(T/DAY)
JUN 1988				
23	1130	408	1	1.1
OCT				
06	<b>150</b> 0	483	7	9.1

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

#### 04273500 SARANAC RIVER AT PLATTSBURGH, NY

LOCATION.--Lat 44 40'54", long 73 28'18", Clinton County, Hydrologic Unit 02010006, on right bank at Plattsburgh, 600 ft downstream from Imperial Paper and Color Corp. dam, 3.0 mi upstream from mouth, and 5.5 mi downstream from Mead Brook.

DRAINAGE AREA. -- 608 mi 2 .

PERIOD OF RECORD. -- Water years 1955, 1959, 1966-67, 1971-72, 1987 to 1989.

CHEMICAL DATA: 1955 (a), 1959 (d), 1966-67, 1971-72 (a), 1987 (b), 1988 (c), 1989 (a).

MINOR ELEMENTS DATA: 1955 (a), 1959 (d), 1966-67, 1972 (a), 1987 (b), 1988 (c), 1989 (a).

PESTICIDE DATA: 1987 (b), 1988 (c), 1989 (a).

NUTRIENT DATA: 1955 (a), 1959 (d), 1966-67, 1971-72 (a), 1987 (b), 1988 (c), 1989 (a).

SEDIMENT DATA: 1988 (b), 1989 (a).

REMARKS.--Water-discharge data obtained from stream-flow gage at this site.

#### WATER-QUALITY DATA

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
APR 1987												
27	1615	853			7.4	14.0	1.0		10.4		27	7.5
MAY 26	1630	587		91	7.8	18.5	1.0		9.9		33	9.3
JUN	1030	367		31	7.0	10.3	1.0		3.3		33	9.3
16	1355	813		81	7.6	20.5	1.3	~-	9.1		30	8.4
AUG	4515	282				12 5	1 0		0.0		2.0	10
03 SEP	1 <b>51</b> 5	282			8.0	12.5	1.0		8.8		36	10
28	1545	282			8.0	19.0	1.4		11.1		36	9.6
NOV												
04 DEC	1530	416			7.6	10.5	2.1		14.0		40	12
02	1600	1500			7.6	0.0	3.5		18.3		30	8.1
APR 1988												
06	1430	2000	70	67	6.4	7.5	1.6	760	12.4	104	23	6.4
18 JUN	1530	1280	75	71	6.6	9.0	1.5	746	12.0	106	26	7.1
08	1500	369	93	92	7.1	19.0	1.5		9.2		36	9.7
20	1700	238	100	95	8.0	26.0	1.2		8.9		37	10
JUL 20	1500	274	107	106	8.1	25.5	0.80	762	8.5	104	41	11
SEP	1300	2/4	107	106	0.1	25.5	0.60	762	0.5	104	41	11
12	1800	205	99	98	8.0	18.0	0.73	752	8.9	96	38	10
OCT	0015	-14	07	0.4			0.00		10.0		20	1.0
20 Nov	0815	314	97	94	7.3	7.5	0.90		12.0		38	10
17	0900	1080	75	73	7.3	5.0	1.1		11.6		27	7.2

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

## 04273500 SARANAC RIVER AT PLATTSBURGH, NY - continued

## WATER-OUALITY DATA (continued)

					WAT	rer-qual	ITY DAT	A (conti	nued)					
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA LINIT LAE (MGA AS CACO	TY SULE B DIS /L SOI (MC	FATE R S- D LVED S G/L (	HLO- IDE, IS- OLVED MG/L S CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS RESIDI AT 180 DEG. DIS- SOLVI (MG/I	UE SUN O CON C TUE - I ED SO	ISTI -	SOLIDS, RESIDUE AT 105 DEG. C, TOTAL (MG/L)	SOLIDS, VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	RESIDUE TOTAL FIXED (MG/L)
APR 1987 27	1.9								:	26		58	15	39
MAY 26	2.4									<b>4</b> 9		64	26	47
JUN 16	2.3									78		64	38	44
AUG 03	2.7				<u>.</u> .				:	81		67	37	43
SEP 28 NOV	2.9									56		67	45	36
04 DEC	2.4				-					59		68	55	17
02 APR 1988	2.4				-					50		78	39	25
06 18	1.8	2.7 2.9	0.60 0.60	16 18	1:		4.1	0.10 0.10		52 60	37 39	66 68	28 23	38 45
JUN 08	2.8	3.8	0.70	29	1		5.5	0.30		55	51	81	28	53
20 JUL	2.8	3.9	0.60	29		9.7	5.4	0.30		56	50	63 89	50 49	13 40
20 SEP 12	3.3	4.7	0.70	3 <b>4</b> 32		9.8 9.2	6.6	0.10		76	57 53	92	44	48
ОСТ 20	3.1	4.3	0.70	30	1		6.1	<0.10		66	53	69	33	36
NOV 17	2.1	3.2	0.60	17	1		5.2	<0.10			42	81	36	45
DATE	NIT GE NITR TOT (MG	N, GE ITE NO2+ AL TOT /L (MG	N, G NO3 AMM AL TO' /L (M	TAL G/L	NITRO- GEN, AMMONIA TOTAL (MG/L AS NH4)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	MONIA	AM- A + NIC VL CO VL (MC	EN, F <b>AL</b> G/L	NITRO- GEN, TOTAL (MG/L S NO3)	PHOS PHORU TOTA (MG,	US DIS AL SOLV /L (MG/	US PHI HO, OR E- DI ED SOI L (MG	ATE, THO, IS- LVED G/L
APR 1987 27	, ND	0.	190 0	.010	0.01	0.10	0.	.11	0.30	1.3	0.0	010 0.	00	0.0
MAY 26	ND	0.	120 0	.070	0.09	0.11	. 0	. 18	0.30	1.3	0.0	020 0.	00	0.0
JUN 16 AUG	ND	0.	180 0	.010	0.01	0.22	2 0	.23	0.41	1.8	0.0	020 0.	00	0.0
03 SEP	ND	0.	080 0	.00	0.0	0.20	0 0	.20	0.28	1.2	0.0	020 0.	00	0.0
28 NOV	ND	0.	070 0	.020	0.03	0.23	3 0	.25	0.32	1.4	0.0	020 0.	00	0.0
04 DEC	ND			.010	0.01	0.15			0.34	1.5				0.0
02 APR 1988			260 N						0.49	2.2				0.0
06 18 JUN	ND ND			.030 .010	0.04	0.41			0.75 0.45	3.3		020 NE 010 0.		0.0
08 20 JUL	ne ne			.020 .010	0.03	0.25			0.35	1.5		020 0. 020 พย		0.0
20 SEP	NE	0.	140 0	.010	0.01	0.19	9 0	.20	0.34	1.5	0.6	010 NE	,	
12 OCT	NE	0.	080 N	D			0	.19	0.27	1.2	0.	010 ทธ	)	
20 NOV	NC			.010	0.01	0.24			0.34	1.5		010 NE		-
17	NE	0.	250 0	.020	0.03	0.29	9 0	.31	0.56	2.5	0.	010 0.	00	0.0

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 04273500 SARANAC RIVER AT PLATTSBURGH, NY - continued

DATE	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)
APR 1987											
27 MAY			<10		<10		280		<100		20
26 JUN			<10		<10		300		<5		30
16 AUG			<10		<10		420		<5		30
03 SEP			<10		30		450		6		40
28			<1		5		440		<5		40
NOV 04 DEC			<1		7		320		<b>&lt;</b> 5		20
02			<1	1.0	7	3	370		<5	<5	20
APR 1988 06	120	50	1	<1.0	5	<1	290	110	<5	<5	20
18 JUN	60		<1		3		210		<5		30
08	60 60	30	2 <1	<1.0	7 4	4	350 340	180	<5 <5	<5 	50 80
JUL 20	50		<1		4		410		<b>&lt;</b> 5		50
SEP											
12 ⊙CT	40		1		8		320		<b>&lt;</b> 5		40
20 NOV	50	10	<1	<1.0	6	3	350	240	<5	<5	10
17	110		1		8		320		<5		30
DATE	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)	BROMO- FORM TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)
DATE  APR 1987 27	NESE, DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	FORM TOTAL	TETRA- CHLO- RIDE TOTAL	BENZENE TOTAL	DI- BROMO- METHANE TOTAL	ETHANE TOTAL
APR 1987 27 MAY 26	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)	TETRA- CHLO- RIDE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	DI- BROMO- METHANE TOTAL (UG/L)	ETHANE TOTAL (UG/L)
APR 1987 27 MAY 26 JUN 16	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)	TETRA- CHLO- RIDE TOTAL (UG/L)	BENZENE TOTAL (UG/L) ND	DI- BROMO- METHANE TOTAL (UG/L)	ETHANE TOTAL (UG/L)
APR 1987 27 MAY 26 JUN 16 AUG 03	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI) <100	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN) <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L) ND ND	TETRA- CHLO- RIDE TOTAL (UG/L) ND	BENZENE TOTAL (UG/L) ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND	ETHANE TOTAL (UG/L) ND
APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND	TETRA-CHLO-RIDE TOTAL (UG/L) ND ND	BENZENE TOTAL (UG/L) ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND	ETHANE TOTAL (UG/L) ND ND
APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 <10 10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND  ND	TETRA- CHLO- RIDE TOTAL (UG/L) ND ND ND	BENZENE TOTAL (UG/L) ND ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND	ETHANE TOTAL (UG/L) ND ND ND
APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 DEC 02	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 <1 41	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND	TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND ND ND ND ND	BENZENE TOTAL (UG/L) ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND	ETHANE TOTAL (UG/L)  ND ND ND ND ND ND
APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <100 <1 <1 <1 <4 4 3 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND ND ND ND ND ND ND ND	BENZENE TOTAL (UG/L) ND ND ND ND ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND ND	ETHANE TOTAL (UG/L)  ND
APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <100  <1  <1  <1  4  3	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <20	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE TOTAL (UG/L) ND ND ND ND ND ND	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND	ETHANE TOTAL (UG/L)  ND ND ND ND ND ND ND
APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18 JUN 08 20	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <100 <1 <1 <1 <4 4 3 <1 2	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	DIS- SOLVED (UG/L AS 2N)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND	ETHANE TOTAL (UG/L)  ND
APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18 JUN 08 20 JUL	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV- REABLE (UG/L AS NI)  <100 <1 <1 <1 4 3 <1 2 3 3 4	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS ZN)  <10	DIS- SOLVED (UG/L AS 2N)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND
APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18 JUN 08 20 JUL 20 SEP	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV- REABLE (UG/L AS NI)  <100  <1  <1  4  3  <1  2  3  4  1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- REABLE (UG/L AS ZN)  <10	DIS- SOLVED (UG/L AS 2N)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	DI- BROMO- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	ETHANE TOTAL (UG/L)  ND
APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18 JUN 08 20 JUL 20 SEP 12 OCT	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <100 <1 <1 <1 4 3 <1 2 3 3 4 1 100	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV-ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	DIS- SOLVED (UG/L AS 2N)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	DI- BROMO- METHANE TOTAL (UG/L)  ND	ETHANE TOTAL (UG/L)  ND
APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18 JUN 08 20 JUL 20 SEP	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV- REABLE (UG/L AS NI)  <100  <1  <1  4  3  <1  2  3  4  1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- REABLE (UG/L AS ZN)  <10	DIS- SOLVED (UG/L AS 2N)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	DI- BROMO- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	ETHANE TOTAL (UG/L)  ND

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 04273500 SARANAC RIVER AT PLATTSBURGH, NY - continued

DATE	CHLORO- FORM TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)
APR 1987											
27 MAY	ND	ND	ND	ИD	ND	ND	ND	ND	ND	ND	ND
26 JUN	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
16 AUG	ИD	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
03 SEP	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
28 NOV	ИD	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
04	ИD	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
02 APR 1988	ND	ND	ND	ND	ND	ИD	ND	ИD	ND	ND	ND
06	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
18 Jun	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
08	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
JUL 20 SEP	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
12 OCT	0.1	ND	ND	ND	ND	ИD	ИD	ND	ИD	ND	ИD
20 NOV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
17	ND	ND	ND	ND	ND	ИD	ND	ND	ND	ИD	ИD
DATE	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)
APR 1987	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
APR 1987 27 MAY	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
APR 1987 27	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
APR 1987 27 MAY 26 JUN	CHLORO- BENZENE TOTAL (UG/L) ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND	CHLORO- PROPANE TOTAL (UG/L) ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND	CHLORO- BENZENE TOTAL (UG/L) ND	CHLORO- BENZENE TOTAL (UG/L) ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND	CHLO- RIDE TOTAL (UG/L) ND
APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND	CHLO- RIDE TOTAL (UG/L) ND ND
APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04	CHLORO- BENZENE TOTAL (UG/L) ND ND ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND	CHLORO- BENZENE TOTAL (UG/L)  ND  ND  ND	CHLORO- BENZENE TOTAL (UG/L) ND ND ND	CHLORO-ETHYL-ENE TOTTAL (UG/L)  ND  ND  ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND  ND  ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND  ND  ND	CHLO- RIDE TOTAL (UG/L) ND ND
APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 DEC 02	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND	CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND  ND  ND  ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND ND
APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06	CHLORO- BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BENZENE TOTAL (UG/L) ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND	CHLO-RIDE TOTAL (UG/L)  ND
APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18 JUN	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL- ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18	CHLORO- BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BENZENE TOTAL (UG/L) ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND ND ND ND ND ND	CHLO-RIDE TOTAL (UG/L)  ND
APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18 JUN 08 20	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- CHLORO- ETHENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND
APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18 JUN 08 20 JUN 20 SEP 12 CCT	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL- ENE ENE TOTAL (UG/L)  ND	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18 JUN 08 JUN 20 SEP 20 SEP	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 04273500 SARANAC RIVER AT PLATTSBURGH, NY - continued

### SUSPENDED SEDIMENT DISCHARGE

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)
JUN 1988				
08	1500	369	2	2.0
JUL 20	1500	274	2	1.5
SEP				
12	1800	205	3	1.7
OCT				
20	0815	314	1	0.85
NOV				
17	0900	1080	4	12

# BED MATERIAL ANALYSES

		SOLIDS,	CADMIUM	CHRO-	COPPER,	IRON,	LEAD,	MANGA-
		VOLA-	RECOV.	MIUM,	RECOV.	RECOV.	RECOV.	NESE,
		TILE IN	FM BOT-	RECOV.	FM BOT-	FM BOT-	FM BOT-	RECOV.
		BOTTOM	TOM MA-	FM BOT-	TOM MA-	TOM MA-	TOM MA-	FM BOT-
		MA-	TERIAL	TOM MA-	TERIAL	TERIAL	TERIAL	TOM MA-
DATE	TIME	TERIAL	(UG/G	TERIAL	(UG/G	(UG/G	(UG/G	TERIAL
		(MG/KG)	AS CD)	(UG/G)	AS CU)	AS FE)	AS PB)	(UG/G)
SEP 1987								
28	1545	24800	<1	<10	20	5900	60	89
SEP 1988								
12	1815							~-

DATE	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	BED MAT. FALL DIAM. % FINER THAN .004 MM	BED MAT. SIEVE DIAM. % FINER THAN .062 MM	BED MAT. SIEVE DIAM. % FINER THAN .125 MM	BED MAT. SIEVE DIAM. % FINER THAN 2.00 MM
SEP 1987 28 SEP 1988	0.12	<10	100	0	3	9	76
12				2	6	100	

#### 04276500 BOUOUET RIVER AT WILLSBORD, NY

LOCATION.--Lat 42 21'30", long 73 23'50, Essex County, Hydrologic Unit 02010004, on right bank 0.5 mi upstream from bridge on State Highway 22, 2.5 mi downstream from North Branch Bouquet River, and 3.0 mi upstream from mouth, Willsboro.

DRAINAGE AREA. -- 275 mi2.

PERIOD OF RECORD.--Water years 1987 to 1989.

CHEMICAL DATA: 1987 (b), 1988 (c), 1989 (a).

MINOR ELEMENT DATA: 1987 (b), 1988 (c), 1989 (a).

PESTICIDE DATA: 1987 (b), 1988 (c), 1989 (a).

ORGANIC DATA: PCB--1988 (a).

NUTRIENT DATA: 1987 (b), 1988 (c), 1989 (a).

SEDIMENT DATA: 1988 (b), 1989 (a).

REMARKS .-- Water-discharge data obtained from a discharge rating developed for this site.

#### WATER-OUALITY DATA

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
APR 1987												
27 MAY	1745				7.6	8.5	1.0		11.0		42	12
26	1800				7.4	20.0	1.0		9.9		56	16
JUN 16	1530			116	8.1	21.5	1.4		8.9		42	12
AUG	1530			116	0.1	21.5	1.4		0.3		42	14
03	1250				7.9	11.5	4.0		8.9		70	20
SEP 28	1400				7.9	14.0	1.7		11.6		39	12
NOV												
04	1330			133	7.3	14.5	2.6		11.1		51	15
DEC 02 APR 1988	1430				7.6	2.0	7.3		18.9		39	11
06	1245	746	76	74	6.7	7.5		760	12.0	100	26	7.3
18 JUN	1330	375	129	119	6.7	10.5	1.8	746	11.8	108	40	11
08	1300	254	196	155	7.4	18.5	1.4		9.7		57	16
20	1530	204	186	184	8.4	27.0	1.0		9.3		66	18
JUL 20	1300	213	188	188	8.3	24.5	1.5	762	9.7	117	70	19
SEP										•••		4.5
12 OCT	1345		161	160	7.8	18.0	1.0	752	10.2	109	55	15
19	1300		177	181	7.7	10.5	0.80	762	11.0	99	70	19
16	1300	856	102	101	7.6	4.5	2.0	768	12.0	92	34	9.5

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 04276500 BOUQUET RIVER AT WILLSBORO, NY - continued

## WATER-QUALITY DATA (continued)

					WA'	'ER-QUAL	ITY DATA	(Conti	nuea)				
DATE	DIS-	SODIUM, DIS- SOLVED S (MG/L (	OTAS- SIUM, DIS- OLVED MG/L S K)	ALKA- LINITY LAB (MG/I AS CACO	SULI DIS SOI (MC	FATE R S- D LVED S S/L (	IDE, IS- OLVED MG/L	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	CONSTI-	SOLIDS, RESIDUE AT 105 DEG. C, TOTAL (MG/L)	SOLIDS, VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	RESIDUE TOTAL FIXED (MG/L)
APR 1987													
27 May	2.8				-				49		72	10	59
26	3.8				-				81		107	40	83
JUN 16	2.8				-	- <del>-</del>			98		98	38	60
AUG 03	4.0								129		130	47	90
SEP	4.9				_								
28 NOV	2.3				•				82		89	49	46
04	3.4								89		90	63	27
DEC 02	2.7				-				59		84	30	36
APR 1988 06	1.8	3.3	0.40	17	13	1	5.4	0.10	57	40	78	12	66
18	3.1	5.7	0.40	31	1		9.6	0.10	82			32	55
JUN 08	4.1	7.5	0.60	46	12	2	12	0.20	94	80	120	41	79
20	5.0	9.4	0.70	52	11		15	0.20	108	90	121	63	58
JUL 20	5.5	10	0.70	57	1	l	17	0.10	121	97	131	43	88
SEP 12	4.3	9.6	0.50	42		9.9	15	0.10	104	80	118	36	82
OCT													
19 NOV	5.5	9.7	0.90	53	13	2	15	<0.10	108	94	115	43	72
16	2.6	5.0	0.40	24	13	3	8.8	0.10	68	54	75	21	54
DATE	NITR GEN NITRI TOTA (MG/ AS N	, GEN, TE NO2+NO3 L TOTAL L (MG/L	GE	N, NIA AI 'AL '	NITRO- GEN, MMONIA FOTAL (MG/L S NH4)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	MONIA	1- + NIT IC GE L TOT L (MG	N, G AL TO	EN, PHO TAL TO G/L (M		RUS PHA PHO, ORT S- DI VED SOI VL (MO	ATE, THO, IS- LVED G/L
APR 1987													
27 MAY	ND	0.110	0.	040	0.05	0.06	0.1	10 0	.21	0.93 0	.00 и	-	
26 JUN	ND	0.080	0.	020	0.03	0.08	0.1	10 0	.18	0.80 0	.010 NI	-	
16	ND	0.090	0.	010	0.01	0.08	0.0	9 0	.18	0.80 0	.00 мг	-	
AUG 03	ND	ND	0.	020	0.03	0.12	0.1	.4 -	-	0	.010 NI		
SEP 28	ND	ND	٥.	010	0.01	0.21	0.2	22 -	-	0	.00 NI	, .	
NOV 04	ND	0.100	0.	020	0.03	0.15	0.1	17 0	.27	1.2 0	.010 NI	) -	- <del>-</del>
DEC 02	ND	0.190		010	0.01	0.19	0.2					.00 (	0.0
APR 1988													
06 18	ND ND	0.230 0.120		010 0 <b>40</b>	0.01	0.23	0.2 0.1				.040 NE		0.0
JUN													
08 20	ND ND	ND 0.080		010 010	0.01	0.14 0.19	0.1				.010 NE		
JUL 20	ND	ND		070	0.09	0.19	0.2				.00 мг		
SEP 12				020	0.03	0.10			_	0	.00 NI	<b>)</b> -	
				U4U	0.03	0.10	0.1	-	-	0	.00 NI	, .	-
OCT	ND	ND						_					
OCT 19 NOV	ND ND	ND ND		00	0.0	0.15	0.1	15 -	-	0	.010 NE	) -	· <b>-</b>
19			0.		0.0	0.15	0.1				.010 NE		- <b>-</b> 

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 04276500 BOUQUET RIVER AT WILLSBORD, NY - continued

DATE	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)
APR 1987											
27 May			<10		<10		190		<100		10
26 JUN			<10		20		160		<5		10
16			<10		<10		200		<b>&lt;</b> 5		20
03 SEP			<10		20		420		<5		30
28			<1		4		250		<5		10
NOV 04 DEC			<1		3		240		<b>&lt;</b> 5		10
02			<1	1.0	16	4	500		<5	<5	10
APR 1988 06	740	60	<1	<1.0	3	1	720	77	<5	<5	20
18 JUN	120		<1		2		200		<5		20
08 20	80 100	20	2 <1	<1.0	5 9	2	190 180	86 	<5 <5	<5 	20 20
JUL 20	100	~-	1	~-	7		200		<5		20
SEP 12	110		1		3		200		<5		10
ОСТ 19	60	<10	<1	<1.0	6	4	210	96	<5	5	20
NOV		<10				4		96			
16	180		3		31	~-	310		6		10
DATE	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)	BROMO- FORM TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)
APR 1987	NESE, DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L	FORM TOTAL (UG/L)	TETRA- CHLO- RIDE TOTAL (UG/L)	BENZENE TOTAL (UG/L)	DI- BROMO- METHANE TOTAL (UG/L)	ETHANE TOTAL (UG/L)
APR 1987 27 MAY 26	NESE, DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL	TETRA- CHLO- RIDE TOTAL	BENZENE TOTAL	DI- BROMO- METHANE TOTAL	ETHANE TOTAL
APR 1987 27 MAY	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)	TETRA- CHLO- RIDE TOTAL (UG/L)	BENZENE TOTAL (UG/L) ND	DI- BROMO- METHANE TOTAL (UG/L)	ETHANE TOTAL (UG/L) ND
APR 1987 27 MAY 26 JUN 16	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN) <10 <10 20	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L) ND ND	TETRA-CHLO-RIDE TOTAL (UG/L) ND ND	BENZENE TOTAL (UG/L) ND ND	DI - BROMO- METHANE TOTAL (UG/L) ND ND	ETHANE TOTAL (UG/L) ND ND
APR 1987 27 MAY 26 JUN 16 AUG 03 SEP	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 <10 20 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND  ND	TETRA- CHLO- RIDE TOTAL (UG/L)  ND  ND  ND	BENZENE TOTAL (UG/L) ND ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND	ETHANE TOTAL (UG/L)  ND  ND  ND  ND
APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- REABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10	TOTAL RECOV- REABLE (UG/L AS NI)  <100 <1 <1 <1 <1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- PERABLE (UG/L AS ZN)  <10  <10  <10  <10  <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND	TETRA- CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND
APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 DEC	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 <10 20 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND  ND	TETRA- CHLO- RIDE TOTAL (UG/L)  ND  ND  ND	BENZENE TOTAL (UG/L) ND ND ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND	ETHANE TOTAL (UG/L)  ND  ND  ND  ND
APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- REABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10	TOTAL RECOV- REABLE (UG/L AS NI)  <100 <1 <1 <1 <1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- PERABLE (UG/L AS ZN)  <10  <10  <10  <10  <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND	TETRA- CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND	DI- BROMO- METHANE TOTAL (UG/L) ND ND ND	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND
APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI) <100 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA- CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND
APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 DEC 02 APR 1998 06 18 JUN 08	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <100 <1 <1 <1 3 <1 3 4 4 4 3	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	DIS- SOLVED (UG/L AS ZN)	FORM TOTTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA- CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	ETHANE TOTAL (UG/L)  ND
APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18 JUN 08 20 JUL	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV- REABLE (UG/L AS NI)  <100 <1 <1 <1 3 <1 3 4 4 4 3 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <20 <10 <10 <20 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18 JUN 08 20	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV- ERABLE (UG/L AS NI)  <100 <1 <1 <1 3 <1 3 4 4 4 3	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	DIS- SOLVED (UG/L AS ZN)	FORM TOTTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA- CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	ETHANE TOTAL (UG/L)  ND
APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18 JUN 08 20 JUL 20 SEP	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV- REABLE (UG/L AS NI)  <100 <1 <1 <1 3 <1 3 4 4 4 3 <1	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <20 <10 <10 <20 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18 JUN 08 20 JUL 20 SEP	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOVERAGE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV- REABLE (UG/L AS NI)  <100 <1 <1 <1 3 <1 3 4 4 3 <1 3 <1 3	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- PERABLE (UG/L AS ZN)  <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	DIS- SOLVED (UG/L AS ZN)	FORM TOTTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	DI- BROMO- METHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	ETHANE TOTAL (UG/L)  ND

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 04276500 BOUQUET RIVER AT WILLSBORO, NY - continued

DATE	CHLORO- FORM TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	DI - CHLORO- BROMO- METHANE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)
APR 1987 27	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MAY 26	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
JUN 16	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
AUG 03	ND	ND	ND	ND	ND	ND	ND	ND	ND	ИD	ND
SEP 28	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
NOV 04 DEC	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
02 APR 1988	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
06 18 JUN	ND ND	ND ND	ND ND	ND ND	ND ND	<b>N</b> D ND	ND ND	ND ND	ND ND	ND ND	ND ND
08 20	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
JUL 20		ND ND	ND			ND ND	ND	ND	ND	ND	ND
20 SEP 12	ND 0.1	ND	ND	ND ND	ND ND	1.0	ND	ND	ND	ND	ND
OCT 19	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
NOV 16	ND	ND	ND	ND	ND	0.5	ND	ND	ND	ND	ND
10	ND.	ND	ND	ND	ND	0.5	No	ND	ND		
DATE	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)
DATE APR 1987 27	CHLORO- BENZENE TOTAL	CHLORO- ETHANE WATER WHOLE TOTAL	CHLORO- PROPANE TOTAL	TRANSDI CHLORO- ETHENE TOTAL	CHLORO- BENZENE TOTAL	CHLORO- BENZENE TOTAL	CHLORO- ETHYL- ENE TOTAL	1,3-DI- CHLORO- PROPENE TOTAL	CHLORO- ETHYL- ENE TOTAL	CHLORO- ETHYL- VINYL- ETHER TOTAL	CHLO- RIDE TOTAL
APR 1987	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
APR 1987 27 MAY 26 JUN 16	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
APR 1987 27 MAY 26 JUN 16 AUG 03	CHLORO- BENZENE TOTAL (UG/L) ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND	CHLORO- PROPANE TOTAL (UG/L) ND	TRANSDI CHLORO- EPHEME TOTAL (UG/L) ND	CHLORO- BENZENE TOTAL (UG/L) ND	CHLORO- BENZENE TOTAL (UG/L) ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND	CHLO- RIDE TOTAL (UG/L) ND
APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO-BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND	CHLO- RIDE TOTAL (UG/L) ND ND
APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04	CHLORO- BENZENE TOTAL (UG/L) ND ND ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND ND	TRANSDI CHLORO- EPHENE TOTAL (UG/L) ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND	CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND  ND  ND	CHLO- RIDE TOTAL (UG/L) ND ND ND
APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 DEC 02	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND ND ND ND	CHLORO- PROPANE TOTAL (UG/L)  ND  ND  ND  ND	TRANSDI CHLORO- EPHENE TOTAL (UG/L) ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND ND	CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND
APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06	CHLORO- BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO- PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 VOV 04 DEC 02 APR 1988 06 18 JUN	CHLORO- BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO- PROPANE TOTTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- EPHENE TOTAL (UG/L) ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18 JUN 08 20	CHLORO- BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO- PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18 JUN 08 20 JUL 20	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- EPHENE TOTAL (UG/L) ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18 JUN 08 20 JUL 20 SEP	CHLORO- BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- EPHENE TOTAL (UG/L) ND ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO- ETHYL- ENE ENE TOTAL (UG/L)  ND	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 27 MAY 26 JUN 16 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18 JUN 08 20 JUL 20 SEP	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO- ETHYL- ENE ENE TOTAL (UG/L)  ND	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 04276500 BOUQUET RIVER AT WILLSBORO, NY - continued

# SUSPENDED SEDIMENT DISCHARGE

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)
JUN 1988				
08	1300	254	2	1.4
20	1530	204	2	1.1
JUL				
20	1300	213	5	2.9
SEP				
12	1345		6	
OCT				
19	1300		2	
NOV				
16	1300	8 <b>56</b>	2	4.6

# BED MATERIAL ANALYSES

DATE  SEP 1987 28 SEP 1988 12	T B		INUM, R RECOV. FM M BOT- TO OM MA- T TERIAL (	ECOV. NOTE TO SERVICE	MIUM, RE RECOV. FM M BOT- TOM OM MA- TE TERIAL (C	COV. REBOT- FM MA- TOM CRIAL TE	COV. REBOT- FM MA- TON KRIAL TE	COV. NE BOT- RE MA- FM CRIAL TOM JG/G TE	SE, RECOV. FM BOT- TOM MA- TE CRIAL (U G/G) AS	COV. RE BOT- FM MA- TOM RIAL TE G/G (U	KEL, ZINC, COV. RECOV. BOT- FM BOT- MA- TOM MA- RIAL TERIAL G/G (UG/G NI) AS ZN)  <10 20 <100 <10
DATE SEP 1987	AROCLO 1221 IN BOTTOM MAT. (UG/KG	AROCLO 1248 PCB BOT.M	B 1254 PCB AT BOT.MAT	1260 PCB	IN BOT- TOM MA- T TERIAL	ALPHA BHC TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ATRA- ZINE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	BETA BENZENE HEXA- CHLOR- IDE BOT.MAT (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- PYRIFOS IN BOT. MAT. (UG/KG)	DELTA BENZENE HEXA- CHLOR- IDE BOT.MAT (UG/KG)
28											
SEP 1988 12	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DATE	DI- AZINON TOTAL IN BOT TOM MA TERIA (UG/KG	TOTAL - IN BO - TOM MA L TERL	L ENDO-	ENDO- SULFAN BETA BOT.MA (UG/KG	SULFATE T BOT.MAT	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRIN ALDE- HYDE BOT.MAT (UG/KG)	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)
SEP 1987 28								- <del>-</del>			
SEP 1988 12	ND	ND	ND	ND	ND	ND	ND	ND	ND	NĎ	ND
DATE	METH- OXY- CHLOR TOT: I BOTTO MATI (UG/KG	MIRE TOTA N IN BO OM TOM M	L TOTAL T- IN BOT- A- TOM MA- AL TERIAL	TOM MA	DDT, TOTAL IN BOT- TOM MA- L TERIAL	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	BED MAT. FALL DIAM. % FINER THAN .004 MM	BED MAT. SIEVE DIAM. % FINER THAN .062 MM	BED MAT. SIEVE DIAM. % FINER THAN .125 MM	BED MAT. SIEVE DIAM. % FINER THAN 2.00 MM
SEP 1987 28 SEP 1988			-~				<del></del>	0	<b>E</b> 2	7	100
12	ND	ND	ND	ND	ND	ND	ND	1	2	100	

### 04279015 LA CHUTE AT STATE HIGHWAY 22 AT TICONDEROGA, NY

LOCATION.--Lat 43 50'38", long 73 25'57", Essex County, Hydrologic Unit 02010001, River Channel Gage on right bank 250 ft (76 m) downstream from International Paper Company "C" Mill Dam, 250 ft (76 m) upstream from Trout Brook, and 0.5 mi (0.8 km) downstream from upper ("A" Mill) Dam.

DRAINAGE AREA. -- 244 mi2.

PERIOD OF RECORD.--Water years 1987 to 1989.
CHEMICAL DATA: 1987 (b), 1988 (c), 1989 (a).
MINOR ELEMENT DATA: 1987 (b), 1988 (c), 1989 (a).
PESTICIDE DATA: 1987 (b), 1988 (c), 1989 (a).
ORGANIC DATA: PCB--1988 (b).
NUTRIENT DATA: 1987 (b), 1988 (c), 1989 (a).
BIOLOGICAL DATA:
Bacteria--1987 (a).
SEDIMENT DATA: 1988 (b), 1989 (a).

REMARKS .-- Water-discharge data obtained from a discharge rating developed for this site.

### WATER-QUALITY DATA

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SPE- CIFIC CON- DUCT- ANCE (US/CM)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	FECAL COLI- FORM 24-HR MEM.FIL (COLS./ 100 ML)
APR 1987												
28	1030				7.6	8.5	3.6		11.0			
MAY												
27	1045			141	7.8	16.0	3.0		9.6			
JUN 17	0830			111	7.8	19.0	2.4		9.0		>120	24.0
AUG	0830			111	7.8	19.0	2.4		9.0		>120	24.0
03	1045				7.9	12.5	1.6		8.6			
SEP												
28	1145				7.6	13.5	0.90		10.1			
NOV												
04 DEC	1145				7.6	14.5	3.5		12.5			
02	1130				7.7	4.0	3.5		17.7			
APR 1988	1130				• • • •	•••	2.0					
06	1045	30	142	135	7.9	8.5		760	12.2	104		
18	1130	70	133	137	8.1	10.5	28	746	11.1	102		
JUN												
08	1100	46	137	137	8.0	18.0	3.1		9.5			
20 JUL	1330	46	138	134	7.8	25.5	0.90		8.4			
20	1115	59	144	124	8.2	25.0	1.5	762	8.6	104		
SEP	1113	32		124	0.2	23.0	1.5	702	0.0	101		
12	1200	32	125	128	8.1	19.0	1.1	752	9.5	103		
OCT												
19	1115	63	138	140	7.8	12.0	1.6	762	10.8	100		
NOV	1200	262	100	1.44	7.		F 6	260	12.6			
16	1200	362	139	141	7.8	5.5	5.0	768	12.6	9 <b>9</b>		

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

## 04279015 LA CHUTE AT STATE HIGHWAY 22 AT TICONDEROGA, NY - continued

DATE	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, TOTAL (MG/L)
APR 1987												
28 May	59	18	3.5					~-		52		82
27 JUN	53	16	3.2							73		111
17 AUG	42	13	2.3							83		96
03 SEP	52	16	3.0							76		80
28 NOV	36	9.8	2.8							55		58
04 DEC	60	17	4.2							62		69
02 APR 1988	51	15	3.3							64		85
06	<b>4</b> 9 50	14	3.3	6.2	0.60	38	12	10	0.10	82	69	90
JUN		15	3.0	4.9	0.60	44	12	8.2	0.10	105	70	124
08 20	5 <b>4</b> 51	16 15	3.4 3.4	5.1 5.1	0.60 0.50	45 42	11 7.1	7.8 8.3	0.30 0.30	80 75	71 65	84 84
JUL 20	57	17	3.6	5.8	0.60	46	11	9.1	0.10	94	75	105
SEP 12	50	15	3.1	5.2	0.50	38	12	8.9	0.10	111	68	119
∞T 19	57	17	3.5	5.7	0.90	44	11	8.7	<0.10		73	74
NOV 16	53	15	3.8	5.5	0.80	42	15	9.2	0.10	90	75	98
	SOLIDS,							Nambo				NIOT
DATE	VOLA- TILE ON IGNI- TION, TOTAL (MG/L)	RESIDUE TOTAL FIXED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS NH4)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS NO3)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)
APR 1987	TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS NO3)	PHORUS TOTAL (MG/L AS P)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)
APR 1987 28 MAY	TILE ON IGNI- TION, TOTAL (MG/L)	TOTAL FIXED (MG/L)	GEN, NITRITE TOTAL (MG/L AS N) ND	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS NO3)	PHORUS TOTAL (MG/L AS P)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)
APR 1987 28 MAY 27 JUN	TILE ON IGNI-TION, TOTAL (MG/L)	TOTAL FIXED (MG/L) 67	GEN, NITRITE TOTAL (MG/L AS N) ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.060 ND	GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.040	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01	GEN, ORGANIC TOTAL (MG/L AS N) 0.08	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.09	GEN, TOTAL (MG/L AS N) 0.15	GEN, TOTAL (MG/L AS NO3) 0.66	PHORUS TOTAL (MG/L AS P) 0.010	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)  ND 0.00
APR 1987 28 MAY 27 JUN 17	TILE ON IGNI-TION, TOTAL (MG/L)  10 30 35	TOTAL FIXED (MG/L) 67 81	GEN, NITRITE TOTAL (MG/L AS N) ND ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.060 ND	GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.040	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.05	GEN, ORGANIC TOTAL (MG/L AS N) 0.08 0.05	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.09 0.09	GEN, TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS NO3)	PHORUS TOTAL (MG/L AS P) 0.010 0.010	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) ND
APR 1987 28 MAY 27 JUN 17 AUG 03 SEP	TILE ON IGNI-TION, TOTAL (MG/L)  10 30 35	TOTAL FIXED (MG/L) 67 81 61 49	GEN, NITRITE TOTAL (MG/L AS N)  ND ND ND ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.060 ND ND	GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.040 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.05 0.01	GEN, ORGANIC TOTAL (MG/L AS N) 0.08 0.05 0.06	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.09  0.09  0.07	GEN, TOTAL (MG/L AS N) 0.15	GEN, TOTAL (MG/L AS NO3) 0.66	PHORUS TOTAL (MG/L AS P) 0.010 0.010 0.010	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)  ND  0.00  ND
APR 1987 28 MAY 27 JUN 17 AUG 03 SEP 28 NOV	TILE ON IGNI-TION, TOTAL (MG/L)  10 30 35 29 38	TOTAL FIXED (MG/L) 67 81 61 49 28	GEN, NITRITE TOTAL (MG/L AS N)  ND ND ND ND ND ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.060 ND ND ND	GEN, AMMONIA TOTAL (MG/L AS N)  0.010  0.040  0.010  0.010  0.010	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.01  0.05  0.01  0.01	GEN, ORGANIC TOTAL (MG/L AS N) 0.08 0.05 0.06 0.13	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.09 0.09 0.07 0.14	GEN, TOTAL (MG/L AS N) 0.15	GEN, TOTAL (MG/L AS NO3) 0.66	PHORUS TOTAL (MG/L AS P) 0.010 0.010 0.010 0.010	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)  ND  0.00  ND  ND
APR 1987 28 MAY 27 JUN 17 AUG 03 SEP 28 NOV 04 DEC	TILE ON IGNI- TION, TOTAL (MG/L)  10 30 35 29 38 51	TOTAL FIXED (MG/L) 67 81 61 49 28	GEN, NITRITE TOTAL (MG/L AS N)  ND ND ND ND ND ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.060 ND ND ND ND	GEN, AMMONIA TOTAL (MG/L AS N)  0.010 0.040 0.010 0.010 0.000	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.01  0.05  0.01  0.01  0.01	GEN, ORGANIC TOTAL (MG/L AS N) 0.08 0.05 0.06 0.13 0.15	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.09 0.09 0.07 0.14 0.15	GEN, TOTAL (MG/L AS N) 0.15	GEN, TOTAL (MG/L AS NO3) 0.66	PHORUS TOTAL (MG/L AS P) 0.010 0.010 0.010 0.010 0.000	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)  ND  0.00  ND  ND  ND  ND  ND  ND  ND  ND
APR 1987 28 MAY 27 JUN 17 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988	TILE ON IGNI- TION, TOTAL (MG/L)  10 30 35 29 38 51 31	TOTAL FIXED (MG/L) 67 81 61 49 28 23	GEN, NITRITE TOTAL (MG/L AS N)  ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.060 ND	GEN, AMMONIA TOTAL (MG/L AS N)  0.010 0.040 0.010 0.010 0.010 0.010 ND	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.01  0.05  0.01  0.01  0.0  0.01	GEN, ORGANIC TOTAL (MG/L AS N) 0.08 0.05 0.06 0.13 0.15	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.09 0.07 0.14 0.15 0.20 0.11	GEN, TOTAL (MG/L AS N) 0.15	GEN, TOTAL (MG/L AS NO3) 0.66	PHORUS TOTAL (MG/L AS P)  0.010 0.010 0.010 0.010 0.000 0.000 0.000	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)  ND  0.00  ND  ND  0.00  0.00  0.00
APR 1987 28 MAY 27 JUN 17 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18	TILE ON IGNI- TION, TOTAL (MG/L)  10 30 35 29 38 51	TOTAL FIXED (MG/L) 67 81 61 49 28	GEN, NITRITE TOTAL (MG/L AS N)  ND ND ND ND ND ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.060 ND ND ND ND	GEN, AMMONIA TOTAL (MG/L AS N)  0.010 0.040 0.010 0.010 0.000	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.01  0.05  0.01  0.01  0.01	GEN, ORGANIC TOTAL (MG/L AS N) 0.08 0.05 0.06 0.13 0.15	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.09 0.09 0.07 0.14 0.15	GEN, TOTAL (MG/L AS N) 0.15	GEN, TOTAL (MG/L AS NO3) 0.66	PHORUS TOTAL (MG/L AS P) 0.010 0.010 0.010 0.010 0.000	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)  ND  0.00  ND  ND  ND  ND  ND  ND  ND  ND
APR 1987 28 MAY 27 JUN 17 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06	TILE ON IGNI- TION, TOTAL (MG/L)  10 30 35 29 38 51 31	TOTAL FIXED (MG/L) 67 81 61 49 28 23 42	GEN, NITRITE TOTAL (MG/L AS N)  ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.060 ND ND ND ND ND ND O.070 0.080	GEN, AMMONIA TOTAL (MG/L AS N)  0.010 0.040 0.010 0.010 0.010 ND	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.01 0.05 0.01 0.01 0.0 0.01 0.01 0.05	GEN, ORGANIC TOTAL (MG/L AS N) 0.08 0.05 0.06 0.13 0.15 0.19	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.09 0.09 0.07 0.14 0.15 0.20 0.11 0.17 0.16 0.18	GEN, TOTAL (MG/L AS N) 0.15   0.18	GEN, TOTAL (MG/L AS NO3) 0.66    0.80	PHORUS TOTAL (MG/L AS P)  0.010 0.010 0.010 0.010 0.010 0.000 0.000 0.010 0.010 0.010	PHORUS ORTHO, ORTHO, DIS-SOLVED (MG/L AS P)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 28 MAY 27 JUN 17 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18 JUN 08	TILE ON IGNI- TION, TOTAL (MG/L)  10 30 35 29 38 51 31 10 38 25	TOTAL FIXED (MG/L) 67 81 61 49 28 23 42 80 86 59	GEN, NITRITE TOTAL (MG/L AS N)  ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.060 ND	GEN, AMMONIA TOTAL (MG/L AS N)  0.010 0.040 0.010 0.010 0.010 0.010 ND 0.010 0.040 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.01  0.05  0.01  0.01   0.01   0.01  0.05	GEN, ORGANIC TOTAL (MG/L AS N) 0.08 0.05 0.06 0.13 0.15 0.19	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.09 0.07 0.14 0.15 0.20 0.11 0.17 0.16 0.18 0.20	GEN, TOTAL (MG/L AS N) 0.15   0.18 0.25  0.31	GEN, TOTAL (MG/L AS NO3) 0.66    0.80 1.1	PHORUS TOTAL (MG/L AS P)  0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)  ND  0.00  ND  ND  ND  ND  ND  ND  ND  ND  ND
APR 1987 28 MAY 27 JUN 17 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18 JUN 08 20 JUL	TILE ON IGNI- IGNI- TION, TOTAL (MG/L)  10 30 35 29 38 51 31 10 38 25 45	TOTAL FIXED (MG/L) 67 81 61 49 28 23 42 80 86 59	GEN, NITRITE TOTAL (MG/L AS N)  ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.060 ND ND ND ND ND ND ND O.070 0.080 ND 0.130 ND	GEN, AMMONIA TOTAL (MG/L AS N)  0.010 0.040 0.010 0.010 0.010 0.010 ND 0.010 0.010 0.010 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.01 0.05 0.01 0.01 0.0 0.01 0.01 0.05	GEN, ORGANIC TOTAL (MG/L AS N) 0.08 0.05 0.06 0.13 0.15 0.19	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.09 0.09 0.07 0.14 0.15 0.20 0.11 0.17 0.16 0.18	GEN, TOTAL (MG/L AS N) 0.15   0.18 0.25  0.31	GEN, TOTAL (MG/L AS NO3) 0.66   0.80 1.1	PHORUS TOTAL (MG/L AS P)  0.010 0.010 0.010 0.010 0.010 0.000 0.000 0.010 0.010 0.010	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)  ND  0.00  ND  ND  ND  ND  ND  ND  ND  ND  ND
APR 1987 28 MAY 27 JUN 17 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18 JUN 08 20 JUL 20 SEP	TILE ON IGNI- TION, TOTAL (MG/L)  10 30 35 29 38 51 31 10 38 25 45	TOTAL FIXED (MG/L) 67 81 61 49 28 23 42 80 86 59 39 64	GEN, NITRITE TOTAL (MG/L AS N)  ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.060 ND	GEN, AMMONIA TOTAL (MG/L AS N)  0.010 0.040 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.01  0.05  0.01  0.01   0.01  0.05  0.01  0.01  0.05	GEN, ORGANIC TOTAL (MG/L AS N) 0.08 0.05 0.06 0.13 0.15 0.19  0.16 0.12 0.19 0.19	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.09 0.07 0.14 0.15 0.20 0.11 0.17 0.16 0.18 0.20 0.19	GEN, TOTAL (MG/L AS N) 0.15   0.18 0.25  0.31	GEN, TOTAL (MG/L AS NO3) 0.66   0.80 1.1  1.4	PHORUS TOTAL (MG/L AS P)  0.010 0.010 0.010 0.010 0.010 0.000 0.010 0.010 0.010 0.010 0.010 0.010	PHORUS ORTHO, ORTHO, DIS-SOLVED (MG/L AS P)  ND  O.00  ND  ND  ND  ND  ND  ND  ND  ND  ND

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

## 04279015 LA CHUTE AT STATE HIGHWAY 22 AT TICONDEROGA, NY - continued

WATER-QUALITY DATA (continued)

					WATER-QU	DALITY DA	TA (CONTI	nuea)				
DATE	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	INUM, DIS- SOLVED (UG/L	ADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L	RECOV- ERABLE S (UG/L	EAD, DIS- SOLVED UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)
APR 1987				••		10		200		-100		10
28 <b>MA</b> Y				<10		<10		280		<100		
27 JUN	0.0			<10		<10		240		<5		20
17				<10		10		170		<5		10
AUG 03				<10		20		180		<5		20
SEP 28				<1		4		90		<5		<10
NOV 04	0.0			<1		4		130		<b>&lt;</b> 5		<10
DEC												
02 APR 1988	0.0			<1		9		250		<5		<10
06 18	0.0	140 1300	<10 	<1 2	<1.0	5 8	<1	170 1700	23	<5 6	<5 	10 50
JUN 08		140	20	<1	<1.0	6	3	230	52	<b>&lt;</b> 5	<5	20
20		90		<1		4		230		<5		20
JUL 20		110		<1		5		280		7		20
SEP 12		90		<1		4		170		<5		<10
ОСТ 19		130	20	<1	<1.0	4	2	220	46	<b>&lt;</b> 5	<5	<10
NOA				2					40	<b>&lt;</b> 5	~~	10
16		150		2		14		280		ζ,		10
DATE	MANGA NESE, DIS- SOLVE (UG/L AS MN	TOTAL RECOV D ERABL (UG/L	TOTAL RECOV E ERABL UG/L	NICKE - DIS- E SOLV (UG/	RECO FED ERAI	AL ZIN OV- DI BLE SOL /L (UG	S- BROMO VED FORM	M RIDE AL TOTA	A- - CHLORO BENZEN L TOTAL		CHLOF ETHAN TOTA	ie AL
APR 1987	,											
28 May			<10	0	•	<10 -	- ND	ND	ND	ND	ND	
27 JUN		<0.1	.0 <	1		<10 -	- ND	ND	ND	ND	ИD	
17 AUG		<0.1	.0 <	1		<10 -	- ND	ND	ND	ND	ND	
03		<0.1	.0 <	1		<10 -	- ND	ND	ND	ND	ИD	
SEP 28		<0.1	.0	4		<10 -	~ ND	ND	ND	ND	ND	
NOV 04		<0.1	.0	3		<10 -	- ир	ND	ND	ND	ND	
DEC 02		<0.1		1			- ND	ND	ND	ND	ND	
APR 1988	3											
06 18		7 <0.1 <0.1		1 2		<10 20 -	7 ND - ND	ND ND	ND ND	ND ND	ND ND	
JUN 08		9 <0.1	.0 <	1	1 .	<10	3 ND	ир	ND	ND	ND	
20 JUL	~-	<0.1		2		<10 ~		ND	ND	ND	ND	
20		<0.1	.0	2		<10 ~	- ND	ND	ND	ND	ND	
SEP 12		<0.1	.0	4		<10 -	- ND	ND	ND	ND	ND	
ОСТ 19		4 <0.1	.0	4	<1 <	<10	8 ND	ND	ND	ND	ND	
NOV 16		<0.1		6			- ND	ND	ND	ND	ND	
10		70.1	.~	-	Ì		ND	ND	110	110	110	

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 04279015 LA CHUTE AT STATE HIGHWAY 22 AT TICONDEROGA, NY- continued

DATE	CHLORO- FORM TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	DI - CHLORO- BROMO- METHANE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)
APR 1987 28	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MAY 27	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND
<b>Ј</b> ИМ 17	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
AUG 03	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SEP 28	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DEC 02 APR 1988	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
06 18	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
JUN 08	ND	ND		ND							
20	ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
JUL 20 SEP	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
12 OCT	0.1	ND	ND	ИD	ИD	0.9	ND	ND	ND	ND	ND
19	0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
16	0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
DATE	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)
APR 1987	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
APR 1987 28 MAY	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
APR 1987 28	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L) ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND	CHLO- RIDE TOTAL (UG/L) ND
APR 1987 28 MAY 27 JUN	CHLORO- BENZENE TOTAL (UG/L) ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND	CHLORO- PROPANE TOTAL (UG/L) ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L) ND	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
APR 1987 28 MAY 27 JUN 17 AUG 03 SEP 28	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND	CHLORO- PROPANE TOTAL (UG/L) ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND	CHLO- RIDE TOTAL (UG/L) ND ND
APR 1987 28 MAY 27 JUN 17 AUG 03 SEP 28 NOV 04	CHLORO- BENZENE TOTAL (UG/L) ND ND ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND	CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND	CHLORO-BENZENE TOTAL (UG/L) ND ND ND	CHLORO-BENZEME TOTAL (UG/L) ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND  ND  ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	CHLORO-ETHYL-VINYL-ETHER TOTAL (UG/L)  ND  ND  ND	CHLO- RIDE TOTAL (UG/L) ND ND ND
APR 1987 28 MAY 27 JUN 17 AUG 03 SEP 28 NOV 04 DEC 02	CHLORO-BENZENE TOTAL (UG/L)  ND ND ND ND ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)  ND ND ND ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND	CHLORO-BENZEME TOTAL (UG/L)  ND  ND  ND  ND  ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND  ND  ND  ND	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND  ND  ND  ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND ND
APR 1987 28 MAY 27 JUN 17 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND	CHLORO-BENZEME TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 28 MAY 27 JUN 17 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18 JUN	CHLORO- BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO- BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND ND
APR 1987 28 MAY 27 JUN 17 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 066 18	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND	CHLORO-BENZEME TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 28 MAY 27 JUN 17 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18 JUN 08 20	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND	CHLOROBENZEME TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 28 MAY 27 JUN 17 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18 JUN 08 20 JUL 20	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND	CHLOROBENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO- BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 28 MAY 27 JUN 17 AUG 03 SEP 28 NOV 04 DEC 02 APR 1988 06 18 JUN 08 20 JUL 20 SEP	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND ND	CHLOROBENZEME TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 04279015 LA CHUTE AT STATE HIGHWAY 22 AT TICONDEROGA, NY - continued

# SUSPENDED SEDIMENT DISCHARGE

DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY)
JUN 1988				
08	1100	46	3	0.37
20	1330	46	2	0.25
JUL				
20	1115	59	5	0.80
OCT				
19	1115	63	2	0.34
NOV				
16	1200	362	13	13

# BED MATERIAL ANALYSES

DATE  SEP 1987 28 SEP 1988 12	TIME TE (MC	DLA- IN LE IN RE TOM FM NA- TOM CRIAL TE	IUM, RE CCOV. FM BOT- TOM I MA- TE CRIAL (U	COV. MI BOT- RE MA- FM RIAL TOM	COV. FM BOT- TOM MA- TE CRIAL (C	ECOV. R BOT- FM MA- TO ERIAL T JG/G (	ECOV. R BOT- FM M MA- TO ERIAL T UG/G (	ECOV. N BOT- R M MA- FM ERIAL TO: UG/G T	ESE, R ECOV. FM BOT- TO M MA- T ERIAL (	ECOV. R BOT- FM M MA- TO ERIAL T UG/G (1	ECOV. RE BOT- FM M MA- TOM ERIAL TE UG/G (U	NC, COV. BOT- MA- RIAL G/G ZN)
DATE	AROCLOR 1221 IN BOTTOM MAT. (UG/KG)	AROCLOR 1248 PCB BOT.MAT (UG/KG)	AROCLOR 1254 PCB BOT.MAT (UG/KG)	AROCLOR 1260 PCB BOT.MAT (UG/KG)	ALDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ALPHA BHC TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ATRA- ZINE, TOTAL IN BOT- TOM MA- TERIAI (UG/KG)	IDE BOT.MAT	CHLOR-DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLOR- PYRIFOS IN BOT. MAT. (UG/KG)	DELTA BENZENE HEXA- CHLOR- IDE BOT.MAT (UG/KG)	
SEP 1987 28 SEP 1988 12	 ND	 ND	 ND	 ND	 E1.0	 ND	 ND	 ND	 ND	 ND	 ND	
DATE	DI- AZINON, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN ALPHA BOT.MAT (UG/KG)	ENDO- SULFAN BETA BOT.MAT (UG/KG)	ENDO- SULFAN SULFATE BOT.MAT (UG/KG)	ENDRIN, TOTAL IN BOT- TOM MA- TERIAI (UG/KG)	ENDRIN ALDE- HYDE	ETHION, TOTAL IN BOT- TOM MA-	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR EPOXIDE TOT. IN BOTTOM MATL. (UG/KG)	MALA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	
SEP 1987												
SEP 1988 12	ND	ND	1.0	ND	ND	ND	ND	ND	ND	ND	ND	
DATE	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	P,P' DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	P,P' DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	P, P' DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAI (UG/KG)	TOM MA-	FALL DIAM. FINER THAN	BED MAT. SIEVE DIAM. % FINER THAN .062 MM	BED MAT. SIEVE DIAM. % FINER THAN .125 MM	BED MAT. SIEVE DIAM. % FINER THAN 2.00 MM	
SEP 1987 28 SEP 1988								1	5	14	97	
12	ND	ND	ND	ND	ND	ND	ND	5	12	100		

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

### STREAMS TRIBUTARY TO ST. LAWRENCE RIVER

#### 04295000 RICHELIEU RIVER (LAKE CHAMPLAIN) AT ROUSES POINT, NY

LOCATION. -- Lat 44 59'46", long 73 21'37", Clinton County, Hydrologic Unit 02010006, on left bank at outlet of Lake Champlain in Rouses Point, and 1.0 mi south of Fort Montgomery ruins. Water-quality sampling site at stage station.

DRAINAGE AREA. -- 8,277 mi 2 .

PERIOD OF RECORD.--Water years 1966-67, 1969-72, 1974 to current year.

CHEMICAL DATA: 1966-67 (a), 1969 (b), 1970 (c), 1971-72 (b), 1974-82 (c), 1983-86 (b), 1987 (c), 1988 (d), 1989 (b).

MINOR ELEMENTS DATA: 1974-86 (b), 1987 (c), 1988 (d), 1989 (b).

PESTICIDE DATA: 1976-79 (b), 1980 (a), 1982 (b), 1987 (b), 1988 (c), 1989 (a).

ORGANIC DATA: OC--1974 (a), 1975-77 (b), 1978 (a), 1979-81 (c), 1988 (b), 1989 (a).

PCB--1978-79 (b), 1980 (a), 1982 (b), 1988 (a).

NUTRIENT DATA: 1970 (c), 1971-72 (b), 1974 (b), 1975-82 (c), 1983-86 (b), 1987 (c), 1988 (d), 1989 (b).

BIOLOGICAL DATA:

Bacteria--1974 (a), 1975-82 (c), 1983-86 (b), 1987-88 (b), 1989 (a).

Phytoplankton--1975 (c), 1976-80 (b).

SEDIMENT DATA: 1975-82 (c), 1983-87 (b), 1988-89 (c).

REMARKS.--Water-quality data was also collected at this site for the National Stream-accounting network.

#### WATER-OUALITY DATA

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE (US/CM)	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	TUR- BID- ITY (NTU)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)	COLI- FORM, TOTAL, IMMED. (COLS. PER 100 ML)	FECAL COLI- FORM 24-HR MEM.FIL (COLS./ 100 ML)	HARD- NESS TOTAL (MG/L AS CACO3)
APR 1987												
27 May	1450			8.1	12.0	0.80		15.4		~-		58
26	1500		161	8.5	19.0	0.40		10.9				60
JUN 16	1200		156	8.0	19.5	0.60		9.4				
AUG	1200		136	0.0	13.3	0.00		J.4				
04 SEP	0930			8.0	12.0	0.30		8.3				61
29	1000			7.6	15.0	1.0		10.1		1800	50.0	21
иол												
05 DEC	0915		172	7.6	11.5	1.8		11.0				63
03	0900			7.8		1.0		18.4		>200	200	66
APR 1988 07	0915		154		4.0	0.60		14.4				57
19	0915		15 <b>4</b> 169	6.9 6.9	4.0 6.0	0.60 0.80		13.3				61
JUN	0,50		107	0.5	0.0	0.00		13.3				01
09	0900	~-	163	7.0	13.0	1.5		10.3				63
21	0930	~-	163	8.3	20.5	0.80		9.8				63
JUL 21	0900	~-	167	6.9	23.0	0.50		7.1				64
AUG	0,00		107	0.5	23.0	0.30		7.1				04
24	0830	156	159	8.2	20.0	1.4	760	8.4	93			61
SEP 12	1645	161	162	0.6	10.0		752	10.Ž	111			<b>63</b>
oct	1043	101	102	8.6	19.0		152	10.2	111			62
19	1600	171	171	7.8	10.0	1.2	762	10.8	96			66
NOV 16	1600	167	170				760	11 6	00			-
10	1000	167	170	7.5	5.5	9.0	768	11.6	92			63

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 04295000 RICHELIEU RIVER (LAKE CHAMPLAIN) AT ROUSES POINT, NY - continued

DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, RESIDUE AT 105 DEG. C, TOTAL (MG/L)	SOLIDS, VOLA- TILE ON IGNI- TION, TOTAL (MG/L)
APR 1987												
27	17	3.7							63		85	22
MAY	_											
26	18	3.7							97		108	36
JUN 16									107		110	48
AUG									107		110	••
04	18	3.8							84		89	38
SEP		1 2							01		122	54
29 NOV	6.6	1.2							81		122	34
05	18	4.3							98		103	61
DEC												2.0
03 APR 1988	19	4.5							85		103	38
07	16	4.1	6.2	1.3	46	14	9.6	0.10	86	79	88	36
19	17	4.4	7.0	1.3	51	14	9.6	0.10	100	84	120	34
JUN 09	18	4.3	7.1	1.4	51	14	9.9	0.20	94	86	97	35
21	18	4.4	7.0	1.2	51	14	9.8	0.20	96	85	87	53
JUL												
21 AUG	18	4.6	7.3	1.2	51	14	10	0.10	107	86	122	44
24	17	4.4	7.1	1.0	49	13	10	0.10	90	85		
SEP												
12	17	4.7	7.5	1.2	49	14	10	0.10		84		
ОСТ 19	19	4.6	7.8	1.6	53	15	11	0.10	91	91	96	16
NOV	17	4.0	7.0	1.0	33	13	**	0.10	71	71	,,	10
16	18	4.5	6.8	1.6	51	15	11	0.10	113	88	152	50
DATE	RESIDUE TOTAL FIXED (MG/L)	NITRO- GEN, NITRITE TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, AMMONIA TOTAL (MG/L AS NH4)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS NO3)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)
	TOTAL FIXED	GEN, NITRITE TOTAL (MG/L	GEN, NO2+NO3 TOTAL (MG/L	GEN, AMMONIA TOTAL (MG/L	GEN, AMMONIA TOTAL (MG/L	GEN, AMMONIA DIS- SOLVED (MG/L	GEN, ORGANIC TOTAL (MG/L	GEN, AM- MONIA + ORGANIC TOTAL (MG/L	GEN, TOTAL (MG/L	GEN, TOTAL (MG/L	PHORUS TOTAL (MG/L	PHORUS ORTHO, DIS- SOLVED (MG/L
APR 1987	TOTAL FIXED (MG/L)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS NH4)	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS NO3)	PHORUS TOTAL (MG/L AS P)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)
	TOTAL FIXED	GEN, NITRITE TOTAL (MG/L	GEN, NO2+NO3 TOTAL (MG/L	GEN, AMMONIA TOTAL (MG/L	GEN, AMMONIA TOTAL (MG/L	GEN, AMMONIA DIS- SOLVED (MG/L	GEN, ORGANIC TOTAL (MG/L	GEN, AM- MONIA + ORGANIC TOTAL (MG/L	GEN, TOTAL (MG/L	GEN, TOTAL (MG/L	PHORUS TOTAL (MG/L	PHORUS ORTHO, DIS- SOLVED (MG/L
APR 1987 27 MAY 26	TOTAL FIXED (MG/L)	GEN, NITRITE TOTAL (MG/L AS N)	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS NH4)	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS NO3)	PHORUS TOTAL (MG/L AS P)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)
APR 1987 27 MAY 26 JUN	TOTAL FIXED (MG/L) 70	GEN, NITRITE TOTAL (MG/L AS N) ND ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.160 0.110	GEN, AMMONIA TOTAL (MG/L AS N) 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N) 0.11	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.12	GEN, TOTAL (MG/L AS N) 0.28	GEN, TOTAL (MG/L AS NO3) 1.2 0.93	PHORUS TOTAL (MG/L AS P) 0.010	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)  ND
APR 1987 27 MAY 26	TOTAL FIXED (MG/L)	GEN, NITRITE TOTAL (MG/L AS N) ND	GEN, NO2+NO3 TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS N)	GEN, AMMONIA TOTAL (MG/L AS NH4)	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N)	GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS N)	GEN, TOTAL (MG/L AS NO3)	PHORUS TOTAL (MG/L AS P)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)
APR 1987 27 MAY 26 JUN 16 AUG 04	TOTAL FIXED (MG/L) 70	GEN, NITRITE TOTAL (MG/L AS N) ND ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.160 0.110	GEN, AMMONIA TOTAL (MG/L AS N) 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N) 0.11	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 0.12	GEN, TOTAL (MG/L AS N) 0.28	GEN, TOTAL (MG/L AS NO3) 1.2 0.93	PHORUS TOTAL (MG/L AS P) 0.010	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)  ND
APR 1987 27 MAY 26 JUN 16 AUG 04 SEP	TOTAL FIXED (MG/L) 70 72 62 54	GEN, NITRITE TOTAL (MG/L AS N)  ND ND ND ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.160 0.110 0.120 ND	GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.030 <0.010	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.04	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.07	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.12  0.10  0.16  0.18	GEN, TOTAL (MG/L AS N) 0.28 0.21	GEN, TOTAL (MG/L AS NO3) 1.2 0.93 1.2	PHORUS TOTAL (MG/L AS P) 0.010 0.010 0.010	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)  ND  ND  ND
APR 1987 27 MAY 26 JUN 16 AUG 04 SEP 29	TOTAL FIXED (MG/L) 70 72 62	GEN, NITRITE TOTAL (MG/L AS N) ND ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.160 0.110	GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.030 <0.010	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N) 0.11	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.12  0.10  0.16	GEN, TOTAL (MG/L AS N) 0.28 0.21	GEN, TOTAL (MG/L AS NO3) 1.2 0.93	PHORUS TOTAL (MG/L AS P) 0.010 0.010	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)  ND  ND
APR 1987 27 MAY 26 JUN 16 AUG 04 SEP 29 NOV	TOTAL FIXED (MG/L) 70 72 62 54	GEN, NITRITE TOTAL (MG/L AS N)  ND ND ND ND	GEN, NO2+NO3 TOTAL (MG/L AS N) 0.160 0.110 0.120 ND	GEN, AMMONIA TOTAL (MG/L AS N) 0.010 0.030 <0.010	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.04	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.07	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.12  0.10  0.16  0.18	GEN, TOTAL (MG/L AS N) 0.28 0.21	GEN, TOTAL (MG/L AS NO3) 1.2 0.93 1.2	PHORUS TOTAL (MG/L AS P) 0.010 0.010 0.010	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)  ND  ND  ND
APR 1987 27 MAY 26 JUN 16 AUG 04 SEP 29 NOV 05 DEC	TOTAL FIXED (MG/L) 70 72 62 54 63 42	GEN, NITRITE TOTAL (MG/L AS N)  ND ND ND ND ND ND ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.160 0.110 0.120 ND ND 0.120	GEN, AMMONIA TOTAL (MG/L AS N)  0.010 0.030 <0.010 <0.010 0.010 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.01  0.04  0.01  0.01	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.07  0.25 0.21	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.12 0.10 0.16 0.18 0.26	GEN, TOTAL (MG/L AS N) 0.28 0.21 0.28	GEN, TOTAL (MG/L AS NO3) 1.2 0.93 1.2  1.5	PHORUS TOTAL (MG/L AS P) 0.010 0.010 0.010 0.010 0.010	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 27 MAY 26 JUN 16 AUG 04 SEP 29 NOV 05 DEC 03	TOTAL FIXED (MG/L) 70 72 62 54 63	GEN, NITRITE TOTAL (MG/L AS N)  ND ND ND ND ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.160 0.110 0.120 ND	GEN, AMMONIA TOTAL (MG/L AS N)  0.010  0.030 <0.010 <0.010  0.010	GEN, AMMONIA TOTAL (MG/L AS NH4) 0.01 0.04  0.01	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.07	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.12  0.10  0.16  0.18	GEN, TOTAL (MG/L AS N) 0.28 0.21 0.28	GEN, TOTAL (MG/L AS NO3) 1.2 0.93 1.2	PHORUS TOTAL (MG/L AS P) 0.010 0.010 0.010 0.010	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)  ND  ND  ND  ND
APR 1987 27 MAY 26 JUN 16 AUG 04 SEP 29 NOV 05 DEC 03 APR 1988 07	TOTAL FIXED (MG/L) 70 72 62 54 63 42 48 52	GEN, NITRITE TOTAL (MG/L AS N)  ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.160 0.110 0.120 ND ND 0.120 0.170 0.200	GEN, AMMONIA TOTAL (MG/L AS N)  0.010 0.030 <0.010 0.010 0.010 0.010 ND	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.01  0.04  0.01  0.01  0.01	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.07  0.25 0.21  0.27	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.12 0.10 0.16 0.18 0.26 0.22 0.12	GEN, TOTAL (MG/L AS N) 0.28 0.21 0.29  0.34 0.29	GEN, TOTAL (MG/L AS NO3) 1.2 0.93 1.2  1.5 1.3	PHORUS TOTAL (MG/L AS P) 0.010 0.010 0.010 0.010 0.010 0.010	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 27 MAY 26 JUN 16 AUG 04 SEP 29 NOV 05 DEC 03 APR 1988 07 19	TOTAL FIXED (MG/L) 70 72 62 54 63 42 48	GEN, NITRITE TOTAL (MG/L AS N)  ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.160 0.110 0.120 ND ND 0.120 0.170	GEN, AMMONIA TOTAL (MG/L AS N)  0.010 0.030 <0.010 <0.010 0.010 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.01  0.04   0.01  0.01	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.07  0.25 0.21	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.12  0.10  0.16  0.18  0.26  0.22	GEN, TOTAL (MG/L AS N) 0.28 0.21 0.28  0.34	GEN, TOTAL (MG/L AS NO3) 1.2 0.93 1.2  1.5	PHORUS TOTAL (MG/L AS P) 0.010 0.010 0.010 0.010 0.010	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)  ND  ND  ND  ND  O.00  0.00
APR 1987 27 MAY 26 JUN 16 AUG 04 SEP 29 NOV 05 DEC 03 APR 1988 07 19 JUN	TOTAL FIXED (MG/L) 70 72 62 54 63 42 48 52 86	GEN, NITRITE TOTAL (MG/L AS N)  ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.160 0.110 0.120 ND ND 0.120 0.170 0.200 0.130	GEN, AMMONIA TOTAL (MG/L AS N)  0.010 0.030 <0.010 0.010 0.010 0.010 0.010 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.01  0.04   0.01  0.01  0.01	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.07  0.25 0.21  0.27 0.14	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.12  0.10  0.16  0.18  0.26  0.22  0.12  0.28  0.15	GEN, TOTAL (MG/L AS N) 0.28 0.21 0.28  0.34 0.29 0.48 0.28	GEN, TOTAL (MG/L AS NO3) 1.2 0.93 1.2  1.5 1.3 2.1	PHORUS TOTAL (MG/L AS P) 0.010 0.010 0.010 0.010 0.010 0.010 0.010	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)  ND  ND  ND  ND  ND  ND  ND  ND  ND  O.00  O.00
APR 1987 27 MAY 26 JUN 16 AUG 04 SEP 29 NOV 05 DEC 03 APR 1988 07 19	TOTAL FIXED (MG/L) 70 72 62 54 63 42 48 52	GEN, NITRITE TOTAL (MG/L AS N)  ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.160 0.110 0.120 ND ND 0.120 0.170 0.200	GEN, AMMONIA TOTAL (MG/L AS N)  0.010 0.030 <0.010 0.010 0.010 0.010 ND	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.01  0.04  0.01  0.01  0.01	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.07  0.25 0.21  0.27	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.12 0.10 0.16 0.18 0.26 0.22 0.12	GEN, TOTAL (MG/L AS N) 0.28 0.21 0.29  0.34 0.29	GEN, TOTAL (MG/L AS NO3) 1.2 0.93 1.2  1.5 1.3	PHORUS TOTAL (MG/L AS P) 0.010 0.010 0.010 0.010 0.010 0.010	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 27 MAY 26 JUN 16 AUG 04 SEP 29 NOV 05 DEC 03 APR 1988 07 19 JUN 09 JUL JUL JUL	TOTAL FIXED (MG/L)  70  72  62  54  63  42  48  52  86  62  34	GEN, NITRITE TOTAL (MG/L AS N)  ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.160 0.110 0.120 ND 0.120 0.170 0.200 0.130 0.260 ND	GEN, AMMONIA TOTAL (MG/L AS N)  0.010  0.030 <0.010  0.010  0.010  0.010  0.010  0.010  0.010  0.010	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.01  0.04  0.01  0.01  0.01  0.01  0.01  0.01	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.07  0.25 0.21  0.27 0.14 0.18 0.25	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.12 0.10 0.16 0.18 0.26 0.22 0.12 0.28 0.15 0.18 0.26	GEN, TOTTAL (MG/L AS N) 0.28 0.21 0.28  0.34 0.29 0.48 0.28	GEN, TOTAL (MG/L AS NO3) 1.2 0.93 1.2  1.5 1.3 2.1 1.2	PHORUS TOTAL (MG/L AS P)  0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)  ND  ND  ND  ND  ND  O.00  O.00  O.00  <0.010
APR 1987 27 MAY 26 JUN 16 AUG 04 SEP 29 NOV 05 DEC 03 APR 1988 07 19 JUN 09 21 JUL 21	TOTAL FIXED (MG/L) 70 72 62 54 63 42 48 52 86	GEN, NITRITE TOTAL (MG/L AS N)  ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.160 0.110 0.120 ND ND 0.120 0.170 0.200 0.130 0.260	GEN, AMMONIA TOTAL (MG/L AS N)  0.010 0.030 <0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.01  0.04  0.01  0.01  0.01  0.01  0.01	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.07  0.25 0.21  0.27 0.14	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.12 0.10 0.16 0.18 0.26 0.22 0.12 0.28 0.15 0.18	GEN, TOTAL (MG/L AS N) 0.28 0.21 0.28  0.34 0.29 0.48 0.28	GEN, TOTAL (MG/L AS NO3) 1.2 0.93 1.2  1.5 1.3 2.1 1.2	PHORUS TOTAL (MG/L AS P) 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)  ND  ND  ND  ND  ND  ND  ND  O.00  ND  O.00  O.00
APR 1987 27 MAY 26 JUN 16 SEP 29 NOV 05 DEC 03 APR 1988 07 19 JUL 21 AUG	TOTAL FIXED (MG/L)  70  72  62  54  63  42  48  52  86  62  34	GEN, NITRITE TOTAL (MG/L AS N)  ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.160 0.110 0.120 ND 0.120 0.170 0.200 0.130 0.260 ND	GEN, AMMONIA TOTAL (MG/L AS N)  0.010 0.030 <0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.01  0.04  0.01  0.01  0.01  0.01  0.01  0.01  0.01	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.07  0.25 0.21  0.27 0.14 0.18 0.25	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.12 0.10 0.16 0.18 0.26 0.22 0.12 0.28 0.15 0.18 0.26 0.37	GEN, TOTTAL (MG/L AS N) 0.28 0.21 0.28  0.34 0.29 0.48 0.28	GEN, TOTAL (MG/L AS NO3) 1.2 0.93 1.2  1.5 1.3 2.1 1.2	PHORUS TOTAL (MG/L AS P)  0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)  ND  ND  ND  ND  ND  O.00  O.00  O.00  <0.010
APR 1987 27 MAY 26 JUN 16 AUG 04 SEP 29 NOV 05 DEC 03 APR 1988 07 19 JUN 09 21 JUL 21 AUG 24 SEP	TOTAL FIXED (MG/L)  70  72  62  54  63  42  48  52  86  62  34  78	GEN, NITRITE TOTAL (MG/L AS N)  ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.160 0.110 0.120 ND 0.120 0.170 0.200 0.130 0.260 ND 0.080	GEN, AMMONIA TOTAL (MG/L AS N)  0.010 0.030 <0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.01  0.04   0.01  0.01   0.01  0.01  0.01  0.01  0.00  0.01	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.07  0.25 0.21  0.27 0.14 0.18 0.25 0.34	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.12 0.10 0.16 0.18 0.26 0.22 0.12 0.28 0.15 0.18 0.26 0.37 <0.20	GEN, TOTAL (MG/L AS N) 0.28 0.21 0.28  0.34 0.29 0.48 0.28 0.44 	GEN, TOTAL (MG/L AS NO3)  1.2 0.93 1.2 1.5 1.3 2.1 1.2 1.9 2.0	PHORUS TOTAL (MG/L AS P)  0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 27 MAY 26 JUN 16 SEP 29 NOV 05 DEC 03 APR 1988 07 19 JUN 21 JUL AUG 24 SEP 12	TOTAL FIXED (MG/L)  70  72  62  54  63  42  48  52  86  62  34  78	GEN, NITRITE TOTAL (MG/L AS N)  ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.160 0.110 0.120 ND ND 0.120 0.170 0.200 0.130 0.260 ND 0.080	GEN, AMMONIA TOTAL (MG/L AS N)  0.010 0.030 <0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.01  0.04  0.01  0.01  0.01  0.01  0.01  0.01  0.01	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.07  0.25 0.21  0.27 0.14 0.18 0.25 0.34	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.12 0.10 0.16 0.18 0.26 0.22 0.12 0.28 0.15 0.18 0.26 0.37	GEN, TOTAL (MG/L AS N) 0.28 0.21 0.28  0.34 0.29 0.48 0.28 0.44	GEN, TOTAL (MG/L AS NO3) 1.2 0.93 1.2  1.5 1.3 2.1 1.2	PHORUS TOTAL (MG/L AS P) 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)  ND  ND  ND  ND  ND  O.00  O.00  O.00  O.00  ND  O.00
APR 1987 27 MAY 26 JUN 16 AUG 04 SEP 29 NOV 05 DEC 03 APR 1988 07 19 JUN 09 21 JUL 21 AUG 24 SEP 12 OCT	TOTAL FIXED (MG/L)  70  72  62  54  63  42  48  52  86  62  34  78	GEN, NITRITE TOTAL (MG/L AS N)  ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.160 0.110 0.120 ND 0.120 0.170 0.200 0.130 0.260 ND 0.080	GEN, AMMONIA TOTAL (MG/L AS N)  0.010  0.030  <0.010  0.010  0.010  0.010  0.010  0.010  0.010  0.010  0.010  0.010  0.010  0.010	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.01  0.04  0.01 0.01 0.01 0.01 0.01 0.00 0.01	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.07  0.25 0.21  0.27 0.14 0.25 0.34 	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.12 0.10 0.16 0.18 0.26 0.22 0.12 0.28 0.15 0.18 0.26 0.37 <0.20 0.24	GEN, TOTTAL (MG/L AS N) 0.28 0.21 0.28  0.34 0.29 0.48 0.28 0.44 	GEN, TOTAL (MG/L AS NO3)  1.2 0.93 1.2 1.5 1.3 2.1 1.2 1.9 2.0	PHORUS TOTAL (MG/L AS P)  0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 27 MAY 26 JUN 16 SEP 29 NOV 05 DEC 03 APR 1988 07 19 JUN 21 JUL AUG 24 SEP 12	TOTAL FIXED (MG/L)  70  72  62  54  63  42  48  52  86  62  34  78	GEN, NITRITE TOTAL (MG/L AS N)  ND	GEN, NO2+NO3 TOTAL (MG/L AS N)  0.160 0.110 0.120 ND 0.120 0.170 0.200 0.130 0.260 ND 0.080	GEN, AMMONIA TOTAL (MG/L AS N)  0.010 0.030 <0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010	GEN, AMMONIA TOTAL (MG/L AS NH4)  0.01  0.04   0.01  0.01   0.01  0.01  0.01  0.01  0.00  0.01  0.00  0.01	GEN, AMMONIA DIS- SOLVED (MG/L AS NH4)	GEN, ORGANIC TOTAL (MG/L AS N) 0.11 0.07  0.25 0.21  0.27 0.14 0.18 0.25 0.34	GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)  0.12 0.10 0.16 0.18 0.26 0.22 0.12 0.28 0.15 0.18 0.26 0.37 <0.20	GEN, TOTTAL (MG/L AS N)  0.28  0.21  0.28   0.34  0.29  0.49  0.28  0.44   0.45	GEN, TOTAL (MG/L AS NO3)  1.2 0.93 1.2 1.5 1.3 2.1 1.2 1.9 2.0	PHORUS TOTAL (MG/L AS P)  0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)  ND  ND  ND  ND  ND  O.00  O.00  O.00  O.00  ND  O.00  O.00  ND  O.00  ND

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 04295000 RICHELIEU RIVER (LAKE CHAMPLAIN) AT ROUSES POINT, NY - continued

DATE	PHOS- PHATE, ORTHO, DIS- SOLVED (MG/L AS PO4)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)
APR 1987												
27 May				<10			<10		60		<100	
26				<10			<10		20		<5	
JUN 16				<10			<10	~-	40		7	
AUG 04 SEP				<10			20		30		<5	
29 NOV				<1	<1.0		2	2	80		<5	<5
05 DEC	0.0			<1			36	~-	90		<b>&lt;</b> 5	
03 APR 1988	0.0			<1			9		50		<5	
07 19	0.0	10 20	<10 	<1 <1	<1.0		2 6	3	40 40	13 	<b>&lt;5</b> <b>&lt;</b> 5	<5 
JUN 09 21	0.0	<b>4</b> 0 30	<10	2 <1	<1.0		6 3	2	80	17	<5 <5	<b>&lt;</b> 5
JUL 21		<10		<1			3		60 80		<5 <5	
AUG 24			<10		<1.0	<1		1		7		<b>&lt;</b> 5
SEP 12		10		1			1		20		<5	
ОСТ 19		70	<10	1	<1.0		5	2	120	8	<5	<5
NOV 16		550		2			9		920	~-	9	
DATE	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL ' RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)	SILVER, DIS- SOLVED (UG/L AS AG)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)	PHENOL (C6H- 5OH) TOTAL (UG/L)	BROMO- FORM TOTAL (UG/L)	CARBON- TETRA- CHLO- RIDE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)
DATE  APR 1987 27	NESE, TOTAL RECOV- ERABLE (UG/L	NESE, DIS- SOLVED (UG/L	TOTAL RECOV~ ERABLE (UG/L	TOTAL ' RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L	DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L AS 2N)	DIS- SOLVED (UG/L	(C6H- 50H) TOTAL	FORM TOTAL (UG/L)	TETRA- CHLO~ RIDE TOTAL (UG/L)	BENZENE TOTAL (UG/L)
APR 1987	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL ' RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L AS NI)	DIS- SOLVED (UG/L AS AG)	TOTAL RECOV- ERABLE (UG/L AS ZN)	DIS- SOLVED (UG/L AS ZN)	(C6H- 5OH) TOTAL (UG/L)	FORM TOTAL (UG/L) ND	TETRA- CHLO- RIDE TOTAL (UG/L)	BENZENE TOTAL (UG/L) ND
APR 1987 27 MAY 26 JUN 16	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL 'RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)	DIS- SOLVED (UG/L AS AG)	TOTAL RECOV- ERABLE (UG/L AS 2N)	DIS- SOLVED (UG/L AS ZN)	(C6H- 5OH) TOTAL (UG/L)	FORM TOTAL (UG/L)	TETRA- CHLO~ RIDE TOTAL (UG/L)	BENZENE TOTAL (UG/L)
APR 1987 27 MAY 26 JUN 16 AUG 04	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG)	TOTAL 'RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)	DIS- SOLVED (UG/L AS AG)	TOTAL RECOV- ERABLE (UG/L AS ZN) 60 <10	DIS- SOLVED (UG/L AS ZN)	(C6H- 5OH) TOTAL (UG/L)	FORM TOTAL (UG/L) ND ND	TETRA- CHLO- RIDE TOTAL (UG/L) ND	BENZENE TOTAL (UG/L) ND ND
APR 1987 27 MAY 26 JUN 16 AUG 04 SEP 29	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) <10 10	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV- ERABLE (UG/L AS HG) <0.10	TOTAL 'RECOV- ERABLE (UG/L AS NI)	DIS- SOLVED (UG/L AS NI)	DIS- SOLVED (UG/L AS AG)	TOTAL RECOV- ERABLE (UG/L AS 2N)  60 <10 <10	DIS- SOLVED (UG/L AS ZN)	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND  ND	TETRA-CHLO-RIDE TOTAL (UG/L) ND ND	BENZENE TOTAL (UG/L) ND ND
APR 1987 27 MAY 26 JUN 16 AUG 04 SEP 29 NOV 05	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) <10 10 20	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOVERABLE (UG/L AS HG)	TOTAL 'RECOV- ERABLE (UG/L AS NI) <100 <1 <1 7	DIS- SOLVED (UG/L AS NI)	DIS- SOLVED (UG/L AS AG)	TOTAL RECOV- ERABLE (UG/L AS ZN)  60 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND  ND  ND	TETRA-CHLO-RIDE TOTAL (UG/L)  ND  ND  ND	BENZENE TOTAL (UG/L) ND ND ND
APR 1987 27 MAY 26 JUN 16 AUG 04 SEP 29 NOV 05 DEC 03	NESE, TOTAL RECOV- ERABLE (UG/L AS MN) <10 10 20 10 <10	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)	TOTAL 'RECOV- ERABLE (UG/L AS NI)  <100 <1 <1 7 2	DIS- SOLVED (UG/L AS NI)	DIS- SOLVED (UG/L AS AG)	TOTAL RECOV- ERABLE (UG/L AS ZN)  60 <10 <10 <10 <10	DIS- SOLVED (UG/L AS ZN)	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND  ND  ND  ND	TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND ND ND ND ND	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND
APR 1987 27 MAY 26 JUN 16 AUG 04 SEP 29 NOV 05 DEC 03 APR 1988 07 19	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)  <10  10  20  10 <10 <10	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG) <0.10 <0.10 <0.10 0.10	TOTAL 'RECOV- REABLE (UG/L AS NI)  <100 <1 <1 7 2 <1	DIS- SOLVED (UG/L AS NI)	DIS- SOLVED (UG/L AS AG)	TOTAL RECOV- ERABLE (UG/L AS ZN)  60 <10 <10 <10 <10 <30	DIS- SOLVED (UG/L AS ZN)	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 27 MAY 26 JUN 16 AUG 04 SEP 29 NOV 05 DEC 03 APR 1988 07 19 JUN 09 21	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)  <10  10  20  10  <10 <10 <10 <10 <10 <10 <10 <10	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOV-ERABLE (UG/L AS HG)	TOTAL 'RECOV- REABLE (UG/L AS NI)  <100 <1 <1 7 2 <1 4 2	DIS- SOLVED (UG/L AS NI)	DIS- SOLVED (UG/L AS AG)	TOTAL RECOV- ERABLE (UG/L AS ZN)  60 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	DIS- SOLVED (UG/L AS ZN)	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	BENZENE TOTAL (UG/L)  ND
APR 1987 27 MAY 26 JUN 16 AUG 04 SEP 29 NOV 05 DEC 03 APR 1988 07 19 JUN 09 21 JUL 21	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)  <10  10  20  10  <10 <10 <10 <10 <10 <20 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOVERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL 'RECOV- REABLE (UG/L AS NI)  <100 <1 <1 7 2 <1 4 2 <1 4	DIS- SOLVED (UG/L AS NI)	DIS- SOLVED (UG/L AS AG)	TOTAL RECOV- REABLE (UG/L AS ZN)  60 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	DIS- SOLVED (UG/L AS ZN)	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE TOTAL (UG/L)  ND	BENZENE TOTAL (UG/L)  ND
APR 1987 27 MAY 26 JUN 16 AUG 04 SEP 29 NOV 05 DEC 03 APR 1988 07 19 JUN 09 JUN 21 JUL 21 AUG 24	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)  <10  10  20  10  <10 <10 <10 <10 <20 20	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOVERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL 'RECOV- RECOV- ERABLE (UG/L AS NI)  <100 <1 <1 7 2 <1 4 2 <1 4 2 <1	DIS- SOLVED (UG/L AS NI)  1 1 3	DIS- SOLVED (UG/L AS AG)	TOTAL RECOV-ERABLE (UG/L AS ZN)  60 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	DIS- SOLVED (UG/L AS ZN)  <10 5 5 5	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND	BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 27 MAY 26 JUN 16 SEP 29 NOV 05 DEC 03 APR 1988 07 19 JUN 21 AUG 24 SEP	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)  <10  10  20  10 <10 <10 <10 <10 <10 <40 410 <40 40	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOVERABLE (UG/L AS HG)  <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10 <0.10	TOTAL RECOV- RECOV- ERABLE (UG/L AS NI)  <100  <1  7  2  <1  4  2 <1  4  2  2  2	DIS- SOLVED (UG/L AS NI)  1 1 3	DIS- SOLVED (UG/L AS AG)	TOTAL RECOV-ERABLE (UG/L AS ZN)  60 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	DIS- SOLVED (UG/L AS ZN)	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	BENZENE TOTAL (UG/L)  ND
APR 1987 27 MAY 26 JUN 16 AUG 04 SEP 29 NOV 05 DEC 03 APR 1988 07 19 JUN 21 AUG 24 SEP	NESE, TOTAL RECOV- ERABLE (UG/L AS MN)  <10 10 <10 <10 <10 <10 <10 <10 <10 <10	NESE, DIS- SOLVED (UG/L AS MN)	TOTAL RECOVERABLE (UG/L AS HG)	TOTAL 'RECOV- RECOV- ERABLE (UG/L AS NI)  <100 <1 <1 7 2 <1 4 2 <1 4 2 <1 2	DIS- SOLVED (UG/L AS NI)	DIS- SOLVED (UG/L AS AG)	TOTAL RECOV-ERABLE (UG/L AS ZN)  60 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	DIS- SOLVED (UG/L AS ZN)	(C6H- 50H) TOTAL (UG/L)	FORM TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TETRA-CHLO-RIDE RIDE TOTAL (UG/L) ND	BENZENE TOTAL (UG/L)  ND

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

## 04295000 RICHELIEU RIVER (LAKE CHAMPLAIN) AT ROUSES POINT, NY - continued

DATE	CHLORO- DI- BROMO- METHANE TOTAL (UG/L)	CHLORO- ETHANE TOTAL (UG/L)	CHLORO- FORM TOTAL (UG/L)	CIS 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	DI- CHLORO- BROMO- METHANE TOTAL (UG/L)	METHYL- BROMIDE TOTAL (UG/L)	METHYL- CHLO- RIDE TOTAL (UG/L)	METHYL- ENE CHLO- RIDE TOTAL (UG/L)	1,1,1- TRI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHANE TOTAL (UG/L)	1,1-DI- CHLORO- ETHYL- ENE TOTAL (UG/L)	1,1,2- TRI- CHLORO- ETHANE TOTAL (UG/L)
APR 1987 27	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
MAY 26	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
JUN 16	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
AUG 04	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
SEP 29	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
NOV 05	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
03	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
APR 1988 07	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
19 JUN	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
09 <i>.</i>	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
21 JUL	ND	ND	ND	ND	ND	ND						
21 AUG	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
2 <b>4</b> SEP												
12	ND	ND	0.1	ND	ND	ND	ND	0.9	ND	ND	ND	ND
19 NOV	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
16	ND	ND	0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND
DATE	1,1,2,2 TETRA- CHLORO- ETHANE TOTAL (UG/L)	1,2-DI- CHLORO- BENZENE TOTAL (UG/L)	1,2-DI- CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	1,2-DI- CHLORO- PROPANE TOTAL (UG/L)	1,2- TRANSDI CHLORO- ETHENE TOTAL (UG/L)	1,3-DI- CHLORO- BENZENE TOTAL (UG/L)	1,4-DI- CHLORO- BENZENE TOTAL (UG/L)	TETRA- CHLORO- ETHYL- ENE TOTAL (UG/L)	TRANS- 1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	TRI- CHLORO- ETHYL- ENE TOTAL (UG/L)	2- CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	VINYL CHLO- RIDE TOTAL (UG/L)
APR 1987	TETRA- CHLORO- ETHANE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
APR 1987 27 MAY	TETRA- CHLORO- ETHANE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)	CHLORO- PROPANE TOTAL (UG/L)	TRANSDI CHLORO- ETHENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- BENZENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	1,3-DI- CHLORO- PROPENE TOTAL (UG/L)	CHLORO- ETHYL- ENE TOTAL (UG/L)	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L)	CHLO- RIDE TOTAL (UG/L)
APR 1987 27 MAY 26 JUN	TETRA- CHLORO- ETHANE TOTAL (UG/L) ND	CHLORO- BENZENE TOTAL (UG/L) ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND	CHLORO- PROPANE TOTAL (UG/L) ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND	CHLORO- BENZENE TOTAL (UG/L) ND	CHLORO- BENZENE TOTAL (UG/L) ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND	CHLO- RIDE TOTAL (UG/L) ND
APR 1987 27 MAY 26 JUN 16 AUG	TETRA- CHLORO- ETHANE TOTAL (UG/L) ND ND	CHLORO-BENZENE TOTAL (UG/L) ND ND ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND	CHLORO-BENZENE TOTAL (UG/L) ND ND	CHLORO- BENZENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND	CHLO- RIDE TOTAL (UG/L) ND ND
APR 1987 27 MAY 26 JUN 16 AUG 04 SEP	TETRA-CHLORO-ETHANE TOTAL (UG/L) ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND	CHLORO-PROPANE TOTAL (UG/L) ND ND ND ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND	CHLORO-BENZENE TOTAL (UG/L) ND ND ND	CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND  ND  ND  ND	1,3-DI- CHLORO- PROPENE TOTAL (UG/L) ND ND ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND	CHLO- RIDE TOTAL (UG/L) ND ND
APR 1987 27 MAY 26 JUN 16 AUG 04 SEP 29	TETRA-CHLORO-ETHANE TOTAL (UG/L) ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L) ND ND ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND	CHLORO- BENZENE TOTAL (UG/L)  ND  ND  ND  ND	CHLORO-BENZENE TOTAL (UG/L) ND ND ND ND ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND ND ND ND ND ND ND	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND  ND  ND  ND  ND	CHLORO- ETHYL- ENE TOTAL (UG/L) ND ND 2.0 ND	CHLORO- ETHYL- VINYL- ETHER TOTAL (UG/L) ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND ND
APR 1987 27 MAY 26 JUN 16 AUG 04 SEP 29 NOV 05 DEC	TETRA-CHLORO-ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND	CHLORO-ETHANE WATER WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND	CHLORO- BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND ND ND ND ND ND ND ND	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND ND ND ND	CHLO-RIDE TOTAL (UG/L)  ND ND ND ND ND ND
APR 1987 27 MAY 26 JUN 16 AUG 04 SEP 29 NOV 05 DEC 03 APR 1988	TETRA-CHLORO-CHLORO-CHANE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND	CHLORO- ETHANE WATER WHOLE TOTAL (UG/L)  ND ND ND ND ND ND ND ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND ND ND ND ND	CHLO- RIDE TOTAL (UG/L) ND ND ND ND ND
APR 1987 27 MAY 26 JUN 16 AUG 04 SEP 29 NOV 05 DEC 03 APR 1988 07 19	TETRA-CHLORO-CHLORO-CHANE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND	CHLORO-ETHANE WATER WATER WHOLE TOTAL (UG/L) ND ND ND ND ND ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND	CHLORO- BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND ND ND ND ND ND ND ND	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND ND ND ND ND ND ND	CHLO-RIDE TOTAL (UG/L)  ND ND ND ND ND ND
APR 1987 27 MAY 26 JUN 16 AUG 04 SEP 29 NOV 05 DEC 03 APR 1988 07 19 JUN 09	TETRA-CHLORO-ETHANE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND ND 19  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND
APR 1987 27 MAY 26 JUN 16 AUG 04 SEP 29 NOV 05 DEC 03 APR 1988 07 19 JUN	TETRA-CHLORO-ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 27 MAY 26 JUN 16 SEP 29 NOV 05 DEC 03 APR 1988 07 19 JUN 09 21	TETRA-CHLORO-ETHANE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND ND 19  ND N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND
APR 1987 27 MAY 26 JUN 16 AUG 04 SEP 29 NOV 05 DEC 03 APR 1988 07 19 JUN 09 JUN 21 JUL 21 AUG 24	TETRA-CHLORO-ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO- RIDE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N
APR 1987 27 MAY 26 JUN 16 AUG 04 SEP 29 NOV 05 DEC 03 APR 1988 07 19 JUN 09 21 JUL AUG 24 SEP 12	TETRA-CHLORO-ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLOROBENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHANE WATER WATER WHOLE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE RIDE TOTAL (UG/L) ND
APR 1987 27 MAY 26 JUN 16 AUG 04 SEP 29 NOV 05 DEC 03 APR 1988 07 19 JUN 21 AUG 24 SEP	TETRA-CHLORO-ETHANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-BENZENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHANE WATER WHOLE TOTAL (UG/L)  ND	CHLORO-PROPANE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	TRANSDI CHLORO- ETHENE TOTAL (UG/L) ND ND ND ND ND ND ND ND ND	CHLORO-BENZENE TOTAL (UG/L)  ND	CHLORO-BENZENE TOTAL (UG/L) ND	CHLORO-ETHYL-ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	1,3-DI-CHLORO-PROPENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL-ENE ENE TOTAL (UG/L)  ND  ND  ND  ND  ND  ND  ND  ND  ND  N	CHLORO-ETHYL- VINYL- ETHER TOTAL (UG/L)  ND	CHLO-RIDE TOTAL (UG/L)  ND

# 04295000 RICHELIEU RIVER (LAKE CHAMPLAIN) AT ROUSES POINT, NY - continued

# SUSPENDED SEDIMENT DISCHARGE

DATE	TIME	SEDI- MENT, SUS- PENDED (MG/L)
APR 1987		
27	1450	
MAY	1500	
26 JUN	1500	
16	1200	
AUG		
04 SEP	0930	
29	1000	
NOV		
05	0915	
DEC		
03 APR 1988	0900	
07	0915	
19	0930	
JUN	0,500	
09	0900	3
21	0930	
JUL		
21	0900	
AUG		•
24 SEP	0830	3
12	1645	
OCT	20.25	
19	1600	4
NOV		
16	1600	37

## BED MATERIAL ANALYSES

DATE	TIME	SOLI VOL TILE BOTT MA TER (MG/	A- IN RETORMENT TO TO THE TOTAL TE	NUM, RI ECOV. FM BOT- TOI 1 MA- TI ERIAL (U	DMIUM ECOV. BOT- MA- ERIAL JG/G ECD)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	FM TOM TOM TE:	COV. RI BOT- FM MA- TOI RIAL TI G/G (I	RON, ECOV. BOT- M MA- ERIAL UG/G S FE)	FM FTOM	COV. NE BOT- RI MA- FM RIAL TOM G/G TE	ESE, F ECOV. FN BOT- TO MA- T ERIAL	ERCURY ECOV. I BOT- OM MA- PERIAL UG/G AS HG)	NICKEL, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS NI)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)
SEP 1987 29	1000	7	340		<1	<10		7	3900		<10	73	<0.10	<10	20
SEP 1988 12	1645	15	100	130	<10			20	150	•	<100	23	0.02	<100	<10
DATE	AROC 122 IN BOTT MA (UG/	1 I OM T.	AROCLOR 1248 PCB BOT.MAT (UG/KG)	AROCLOR 1254 PCB BOT.MAT (UG/KG)	AROCI 1260 PCE BOT.M (UG/K	IN E TOM IAT TER	TAL SOT- MA- RIAL	ALPHA BHC TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ATRA ZINE TOTA IN BO TOM M TERI (UG/K	I, AL OT- IA- IAL	BETA BENZENE HEXA- CHLOR- IDE BOT.MAT (UG/KG)	CHLOR- DANE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLO PYRI IN B	BENT R- HE: FOS CHI OT. II	LTA LENE KA- LOR- DE MAT /KG)
SEP 1987 29 SEP 1988	-	-				-							_		
12	ND	)	ND	ND	ND	NI	)	ND	ND		ND	ND	ND	N	)
DATE	DI AZIN TOT IN B TOM TER (UG/	ON, PAL SOT- MA- LIAL	DI- ELDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDO- SULFAN ALPHA BOT.MAT (UG/KG)	ENDO SULFA BETA BOT.M	N SULFIAT BOT.	FAN ATE MAT	ENDRIN, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	ENDRI ALDE HYD BOT.M (UG/K	:- E IAT	ETHION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	HEPTA- CHLOR, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	CHLO EPOX TOT. BOT	OR THE	
SEP 1987 29 SEP 1988	_	-				-									
12	ND	)	ND	ND	ND	NE	)	ND	ND		ND	ND	ND	N	)

Table 4.--Selected water-quality and bottom-material data from streams in New York, 1987-88 (continued).

# 04295000 RICHELIEU RIVER (LAKE CHAMPLAIN) AT ROUSES POINT, NY - continued

# BED MATERIAL ANALYSES (continued)

DATE	METH- OXY- CHLOR, TOT. IN BOTTOM MATL. (UG/KG)	MIREX, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	P,P'DDD, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	P,P' DDE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	P,P' DDT, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	PARA- THION, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	TOXA- PHENE, TOTAL IN BOT- TOM MA- TERIAL (UG/KG)	BED MAT. FALL DIAM. % FINER THAN .004 MM	BED MAT. SIEVE DIAM. % FINER THAN .062 MM	BED MAT. SIEVE DIAM. % FINER THAN .125 MM	BED MAT. SIEVE DIAM. % FINER THAN 2.00 MM
SEP 1987 29 SEP 1988								0	1	17	100
12	ND	ND	ND	ND	ND	ND	ND	1	6	100	

Table 5.--Result of analyses of quality-assurance samples.

[Abbreviations used in table: AL - Aluminum, CA - Calcium, CACO3 - Calcium carbonate, CD - Cadmium, CL - Chloride, CU - Copper, F - Fluoride, FE - Iron, HG - Mercury, K - Potassium, LAB - laboratory, MG - Magnesium, MG/L - milligram per liter, MN - Manganese, NA - Sodium, NI - Nickel, PB - Lead, SO4 - Sulfate, UG/L - microgram per liter, US/CM - microsiemens per centimeter, ZN - Zinc.]

### Field blanks

				FIE	TO DIADER					
DATE	TIME	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH LAB (STAND- ARD UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
APR 1988										
05	1230	1	5.8						2.0	<0.20
14	1345	3	7.1	0	0.03	0.01	<0.20	0.10	1.0	0.30
20	1230	2	5.9	0	0.10	0.04	<0.20	0.10	2.0	<0.20
21	1145	1	6.1	0	0.08	0.04	<0.20	<0.10	1.0	<0.20
MAY 04	1130	1	6.8		0,06	<0.01	<0.20	0.10	9.0	<0.20
12	1300	1	6.0		0.11	<0.01	<0.20	0.10	2.0	<0.20
18	1000	2	6.7	1	0.21	0.05	<0.20	0.20	1.0	<0.20
JUN	1400	_								
09 16	1100 1230	2 2	6.0 7.6	1	0.08 0.18	0.07 <0.01	<0.20 <0.20	0.10 0.10	1.5	<0.20 1.0
21	0930	ī	6.3	1	0.15	0.05	<0.20	0.10	2.0	<0.20
23	1230	1	7.8	0	0.07	0.05	<0.20	0.10	1.0	0.60
JUL										
21 AUG	1100	2	7.4	1	0.41	0.06	0.40	0.10	2.0	<0.20
19 SEP	0945	2	7.9		0.11	<0.01	<0.20	0.10	1.0	<0.20
12 OCT	1900	1	7.6	0	0.06	0.01	<0.20	0.10	1.0	<0.20
06	0800	2	7.1	1	0.35	0.08	0.30	0.20	1.0	<0.20
06	1500	1	7.5	1	0.20	0.04	<0.20	0.10	2.0	<0.20
20	1000	2	7.3	0	0.11	0.01	<0.20	0.10	2.0	<0.20
NOV 09	1130	2	7.3	1	0.12	0.09	<0.20	0.10	2.0	<0.20
17	1200	2	6.8		0.12	<0.03	<0.20	0.10	1.0	<0.20
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)
APR 1988										
05	0.10	0.10	<10		<1		3		<10	
1 <b>4</b> 20	0.10 0.10	0.10 0.10	10 <10	<10	<1 1	<1.0	1 <1	<1	>10 <10	<3
21	0.10	0.10	<10		2		<1		<10	
MAY								_		
04 12	0.10 0.20	0.10 0.10	10 <10	<10	<1 <1	<1.0	10 2	1	<10 <10	<3
18	0.10	0.10	<10	<10	6	<1.0	5	2	20	<3
JUN										
09	<0.10	0.20	<10	<10	1	<1.0	2	2	20	<3
16 21	0.40	0.10	20 <10		<1 <1		<b>4</b> 2		10 10	
23	0.30	0.20	<10		<1		2		<10	
JUL										
21 AUG	<0.10	0.10	<10		3		3		20	
19 SEP	0.10	<0.10	30		<1		3		60	
12 OCT	0.20	<0.10	<10		1		2		180	
06	<0.10	0.10	10	<10	<1	<1.0	2	<1	<10	<3
06	0.10	<0.10	40	<10	<1	<1.0	5	3	50	8
20	0.10	<0.10	<10	<10	1	<1.0	4	1	20	6
NOV 09	<0.10	0.10	10	<10	<1	<1.0	5	5	40	7
17	0.20	<0.10	20		1		8		40	

Table 5.--Result of analyses of quality-assurance samples (continued).

## Field blanks (cont'd)

DATE	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)
APR 1988									
05	<5		<10		<0.10	5		<10	
14	<5		<10		<0.10	2		<10	
20	<5	<5	<10	<1	<0.10	5	<1	<10	<3
21	<5		<10		<0.10	4		<10	
MAY									
04	<5	<5	<10	<1	<0.10	5	<1	<10	7
12	<5		<10		<0.10	5		<10	
18	5	<5	<10	<1	<0.10	6	<1	<10	<3
JUN									
09	<b>&lt;</b> 5	<5	<10	<1	<0.10	2	1	<10	<3
16	<5		<10		<0.10	2		<10	
21	<5		20		1.6	2		<10	~-
23	<5		<10		<0.10	<1		<10	
JUL									
21	5		<10		<0.10	1		<10	
AUG									
19	<b>&lt;</b> 5		<10		<0.10	5		<10	
SEP									
12	<5		<10		<0.10	4		<10	
OCT									
06	<5	<5	<10	<1	0.30	2	1	<10	4
06	<5	<5	<10	<1	<0.10	4	1	<10	4
20	<5	5	<10	<1	<0.10	3	1	<10	6
NOA									
09	7	<5	<10	1	<0.10	2	1	10	6
17	<5		<10		<0.10	11		<10	

Table 5.--Result of analyses of quality-assurance samples (continued).

# Paired duplicate samples

DATE	TIME	SPE- CIFIC CON- DUCT- ANCE LAB (US/CM)	PH LAB (STAND- ARD UNITS)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)
01317395		SCHROON RIV	er, state	HIGHWAY	418, AT V	VARRENSBU	RG NY			
MAY 1988 12 12	1200 1200	72 72	7.8 7.9	23 23	7.3 7.4	1.2	3.7 3.8	0.30 0.30	18 18	9.0 9.0
01422642		WEST BRANC	H DELAWAR	E RIVER	AT DE LANG	CEY NY				
APR 1988 21	1100	91	7.5	30	8.8	1.9	4.4	0.90	19	11
21	1100	91	7.5	29	8.5	1.9	4.4	0.90	19	11
	37500	NEVE	RSINK RIV	er at go	DEFFROY NY	ť				
JUN 1988 23	1100	98	7.5	27	8.3	1.6	6.7	1.0	21	11
23	1100	98	7.4	28	8.4	1.6	6.7	1.0	17	10
MAY 1988	.3320	CHAUT	AUQUA CRE	EK AT BA	RCELONA N	(				
04	1115 1115	268 268	8.1 8.0						8 <b>4</b> 86	
	213378		ADAWAY CR		UNKIRK NY				00	
MAY 1988										
19 19	1020 1020	264 264	7.8 7.8	100 100	32 32	5.5 5.5	11 11	1.3 1.5	75 7 <b>4</b>	25 25
042	14500	BUFF.	ALO CREEK	AT GARD	ENVILLE NY					
NOV 1988										
15 15	0900 0900	411 412	8.3 8.3	180 170	5 <b>4</b> 53	10 10	16 16	2.4 2.5	118 118	53 53
042	18054	TONA	WANDA CRE	EK AT PEI	NDLETON NY	!				
APR 1988 18	1330	637	8.2	280	85	16	20	1.8	194	88
18	1330	637	8.2	290	89	17	21	1.9	194	88
04219640	N	IIAGARA RIVE	R (LAKE O	NTARIO)	AT FORT N	AGARA NY				
MAY 1988 03	0845	287	8.0						97	
03 JUN	0845	287	8.0				~-		97	
29 29	1230 1230	291 	8.4	120	35	8.3	9.1 	1.3	97 	26
042	73500	SARA	NAC RIVER	AT PLAT	rsburgh Ny					
OCT 1988 20	0815	94	7.7	38	10	3.1	4.3	0.70	30	11
20 NOV	0815	94	7.7	38	10	3.1	4.3	0.70	30	11
17 17	0900 0900	73 73	7.4 7.4	2 <b>7</b> 26	7.2 7.1	2.1	3.2 3.2	0.60 0.70	17 17	14 14
04295000		RICHELIEU R								
APR 1988										
07 07	0915 0915	154 153	7.9 7.7	57 57	16 16	4.1	6.2 6.2	1.3 1.3	46 47	14 15
JUN 09	0900	163	8.0	63	18	4.3	7.1	1.4	51	14
09 JUL	0900	158	8.0	62	18	4.2	6.9	1.3	51	14
21 21 SEP	0900 0900	167 170	7.8 8.2	64 61	18 17	4.6 4.5	7.3	1.2	51 51	14 14
12	1645 1645	162 163	8.4 8.6	62 64	17 18	4.7	7.5 7.2	1.2	49 50	14 14

Table 5.--Result of analyses of quality-assurance samples (continued).

# Paired duplicate samples (cont'd)

D <b>ATE</b>	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)
01317395	s	CHROON RIV	/ER, STATE	HIGHWAY	418, AT	WARRENSBU	RG NY			
MAY 1988 12 12	6.4 6.4	0.10 0.10	39 39	50 50		1 1		2 2		110 90
01422642	: 1	WEST BRAN	CH DELAWAR	E RIVER A	AT DE LAN	CEY NY				
APR 1988 21 21	7.4 7.3	0.10 0.10	46 45	60 20		2 2		6 <b>4</b>		70 70
01	437500	NEV	ERSINK RIV	ER AT GOI	DEFFROY N	Y				
JUN 1988										
23 23	10 9.6	0.20 0.20	51 48	30 30		<1 <1		4		140 160
042	13320	CHAU	TAUQUA CRE	EK AT BAI	RCELONA N	Y				
MAY 1988 04 04				260 2 <b>4</b> 0		<1 <1		4 3		6 <b>40</b> 600
	04213378	CA	NADAWAY CR		UNKIRK NY					
MAY 1988 19	18	0.20	138	1100	<10	<1	<1.0	14	2	2300
19	17	0.20	137	20	20	<1	<1.0	30	2	120
	214500	BUF	FALO CREEK	AT GARDI	ENVILLE N	Y				
NOV 1988 15 15	23 22	0.10 0.10	229 227	40 40		1 <1		4 2		180 200
04	218054	TON	AWANDA CRE	EK AT PE	NDLETON N	Y				
APR 1988 18	26	0.20	262	100	10		-1.0	11	2	420
18	36 34	0.20 0.20	363 367	100 100	10 10	1	<1.0 <1.0	11	3 2	430
04219640	NI.	AGARA RIV	ER (LAKE C	NTARIO)	AT FORT N	IAGARA NY				
MAY 1988 03				60		<1		8		540
03 JUN				60		44		17		120
29 29	14	0.30	152	50 60		<1 28		. 11 11		100 170
04	273500	SAR	ANAC RIVER	AT PLAT	TSBURGH N	Y				
OCT 1988	6 1	-0.10	E 2	50	10	-1	-1 0	6	2	250
20 20 NOV	6.1	<0.10 <0.10	53 53	50 50	10 10	<1 <1	<1.0 <1.0	6	3	350 350
17 17	5.2 5.2	<0.10 <0.10	42 42	110 110		1 2		8 9		320 330
04295000	R	ICHELIEU	RIVER (LAK	E CHAMPL	AIN) AT R	ouses poi	NT NY			
APR 1988 07	9.6 9.9	0.10 0.10	79 81	10 20	<10 10	<1 <1	<1.0 <1.0	2 2	3	40 40
JUN 09 09	9.9 10	0.20 0.30	86 85	40 40	<10 <10	2 2	<1.0 <1.0	6	2 3	80 70
JUL 21 21	10 9.9	0.10 0.10	86 84	<10 <10		<1 <1		3 4		80 100
SEP 12 12	10 10	0.10 0.10	84 85	10 <b>4</b> 0		1 <1		1 3		20 20

Table 5.--Result of analyses of quality-assurance samples (continued).

# Paired duplicate samples (cont'd)

	IRON TOTAL	LEAD, TOTAL	LEAD,	MANGA- NESE, TOTAL	MANGA- NESE,	MERCURY TOTAL	NICKEL, TOTAL	NICKEL,	ZINC, TOTAL	ZINC,
DATE	DIS- SOLVED (UG/L AS FE)	RECOV- ERABLE (UG/L AS PB)	DIS- SOLVED (UG/L AS PB)	RECOV- ERABLE (UG/L AS MN)	DIS- SOLVED (UG/L AS MN)	RECOV- ERABLE (UG/L AS HG)	RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L	RECOV- ERABLE (UG/L	DIS- SOLVED (UG/L
01317395				HIGHWAY 4			AS NI)	AS NI)	AS ZN)	AS ZN)
MAY 1988										
12 12		<5 <5		10 10		<0.10 <0.10	6 <b>4</b>		<10 <10	
01422642	WE	ST BRANCH	DELAWARE	RIVER AT	DE LANCE	Y NY				
APR 1988 21 21		<5 <5		20 20		<0.10 <0.10	7 5		<10 <10	
014	37500	NEVERS	SINK RIVE	R AT GODE	FFROY NY					
JUN 1988		.e		40		0.10	4		10	
23 23		<b>&lt;</b> 5 <5		40 50		<0.10 <0.10	<1 <1		10 <10	
	3320	CHAUTAU	JQUA CREE	K AT BARCI	ELONA NY					
MAY 1988 04		<5		20			<1		20	
04		<5		20		<0.10	<1		10	
04 MAY 1988	1213378	CANAI	DAWAY CRE	EK AT DUN	KIRK NY					
19	33	<5	<5	50	13	<0.10	14	2	<10	7
19	50	<5	<5	20	13	<0.10	4	2	20	9
NOV 1988	214500	BUFFAL	LO CREEK	AT GARDEN	AILLE NY					
15		<5		30		<0.10	2		<10	
15	10054	<5		30		<0.10	1		<10	
042	218054	TONAW	ANDA CREE	K AT PEND	PETON NA					
APR 1988 18	17	<5	<b>&lt;</b> 5	60	40	<0.10	5	2	<10	<3
18	15	<5	<5	50	39	<0.10	5	1	<10	<3
04219640	NIAG	ARA RIVER	(LAKE ON	TARIO) AT	FORT NIA	GARA NY				
MAY 1988 03		<5		10			6		<10	
03		<5		<10		<0.10	3		<10	
JUN 29 29		<b>8</b> <5		50 20		0.40 <0.10	2 5		<10 20	
	273500	SARAN	AC RIVER	AT PLATTS	BURGH NY					
OCT 1988										
20 20	240 240	<5 <5	<5 <5	10 <10	8	0.10 0.10	1 1	<1 <1	<10 <10	5 5
NOV										
17 17		<5 <5		30 30		<0.10 <0.10	8 10		<10 <10	
04295000	RIC	HELIEU RI	VER (LAKE	CHAMPLAI	N)					
APR 1988	12			-10		-0.10	^	4	-10	r
07 07	13 17	<5 <5	<5 <5	<10 10	4 4	<0.10 <0.10	2 3	1 1	<10 <10	5 5
JUN 09	17	<b>&lt;</b> 5	<b>&lt;</b> 5	20	4	<0.10	4	3	<10	5
09	11	<5	<5	30	4	<0.10	3	3	<10	4
JUL 21		<5 .F		40		<0.10	2		<10	
21 SEP		<5		40		<0.10	1		<10	
12 12		<5 <5		<10 <10		<0.10 <0.10	2 4		<10 <10	